Discriminative Phrase Selection for Statistical Machine Translation

Cristina España-Bonet, Jesús Giménez and Lluís Màrquez

Universitat Politècnica de Catalunya

NIST'08 MT Evaluation Workshop 28th March, 2008

Overview

- Introduction
- Discriminative Phrase Selection
 - The method
 - Results for Arabic-to-English
- Full Translation Task
 - The method
 - Results for Arabic-to-English
- 4 Conclusions

Motivation

Statistical Machine Translation

$$\hat{\mathbf{e}} = T(f) = \operatorname*{argmax}_{\mathbf{e}} P(\mathbf{e}|f)$$

Statistical Machine Translation

$$\hat{e} = \underset{e}{\operatorname{argmax}} \{ \underset{e}{\operatorname{log}} \ P(e|f) \} = \underset{e}{\operatorname{argmax}} \left\{ \sum_{m=1}^{M} \lambda_m h_m(e, f) \right\}$$

Phrase-based Models, Log-linear extension...

Statistical Machine Translation

$$\hat{e} = \underset{e}{\operatorname{argmax}} \{ \underset{e}{\operatorname{log}} \ P(e|f) \} = \underset{e}{\operatorname{argmax}} \left\{ \sum_{m=1}^{M} \lambda_m h_m(e, f) \right\}$$

Phrase-based Models, Log-linear extension...

- but usually P(e|f) is estimated by relative frequency counts (MLE)
- without context information (e.g., source-context is ignored)

The general idea

Use Discriminative Machine Learning to estimate P(e|f)

The general idea

Use Discriminative Machine Learning to estimate P(e|f)

- Vickrey et al. (2005)
- Carpuat and Wu (2006, 2007)
- Giménez and Màrquez (2007, 2008)
- Stroppa et al. (2007)
- Bangalore et al. (2007)

The general idea

Use Discriminative Machine Learning to estimate P(e|f)

- Vickrey et al. (2005)
- Carpuat and Wu (2006, 2007)
- Giménez and Màrquez (2007, 2008)
- Stroppa et al. (2007)
- Bangalore et al. (2007)

The method

- Phrase selection is treated as a classification problem
 - We use SVMs to solve the multiclass classification problem
 - Training set: phrase-aligned parallel corpus
 - Every possible translation is a class → one-vs-all classification:

The method

- Phrase selection is treated as a classification problem
- We use SVMs to solve the multiclass classification problem
 - Training set: phrase-aligned parallel corpus
 - Every possible translation is a class → one-vs-all classification:

The method

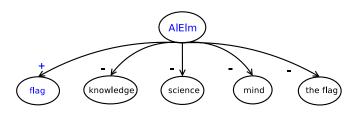
- Phrase selection is treated as a classification problem
- We use SVMs to solve the multiclass classification problem
- Training set: phrase-aligned parallel corpus
 - Every possible translation is a class → one-vs-all classification:

The method

- Phrase selection is treated as a classification problem
- We use SVMs to solve the multiclass classification problem
- Training set: phrase-aligned parallel corpus
- Every possible translation is a class → one-vs-all classification:

The method

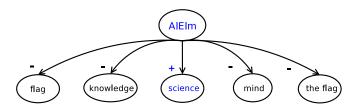
wAn\$d AllbnAnywn Al*yn HmlwA ktb SlAp w rfEwA AlElm AllbnAny , Aln\$yd AlwTny AllbnAny .



The Lebanese , who came carrying prayer books and the Lebanese ${\sf flag}$, sang the Lebanese national anthem .

The method

>n HAlp AlElm w AltknwlwjyA ldY nA fy nhAyp Alqrn AlE\$ryn l hA ElAmtAn mhmtAn . Al>wly gyAb AlmlAHqp fy h*A AlqTAE .



The situation of science and technology in Egypt at the end of the 20th century had two important features .

The method

SVMs allow to use context and linguistic information

Features set for the SVMs include:

- Source phrase features
 - ▶ PoS, coarse PoS and chunk *n*-grams
- Source sentence features
 - ► Word, PoS, coarse PoS, chunk *n*-grams and bag-of-words

Results for Arabic-to-English

The training set

News domain:

• 123,662 lines, 3.9M Arabic tokens, 4.2M English tokens

Linos	Arabic	English
Lilles	tokens	tokens
61,000	2,179,289	2,273,021
18,000	532,771	602,262
23,800	660,821	739,695
4,000	97,882	98,655
15,533	434,465	507,617
1,329	40,667	47,324
123,662	3,945,895	4,262,740
	18,000 23,800 4,000 15,533 1,329	Lines tokens 61,000 2,179,289 18,000 532,771 23,800 660,821 4,000 97,882 15,533 434,465 1,329 40,667

Results for Arabic-to-English

Phrase translation task

Improvement in accuracy wrt. the most frequent translation, MFT

Training set		Acc.MFT	Acc.DPT
occurrences	#	(%)	(%)
100-500	4,310	58.7	66.5
501-1,000	565	62.3	68.8
1,001-5,000	393	66.7	73.0
5,001-10,000	27	72.2	79.5
10,001-50,000	19	66.6	74.8
> 50,000	7	76.2	80.7
Total:	5,321	59.8	67.3

Integration into a SMT system

Estimation of the discriminative phrase translation model and integration into the SMT system:

- Training linear SVMs (SVM^{light}, Joachims 1999) for every translation of every phrase
 - Convert SVM score into probability via a softmax function
 - Include this probability in the translation model within a Log-linear model

Integration into a SMT system

Estimation of the discriminative phrase translation model and integration into the SMT system:

- Training linear SVMs (SVM^{light}, Joachims 1999) for every translation of every phrase
- Convert SVM score into probability via a *softmax* function
 - Include this probability in the translation model within a Log-linear model

Integration into a SMT system

Estimation of the discriminative phrase translation model and integration into the SMT system:

- Training linear SVMs (SVM^{light}, Joachims 1999) for every translation of every phrase
- Convert SVM score into probability via a softmax function
- Include this probability in the translation model within a Log-linear model

Integration into the SMT system

 ${\tt Hyv_{28}}$ ${\tt tm_{22}}$ ${\tt AHrAq}$ ${\tt AlElm_1}$ ${\tt AldnmArky}$. ${\tt 1128}$

Translation table example:

f _i	e _j	$P_{DPT}(e f)$	$P_{MLE}(e f)$
AIEIm ₁	flag	0.1986	0.3241
$AIEIm_1$	the	0.0419	0.0207
$AIEIm_1$	mind	0.0401	0.0620
$AIEIm_1$	the flag	0.0397	0.0414
$AIEIm_1$	flag during	0.0394	0.0138
$AIEIm_1$	knowledge	0.0392	0.1103
$AIEIm_1$	flag caused	0.0387	0.0138
$AIEIm_1$	science	0.0377	0.1793
$AIEIm_1$	education	0.0377	0.0138
$AIEIm_1$	in mind	0.0371	0.0138

Integration into the SMT system

Hyv₂₈ tm₂₂ AHrAq AlElm₁ AldnmArky .₁₁₂₈

Translation table example:

f;	e_j	$P_{DPT}(e f)$	$P_{MLE}(e f)$
$AIEIm_1$	flag	0.1986	0.3241
$AIEIm_1$	the	0.0419	0.0207
$AIEIm_1$	mind	0.0401	0.0620
$AIEIm_1$	the flag	0.0397	0.0414
$AIEIm_1$	flag during	0.0394	0.0138
$AIEIm_1$	knowledge	0.0392	0.1103
$AIEIm_1$	flag caused	0.0387	0.0138
$AIEIm_1$	science	0.0377	0.1793
$AIEIm_1$	education	0.0377	0.0138
$AIEIm_1$	in mind	0.0371	0.0138

Results for Arabic-to-English

Building the system:

- Language model
 - 5-gram Language Model, interpolated Kneser-Ney discounting
 - ► SRILM Toolkit (Stolcke 2002)
- Translation model
 - ▶ Alignments: GIZA++ Toolkit (Och & Ney 2003)
 - Translation tables: Moses package (Koehn et al. 2006)
 MLT package (Giménez & Màrquez
- Decoder
 - ▶ Moses decoder (Koehn et al. 2006)

Results for Arabic-to-English

Building the system:

- Language model
 - 5-gram Language Model, interpolated Kneser-Ney discounting
 - ► SRILM Toolkit (Stolcke 2002)
- □ Translation model
 - □ Alignments: GIZA++ Toolkit (Och & Ney 2003)
 - Translation tables: Moses package (Koehn et al. 2006)

 MLT package (Giménez & Màrquez)
 - Decoder
 - Moses decoder (Koehn et al. 2006)

Results for Arabic-to-English

Building the system:

- Language model
 - 5-gram Language Model, interpolated Kneser-Ney discounting
 - ► SRILM Toolkit (Stolcke 2002)
- Translation model
 - ► Alignments: GIZA++ Toolkit (Och & Ney 2003)
 - Translation tables: Moses package (Koehn et al. 2006)
 MLT package (Giménez & Màrquez)
- Decoder
 - Moses decoder (Koehn et al. 2006)

Results for Arabic-to-English

Translation table (input for the Moses decoder)

f _i	e_j	$P_{DPT}(e f)$	$P_{MLE}(f e)$	lex(f e)	$P_{MLE}(e f)$	lex(e f)
AlElm ₁	flag	0.1986	0.6438	0.5417	0.3241	0.2826
AlElm ₁	science	0.0377	0.1529	0.1477	0.1793	0.1413

Results for Arabic-to-English

Translation table (input for the Moses decoder)

f _i	e_j	$P_{DPT}(e f)$	$P_{MLE}(f e)$	lex(f e)	$P_{MLE}(e f)$	lex(e f)
AlElm ₁	flag	0.1986	0.6438	0.5417	0.3241	0.2826
AlElm ₁	science	0.0377	0.1529	0.1477	0.1793	0.1413

Three systems:

SMT

standard

Results for Arabic-to-English

Translation table (input for the Moses decoder)

f_i	e_j	$P_{DPT}(e f)$	$P_{MLE}(f e)$	lex(f e)	$P_{MLE}(e f)$	lex(e f)
AIEIm ₁	flag	0.1986	0.6438	0.5417	0.3241	0.2826
AIEIm ₁	science	0.0377	0.1529	0.1477	0.1793	0.1413

Three systems:

SMT DPT standard replace MLE

Results for Arabic-to-English

Translation table (input for the Moses decoder)

f_i	e_j	$P_{DPT}(e f)$	$P_{MLE}(f e)$	lex(f e)	$P_{MLE}(e f)$	lex(e f)
AIEIm ₁	flag	0.1986	0.6438	0.5417	0.3241	0.2826
AIEIm ₁	science	0.0377	0.1529	0.1477	0.1793	0.1413

Three systems:

SMT DPT DPT+
standard replace MLE add to MLE

Results for Arabic-to-English

Translation table (input for the Moses decoder)

f_i	e_j	$P_{DPT}(e f)$	$P_{MLE}(f e)$	lex(f e)	$P_{MLE}(e f)$	lex(e f)
AIEIm ₁	flag	0.1986	0.6438	0.5417	0.3241	0.2826
AIEIm ₁	science	0.0377	0.1529	0.1477	0.1793	0.1413

Three systems:

SMT DPT DPT+ standard replace MLE add to MLE

Automatic evaluation: IQ_{MT} package (yesterday's talk!)

Results for Arabic-to-English

Lexical metrics

Best system:

DPT

	SMT	DPT	DPT ⁺
1-PER	0.5814	0.5892	0.5852
1-TER	0.4493	0.4482	0.4454
1-WER	0.4161	0.4102	0.4078
BLEU-4	0.3103	0.3243	0.3175
NIST-5	8.7113	8.9053	8.7920
GTM-1	0.6974	0.7159	0.7107
GTM-2	0.2234	0.2267	0.2247
GTM-3	0.1721	0.1745	0.1728
RG-L	0.4986	0.4993	0.4968
RG-S*	0.3185	0.3229	0.3188
RG-SU*	0.3395	0.3437	0.3395
RG-W-1.2	0.2662	0.2675	0.2659
MTR-exact	0.4909	0.5001	0.4958
MTR-stem	0.5098	0.5174	0.5135
MTR-wnstm	0.5147	0.5222	0.5186
MTR-wnsyn	0.5352	0.5426	0.5391

Results for Arabic-to-English

Lexical metrics

Best system:

DPT

+1.4 BLEU improvement

	SMT	DPT	DPT ⁺
1-PER	0.5814	0.5892	0.5852
1-TER	0.4493	0.4482	0.4454
1-WER	0.4161	0.4102	0.4078
BLEU-4	0.3103	0.3243	0.3175
NIST-5	8.7113	8.9053	8.7920
GTM-1	0.6974	0.7159	0.7107
GTM-2	0.2234	0.2267	0.2247
GTM-3	0.1721	0.1745	0.1728
RG-L	0.4986	0.4993	0.4968
RG-S*	0.3185	0.3229	0.3188
RG-SU*	0.3395	0.3437	0.3395
RG-W-1.2	0.2662	0.2675	0.2659
MTR-exact	0.4909	0.5001	0.4958
MTR-stem	0.5098	0.5174	0.5135
MTR-wnstm	0.5147	0.5222	0.5186
MTR-wnsyn	0.5352	0.5426	0.5391

Results for Arabic-to-English

Syntactic metrics

Best system:

DPT

		SMT	DPT	DPT ⁺
	SP-Oc-*	0.4376	0.4448	0.4407
	SP-Op-*	0.4195	0.4271	0.4235
Shallow	SP-cNIST-5	5.5783	5.6684	5.6703
Shallow	SP-iobNIST-5	5.9931	6.1318	6.1172
	SP-INIST-5	8.8869	9.0547	8.9523
	SP-pNIST-5	6.9679	7.1610	7.1117
Constituent	CP-Oc-*	0.3943	0.3995	0.3962
	CP-Op-*	0.4220	0.4296	0.4265
Parsing	CP-STM-9	0.2396	0.2394	0.2380
	DP-Oc-*	0.3852	0.3949	0.3892
	DP-OI-*	0.3051	0.3164	0.3115
Dependency	DP-Or-*	0.2523	0.2557	0.2534
Parsing	DP-HWC-c-4	0.2986	0.2975	0.2970
	DP-HWC-r-4	0.2023	0.2023	0.2029
	DP-HWC-w-4	0.0835	0.0826	0.0831

Results for Arabic-to-English

Semantic metrics

Best system:

no clear winner, but slight advantage in favor of DPT/DPT+

		SMT	DPT	DPT+
Semantic Role	SR-Mr-*	0.0224	0.0227	0.0262
	SR-Mrv-*	0.0123	0.0129	0.0129
	SR-Or	0.3686	0.3792	0.3609
	SR-Or-*	0.1160	0.1209	0.1234
	SR-Orv	0.0685	0.0815	0.0765
	SR-Orv-*	0.0284	0.0325	0.0349
Discourse Representation	DR-Or-*	0.2121	0.2115	0.2094
	DR-Orp-*	0.3296	0.3252	0.3245
	DR-STM-9	0.1787	0.1902	0.1872

Conclusions

- Improvements at a lexical and syntactic level with respect to our baseline with DPT system
- Further improvements expected with a better integration into the SMT system
- Local accuracy improvement is not fully reflected in global MT quality:
 - language model
 - local classifiers are not trained in the context of the global task

Conclusions

- Improvements at a lexical and syntactic level with respect to our baseline with DPT system
- Further improvements expected with a better integration into the SMT system
 - Local accuracy improvement is not fully reflected in global MT quality:
 - language model
 - local classifiers are not trained in the context of the global task

Conclusions

- Improvements at a lexical and syntactic level with respect to our baseline with DPT system
- Further improvements expected with a better integration into the SMT system
- Local accuracy improvement is not fully reflected in global MT quality:
 - language model
 - ② local classifiers are not trained in the context of the global task

Thank you!

Differences between ML techniques to estimate P(e|f)Related work, approaches

Task Differences

- Language pair
- Domain

System Differences

- System Architecture
- Learning scheme

Evaluation Differences

- Metrics
- Manual evaluations

Differences between ML techniques to estimate P(e|f)

Related work, approaches

Task Differences

- Language pair
 - Spanish-to-English
 - ► Chinese-to-English
 - ► Arabic-to-English
 - French-to-English
- Domain
 - Europarl
 - ► NIST
 - ▶ BTEC
 - Hansards
 - United Nations

Differences between ML techniques to estimate P(e|f)

Related work, approaches

System Differences

- System Architecture
 - ► Log-linear models
 - ► Finite-state transducers (lexical selection + sentence reconstruction)
- Learning scheme
 - SVMs
 - Maximum entropy
 - Combination of maximum entropy, naïve Bayes, boosting, Kernel PCA-based models
 - ► Memory-based learning

Differences between ML techniques to estimate P(e|f)

Related work, approaches

Evaluation Differences

- Metrics
 - ▶ bleu
 - ► + nist
 - + lexical similarity
 - + syntactic and semantic similarities
 - ▶ + metric combinations
- Manual evaluations

Local Phrase Translation Accuracy

Evaluation Schemes

Different settings depending on the number of examples available

	evaluation scheme			
#examples	development and test	test only		
2 — 9	leave-one-out			
1099	10-fold cross validation			
100499	5-fold cross validation			
500999	3-fold cross validation			
1,0004,999	train(80%)-dev(10%)-test(10%)	train(90%)-test(10%)		
5,0009,999	train(70%)-dev(15%)-test(15%)	train(80%)-test(20%)		
> 10,000	train(60%)-dev(20%)-test(20%)	train(75%)-test(25%)		

• Automatic phrase-alignments as a gold-standard

Discriminative Phrase Selection for Statistical Machine Translation

Cristina España-Bonet, Jesús Giménez and Lluís Màrquez

Universitat Politècnica de Catalunya

NIST'08 MT Evaluation Workshop 28th March, 2008