Human Biases in Multilingual Models

Cristina España-Bonet DFKI GmbH

Language in the Human-Machine Era Workshop
Budapest, Hungary
28th August 2023

Details of this Presentation Available in

The (Undesired) Attenuation of Human Biases by Multilinguality

Cristina España-Bonet, Alberto Barrón-Cedeño

Abstract

Some human preferences are universal. The odor of vanilla is perceived as pleasant all around the world. We expect neural models trained on human texts to exhibit these kind of preferences, i.e. biases, but we show that this is not always the case. We explore 16 static and contextual embedding models in 9 languages and, when possible, compare them under similar training conditions. We introduce and release CA-WEAT, multilingual cultural aware tests to quantify biases, and compare them to previous English-centric tests. Our experiments confirm that monolingual static embeddings do exhibit human biases, but values differ across languages, being far from universal. Biases are less evident in contextual models, to the point that the original human association might be reversed. Multilinguality proves to be another variable that attenuates and even reverses the effect of the bias, specially in contextual multilingual models. In order to explain this variance among models and languages, we examine the effect of asymmetries in the training corpus, departures from isomorphism in multilingual embedding spaces and discrepancies in the testing measures between languages.

Anthology ID: 2022.emnlp-main. 133
Volume: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Month: December
Year: 2022

Motivation

Most multilingual models just use a combination of monolingual corpora for training.

Are we distorting semantics?

[https://en.wikipedia.org/wiki/Point-set_registration]

Motivation

Most multilingual models just use a combination of monolingual corpora for training.

Are we distorting semantics?

■ We need something that is language and cultural independent

- We chose non-social (human) biases for this

The (Undesired) Attenuation of Human Biases by ML Outline

1 Measuring Biases

2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)

3 Experiments

4 Conclusions

IAT: Implicit Association Tests

Welcome to IAT1!

IAT: Implicit Association Tests

Flower
Pleasant
Insect
Unpleasant

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Pleasant } & \text { Unpleasant }\end{array}$
DAISY

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Pleasant } & \text { Unpleasant }\end{array}$
PETUNIA

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Pleasant } & \text { Unpleasant }\end{array}$

SPIDER

IAT: Implicit Association Tests

Flower
 Pleasant
 Insect
 Unpleasant
 ROSE

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Pleasant } & \text { Unpleasant }\end{array}$
MOSQUITO

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Unpleasant } & \text { Pleasant }\end{array}$

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Unpleasant } & \text { Pleasant }\end{array}$
DAISY

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Unpleasant } & \text { Pleasant }\end{array}$
PETUNIA

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Unpleasant } & \text { Pleasant }\end{array}$
SPIDER

IAT: Implicit Association Tests

$\begin{array}{ll}\text { Flower } & \text { Insect } \\ \text { Unpleasant } & \text { Pleasant }\end{array}$
ROSE

IAT: Implicit Association Tests

Flower Insect
 Unpleasant Pleasant
 MOSQUITO

IAT: Implicit Association Tests

IAT1 Complete!
 - *

IAT: Implicit Association Tests

IAT1: difference in response time
(flowers \& insects)

IAT: Implicit Association Tests

IAT2: difference in response time
(musical instruments \& weapons)

WEAT: Association Tests in Word Embeddings

WEAT, Intuition

WEAT: Association Tests in Word Embeddings

Intuition, in our Embedding Space we can Measure Distances

WEAT: Association Tests in Word Embeddings

Intuition, in our Embedding Space we can Measure Distances

WEAT: Association Tests in Word Embeddings

Intuition, in our Embedding Space we can Measure Distances

$$
\begin{aligned}
& \frac{\sum_{\oplus \in \overrightarrow{\boldsymbol{\omega}}} \cos (\bullet, \oplus)}{|\vec{\Theta}|} \\
& \frac{\sum_{\bullet \in \overrightarrow{\boldsymbol{\omega}}} \cos (*, \oplus)}{|\overrightarrow{\boldsymbol{\varphi}}|}
\end{aligned}
$$

WEAT: Association Tests in Word Embeddings

Intuition, in our Embedding Space we can Measure Distances

$$
\begin{aligned}
& \sum_{0 \in \epsilon} \cos (\oplus, \oplus) \\
& \text { | } \\
& \frac{\sum_{\bullet \in \overrightarrow{\boldsymbol{\omega}}} \cos (*, \oplus)}{|\overrightarrow{\boldsymbol{\omega}}|}
\end{aligned}
$$

WEAT: Association Tests in Word Embeddings

Intuition, in our Embedding Space we can Measure Distances

$$
\begin{gathered}
\frac{\sum_{\boldsymbol{\bullet} \in \overrightarrow{\boldsymbol{\Theta}}} \cos (\oplus, \boldsymbol{\oplus})}{|\overrightarrow{\boldsymbol{\Theta}}|} \\
\frac{\sum_{\boldsymbol{\bullet} \in \overrightarrow{\boldsymbol{\Theta}}} \cos (*, \boldsymbol{\oplus})}{|\overrightarrow{\boldsymbol{\Theta}}|} \\
\operatorname{assoc}(t, A)=\frac{\sum_{\mathbf{a} \in A} \cos (\mathbf{t}, \mathbf{a})}{|A|}
\end{gathered}
$$

WEAT: Association Tests in Word Embeddings

Intuition, in our Embedding Space we can Measure Distances

$$
\begin{gathered}
\frac{\sum_{\boldsymbol{\bullet} \in \overrightarrow{\boldsymbol{\Theta}}} \cos (\oplus, \boldsymbol{\oplus})}{|\overrightarrow{\boldsymbol{\Theta}}|} \\
\frac{\sum_{\boldsymbol{\bullet} \in \overrightarrow{\boldsymbol{\Theta}}} \cos (*, \boldsymbol{\oplus})}{|\overrightarrow{\boldsymbol{\Theta}}|} \\
\operatorname{assoc}(t, A)=\frac{\sum_{\mathbf{a} \in A} \cos (\mathbf{t}, \mathbf{a})}{|A|}
\end{gathered}
$$

$$
\Delta_{\text {assoc }}(t, A, B)=\operatorname{assoc}(t, A)-\operatorname{assoc}(t, B)
$$

WEAT: Association Tests in Word Embeddings

What do we Measure?

The difference in association for a term:

$$
\Delta_{\text {assoc }}(t, A, B)=\operatorname{assoc}(t, A)-\operatorname{assoc}(t, B)
$$

The statistic:

$$
\begin{aligned}
& s(X, Y, A, B)=\sum_{x \in X} \Delta_{\text {assoc }}(x, A, B)-\sum_{y \in Y} \Delta_{\text {assoc }}(y, A, B)
\end{aligned}
$$

WEAT: Association Tests in Word Embeddings

What do we Measure?

WEAT: Association Tests in Word Embeddings

What do we Measure?

The statistic:

The size effect:

WEAT: Association Tests in Word Embeddings

[Caliskan et al., Nature, 2017]
Semantics derived automatically from language corpora contain human-like biases:

■ morally neutral as toward insects or flowers, -our non-social-

- problematic as toward race or gender,
- veridical, reflecting the status quo distribution of gender with respect to careers or first names.

WEAT: Association Tests in Word Embeddings

[Caliskan et al., Nature, 2017]
Semantics derived automatically from language corpora contain human-like biases:

■ morally neutral as toward insects or flowers, -our non-social-

- problematic as toward race or gender,
- veridical, reflecting the status quo distribution of gender with respect to careers or first names.

For multilinguality we need universals \Rightarrow non-social only

Multilinguality and Cultural-Aware WEAT (CA-WEAT)

Outline

1 Measuring Biases

- IAT: Implicit Association Tests
- WEAT: Association Tests in Word Embeddings

2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)
3 Experiments
■ Wide Overview

- WEAT vs X-WEAT vs CA-WEAT
- Data Asymmetries and Isomorphism

4 Conclusions

Multilinguality and Cultural-Aware WEAT

WEAT1 and WEAT2 Original Lists

WEAT1 target items

Flowers aster, clover, hyacinth, marigold, poppy, azalea, crocus, iris, orchid, rose, bluebell, daffodil, lilac, pansy, tulip, buttercup, daisy, lily, peony, violet, carnation, gladiola, magnolia, petunia, zinnia

Insects ant, caterpillar, flea, locust, spider, bedbug, centipede, fly, maggot, tarantula, bee, cockroach, gnat, mosquito, termite, beetle, cricket, hornet, moth, wasp, blackfly, dragonfly, horsefly, roach, weevil

WEAT2 target items
Instruments bagpipe, cello, guitar, lute, trombone, banjo, clarinet, harmonica, mandolin, trumpet, bassoon, drum, harp, oboe, tuba, bell, fiddle, harpsichord, piano, viola, bongo, flute, horn, saxophone, violin

Weapons arrow, club, gun, missile, spear, axe, dagger, harpoon, pistol, sword, blade, dynamite, hatchet, rifle, tank, bomb, firearm, knife, shotgun, teargas, cannon, grenade, mace, slingshot, whip

WEAT1 and WEAT2 attributes

Pleasant caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, happy, laughter, paradise, vacation

Unpleasant abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty, ugly, cancer, kill, rotten, vomit, agony, prison

Multilinguality and Cultural-Aware WEAT
Original and X-WEAT Lists

Original version (WEAT1, WEAT2)
[Battig and Montague, 1969; Bellezza et al., 1986; Greenwald et al., 1998]

- Collected from college students in Eastern US
- Frequent terms

■ Non-ambiguous terms

Multilinguality and Cultural-Aware WEAT

Original version (WEAT1, WEAT2)
[Battig and Montague, 1969; Bellezza et al., 1986; Greenwald et al., 1998]

- Collected from college students in Eastern US
- Frequent terms

■ Non-ambiguous terms

Multilingual version (X-WEAT)
[Lauscher and Glavaš, 2019; Lauscher et al., 2020]

- Literal translation

■ Arabic, Croatian, German, Italian, Russian, Spanish and Turkish

Multilinguality and Cultural-Aware WEAT

Features and Issues with WEAT and X-WEAT (the safe version :-))

- WEAT: American English, represents the culture of the (Eastern) US
- X-WEAT: Multilingual, but represents the culture of the (Eastern) US! -and this applies to all NLP using translation-

■ duplicates? (violin, fiddle \rightarrow violín)

- frequent terms? (gnat \rightarrow jején)

■ non-ambiguous terms? (blade \rightarrow hoja)

- CA-WEAT: Multilingual and culturaly aware

Multilinguality and Cultural-Aware WEAT

CA-WEAT

Cultural Aware WEAT

Multilinguality and Cultural-Aware WEAT

CA-WEATs per Country (not the best Distribution!)

Multilinguality and Cultural-Aware WEAT

A few more Today!

Multilinguality and Cultural-Aware WEAT

Monolingual (English) lists

apple, pear, grape, strawberry, blackberry, blueberry, raspberry, plum, apricot, orange, tangerine, clementine, lemon, lime, watermelon, pepper, squash, pumpkin, tomato, banana, pineapple, fig, date, mango, papaya
apple, banana, orange, grape, cherry, strawberry, raspberry, blueberry, tangerine, mango, peach, nectarine, pineapple, plum, mandarin, kiwi, papaya, blackberry, blackcurrant, redcurrant, apricot, raisin, gooseberry, pear, melon
apple, orange, banana, kiwi, grape, lemon, cherry, pear, strawberry, blueberry, raspberry, blackberry, avocado, lime, mango, peach, plum, apricot, nectarine, pineapple, papaya, watermelon, lychee, longan, durian

Multilinguality and Cultural-Aware WEAT

Monolingual (English) lists

apple, pear, grape, strawberry, blackberry, blueberry, raspberry, plum, apricot, orange, tangerine, clementine, lemon, lime, watermelon, pepper, squash, pumpkin, tomato, banana, pineapple, fig, date, mango, papaya
apple, banana, orange, grape, cherry, strawberry, raspberry, blueberry, tangerine, mango, peach, nectarine, pineapple, plum, mandarin, kiwi, papaya, blackberry, blackcurrant, redcurrant, apricot, raisin, gooseberry, pear, melon
apple, orange, banana, kiwi, grape, lemon, cherry, pear, strawberry, blueberry, raspberry, blackberry, avocado, lime, mango, peach, plum, apricot, nectarine, pineapple, papaya, watermelon, lychee, longan, durian

Multilinguality and Cultural-Aware WEAT

Monolingual (English) lists

US English
apple, pear, grape, strawberry, blackberry, blueberry, raspberry, plum, apricot, orange, tangerine, clementine, lemon, lime, watermelon, pepper, squash, pumpkin, tomato, banana, pineapple, fig, date, mango, papaya

UK English
apple, banana, orange, grape, cherry, strawberry, raspberry, blueberry, tangerine, mango, peach, nectarine, pineapple, plum, mandarin, kiwi, papaya, blackberry, blackcurrant, redcurrant, apricot, raisin, gooseberry, pear, melon

AU English
apple, orange, banana, kiwi, grape, lemon, cherry, pear, strawberry, blueberry, raspberry, blackberry, avocado, lime, mango, peach, plum, apricot, nectarine, pineapple, papaya, watermelon, lychee, longan, durian

Multilinguality and Cultural－Aware WEAT

Multilingual Lists．Disclaimer：my Translation．．．

US English

apple，pear，grape，strawberry，blackberry，blueberry，raspberry，plum，apricot， orange，tangerine，clementine，lemon，lime，watermelon，pepper，squash，pumpkin， tomato，banana，pineapple，fig，date，mango，papaya

BR Portuguese

apple，banana，guava，pineapple，apricot，pear，watermelon，orange，lemon，cherry， tangerine，kiwi，pequi，açaí，cashew，hog plum，soursop，strawberry，raspberry， blackberry，plum，peach，passion fruit，lychee，jabuticaba
maçã，banana，goiaba，abacaxi，damasco，pêra，melancia，laranja，limão，cereja，mexerica，kiwi，pequi， açaí，caju，cajá，graviola，morango，framboesa，amora，ameixa，pêssego，maracujá，lichia，jabuticaba

Traditional Chinese
banana，apple，pineapple，guava，orange，grape，peach，cherry，blueberry，Java apple，papaya，lychee，strawberry，tomato，cantaloupe，tangerine，lemon，lime， raspberry，Japanese banana，sugarcane，watermelon，durian，sugar apple，coconut香蕉，蘋果，風梨，芭樂，柳丁，葡萄，水蜜桃，椤桃，藍苺，蓮霧，木瓜，荕枝，草莓，番茄，哈密瓜，橘子，毫橲，莱姆，覆盆莓，芭蕉，甘蔗，西瓜，榴蓬，释迦，梛子

Multilinguality and Cultural－Aware WEAT

Multilingual Lists．Disclaimer：my Translation．．．

US English

apple，pear，grape，strawberry，blackberry，blueberry，raspberry，plum，apricot， orange，tangerine，clementine，lemon，lime，watermelon，pepper，squash，pumpkin， tomato，banana，pineapple，fig，date，mango，papaya

BR Portuguese

apple，banana，guava，pineapple，apricot，pear，watermelon，orange，lemon，cherry， tangerine，kiwi，pequi，açaí，cashew，hog plum，soursop，strawberry，raspberry， blackberry，plum，peach，passion fruit，lychee，jabuticaba
maçã，banana，goiaba，abacaxi，damasco，pêra，melancia，laranja，limão，cereja，mexerica，kiwi，pequi， açaí，caju，cajá，graviola，morango，framboesa，amora，ameixa，pêssego，maracujá，lichia，jabuticaba

Traditional Chinese
banana，apple，pineapple，guava，orange，grape，peach，cherry，blueberry，Java apple，papaya，lychee，strawberry，tomato，cantaloupe，tangerine，lemon，lime， raspberry，Japanese banana，sugarcane，watermelon，durian，sugar apple，coconut香蕉，蘋果，風梨，芭樂，柳丁，葡萄，水蜜桃，椤桃，藍苺，蓮霧，木瓜，荕枝，草莓，番茄，哈密瓜，橘子，毫橲，莱姆，覆盆莓，芭蕉，甘蔗，西瓜，榴蓬，释迦，梛子

Multilinguality and Cultural-Aware WEAT

(Cross-lingual) Cultural Biases in NLP

- Disclaimer: 1 list is just an example, 100 lists start saying something
- But CA-WEATs seem different to X-WEAT!
- Multilingual models trained on an asymmetric distribution of data
- Most of it US English
- Yes, also chatGPT :-)

■ "Write an article about agriculture"

Experiments

Outline

1 Measuring Biases
■ IAT: Implicit Association Tests

- WEAT: Association Tests in Word Embeddings

2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)
3 Experiments

- Wide Overview
- WEAT vs X-WEAT vs CA-WEAT

■ Data Asymmetries and Isomorphism
4 Conclusions

Experiments

Embedding Models \& Languages
\Leftrightarrow Pre-trained fastText word embeddings
WP
WPali
CCWP
$\$$ Comparable word embeddings with a subset of CC-100
CCe CCeVMuns CCeVMsup CCe2langs CCe9langs
$\$$ Word embeddings extracted from contextual models at different layers BERT mBERT XLM XGLM

Experiments

Embedding Models \& Languages
\& Pre-trained fastText word embeddings

$$
\begin{array}{lll}
\text { WP } & \text { WPali } & \text { CCWP }
\end{array}
$$

Comparable word embeddings with a subset of CC-100
CCe CCeVMuns CCeVMsup CCe2langs CCe9langs
$\$$ Word embeddings extracted from contextual models at different layers BERT mBERT XLM XGLM

用 Languages
Arabic (ar), Catalan (ca), Croatian (hr), English (en), German (de), Italian (it), Russian (ru), Spanish (es) and Turkish (tr)

Experiments

What we Report here (More in the Paper!)

- Size effect

Sawilowsky's scale: very small ($\mathrm{d}<0.01$), small (<0.20), medium (<0.50), large (<0.80), very large (<1.20), and huge (<2.00)

- CA-WEAT: median and $95 \% \mathrm{Cl}$ with order statistics
- WEAT, CA-WEAT, X-WEAT: 5,000 bootstraps (median and 95\% CI)

Experiments

What we Report here (More in the Paper!)

- Size effect

Sawilowsky's scale: very small ($\mathrm{d}<0.01$), small (<0.20), medium (<0.50), large (<0.80), very large (<1.20), and huge (<2.00)

- CA-WEAT: median and $95 \% \mathrm{Cl}$ with order statistics
- WEAT, CA-WEAT, X-WEAT: 5,000 bootstraps (median and 95\% CI)
- IAT1 (*) * IAT2 (σ) is equivalent

Do our embeddings show (human) biases? All embedding models? All languages?

Experiments

Wide Overview (WEAT, CA-WEAT)

Experiments

Wide Overview (WEAT, CA-WEAT)

Word embeddings:

- All WE models have $d>0$

Experiments

Wide Overview (WEAT, CA-WEAT)

Word embeddings:

- All WE models have $d>0$
- Pre-trained models have higher σ across languages

Experiments

Wide Overview (WEAT, CA-WEAT)

Word embeddings:

- All WE models have $d>0$
- Pre-trained models have higher σ across languages
- Equivalent projection methods

Experiments

Wide Overview (WEAT, CA-WEAT)

Word embeddings:

- All WE models have $d>0$
- Pre-trained models have higher σ across languages
- Equivalent projection methods
- Multilinguality attenuates

Experiments

Wide Overview (WEAT, CA-WEAT)

Contextual embeddings:

- d compatible with no bias

Experiments

Wide Overview (WEAT, CA-WEAT)

Contextual embeddings:
■ d compatible with no bias
■ Effect of contextualisation

Experiments

Wide Overview (WEAT, CA-WEAT)

Contextual embeddings:

- d compatible with no bias
- Effect of contextualisation
- But multilinguality attenuates further

Experiments

Experiments

Wide Overview (CA-WEAT vs X-WEAT)

■ X-WEAT shows similar trends as CA-WEAT

■ But! With a higher dispersion across languages

■ No universal d

Experiments

Experiments

- Lists show a high dispersion (bootstrapped and averaged)

■ X-WEAT lies within CA-WEAT (close languages)

Experiments

WEAT vs X-WEAT vs CA-WEAT

■ Lists show a high dispersion (bootstrapped and averaged)

■ X-WEAT lies within CA-WEAT (close languages)

■ Distributions non-normal (yet!)

Experiments

WEAT vs X-WEAT vs CA-WEAT

■ Lists show a high dispersion (bootstrapped and averaged)

■ X-WEAT lies within CA-WEAT (close languages)

■ Distributions non-normal (yet!)
■ English interesting for further study

Experiments

Why is d non-universal?

Is it data differences? Is it forcing multiliguality? Is it the dispersion?

Experiments

Why is d non-universal?

■ Asymmetries in term frequencies are not a reason (Pleasant vs Unpleasant terms in CCe)
$\rho=0.0$; explains 0% of the variance

Experiments

Comparison with Previous Work

WEAT1+X-WEAT1+CA-WEAT1: no relation

Experiments

Comparison with Previous Work

X-WEAT1: Simpson's paradox?

Experiments

Isomorphism

Experiments

- Measures: Gromov-Hausdorff (GH) distance and Eigenvector similarity (EV)
- Isomorphism between a language (sub-)space and the English (sub-)space
- For contextual models we consider the vocab from CCe

Experiments

Isomorphism between a Language (sub-)Space and the English (sub-)Space

	ar		ca		de		es		hr		it		ru		tr	
	EV	GH														
WP	106	0.47	12	0.49	12	0.31	10	0.18	42	0.54	21	0.24	16	0.43	49	0.39
WPali	143	0.55	22	0.51	22	0.36	16	0.37	46	0.61	19	0.34	30	0.32	36	0.44
CCWP	15	0.40	85	0.42	42	0.92	23	0.41	51	0.65	41	0.37	32	0.64	28	0.55
CCe	55	0.62	253	0.23	26	0.79	166	0.54	91	0.61	223	0.25	8	0.56	25	0.43
CCeVMuns	229	1.56	229	1.27	27	0.82	167	1.95	69	0.93	220	1.19	27	0.96	36	0.84
CCeVMsup	36	0.56	231	0.86	32	0.70	87	0.73	27	0.61	123	0.65	25	0.80	11	0.41
CCe2langs	93	0.53	8	0.43	19	0.94	72	0.35	33	0.81	51	0.41	39	0.51	64	0.61
CCe9langs	475	1.46	23	0.84	171	1.27	21	0.61	53	1.22	51	0.41	403	1.50	149	1.15
mBER_{0}	154	0.85	133	0.33	95	0.56	99	0.56	270	0.44	131	0.17	161	0.54	589	0.51
XLM-R	54	0.38	74	0.45	59	0.43	150	0.44	58	0.54	113	0.56	111	0.32	277	0.33
XGLM ${ }_{0}$	67	0.95	88	1.21	144	1.18	135	2.24	*2584	*2.30	130	1.33	85	1.64	475	0.68

- No clear distinction between WE and CE wrt. isomorphism distances
- Language and embedding model effects are also mixed

Experiments

Why is d non-universal?

■ (Lack of) ismorphism between (sub-)spaces is not a reason either! $\rho=-0.3$; explains 10% of the variance

Conclusions
 Outline

1 Measuring Biases
■ IAT: Implicit Association Tests

- WEAT: Association Tests in Word Embeddings

2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)
3 Experiments

- Wide Overview
- WEAT vs X-WEAT vs CA-WEAT

■ Data Asymmetries and Isomorphism
4 Conclusions

Conclusions

Wrapping up

■ Using (literal) translation in NLP does not in general preserve culture

- We therefore create CA-WEAT (in contrast to X-WEAT) to analyse desirable biases in embeddings across languages

Conclusions

Wrapping up

- Using (literal) translation in NLP does not in general preserve culture
- We therefore create CA-WEAT (in contrast to X-WEAT) to analyse desirable biases in embeddings across languages
- Monolingual and bilingual WE reproduce non-social human biases
- We do not observe a universal value even in the comparable setting
- Contextualisation and multiliguality attenuate biases, why?

Conclusions

- Using (literal) translation in NLP does not in general preserve culture
- We therefore create CA-WEAT (in contrast to X-WEAT) to analyse desirable biases in embeddings across languages
- Monolingual and bilingual WE reproduce non-social human biases
- We do not observe a universal value even in the comparable setting
- Contextualisation and multiliguality attenuate biases, why?
- Due to the large variablility (models \& languages) we want...

Conclusions

- Better understanding of individual vs cultural differences
- Better understanding of intralanguage cultural differences
- Better understanding of language models

That's All Folks!

Thanks! And...

Extra Slides

A Reviewer's Comment

There is a huge variability.
Shouldn't one use more (WEAT) tests?

How do we find more tests?!

We want universality...

Extra Slides

The Perception of Odor Pleasantness is Shared Across Cultures
[Arshamian et al., Current Biology, 2022]

- Culture plays a minimal role in the perception of odor pleasantness
- Individuals within cultures vary as to which odors they find pleasant
- Human olfactory perception is strongly constrained by universal principles

Extra Slides

The Perception of Odor Pleasantness is Shared Across Cultures

