Self-Supervised Neural Machine Translation and More!

Cristina España-Bonet DFKI GmbH

Low-Resource NLP: Multilinguality and Machine Translation Webinar Series — Session IV 14th September 2021

Session IV

Outline

1 Recap

Embeddings in Multilingual NMT

- 2 Multilingual Sentence Embeddings with LASER
- 3 Self-Supervised NMT
 - Basic Architecture
 - Digression: Pre-trained Models for Language Generation
 - The Low Resource Setting

Multilingual Semantic Space for Context Vectors (easy)

(España-Bonet & van Genabith, 2018)

ML-NMT {de, en, nl, it, ro} \rightarrow {de, en, nl, it, ro} with TED talks

(t-SNE projection)

Recap

Evolution of Context Vectors through Training (hard)

(España-Bonet et al., 2017)

ML-NMT $\{en, es, ar\} \rightarrow \{en, es, ar\}$ with heterogeneous corpora

- NMT embeddings differentiate translations from non-translations very soon
- In a standard NMT, all training sentences are (should be) translations
- Can we feed the system with any kind of sentence pair and let itself decide if it is useful or not?

- NMT embeddings differentiate translations from non-translations very soon
- In a standard NMT, all training sentences are (should be) translations
- Can we feed the system with any kind of sentence pair and let itself decide if it is useful or not?
- Yes, we can!

Main Idea I

Transformers (comics)

Main Idea II

- Parallel data extraction as an auxiliary task to enable NMT training
- NMT training as an auxiliary task to enhance parallel sentence extraction

Main Idea II

- Parallel data extraction as an auxiliary task to enable NMT training
- NMT training as an auxiliary task to enhance parallel sentence extraction

Self-supervision?

Just in a non-standard way, none of the tasks is completely supervised

LASER & parallel sentence extraction

Language Agnostic SEntence Representations, LASER

Training with (multilingual) parallel corpora, MT task with seq2seq
 Sentence embeddings from the language agnostic encoder

3 Extract most similar pairs according to semantic similarity

4 Use the parallel sentences to train a supervised NMT system

Architecture (based on Schwenk 2018)

- Training with (multilingual) parallel corpora, MT task
- Sentence embeddings from the language agnostic encoder
- Language Agnostic SEntence Representations: 1024-dim embeddings

The Key Point: Margin-based Similarity for Scoring Pairs

The Key Point: Margin-based Similarity for Scoring Pairs

1						
	(A)	Les produits agricoles sont constitués de thé, de riz, de sucre, de tabac, de camphre, de fruits et de soie.				
	0.818 0.817 0.814 0.808	Main crops include wheat, sugar beets, potatoes, cotton, tobacco, vegetables, and fruit. The fertile soil supports wheat, corn, barley, tobacco, sugar beet, and soybeans. Main agricultural products include grains, cotton, oil, pigs, poultry, fruits, vegetables, and edible fungus. The important crops grown are cotton, jowar, groundnut, rice, sunflower and cereals.				
	(B)	Mais dans le contexte actuel, nous pourrons les ignorer sans risque.				
	0.737	But, in view of the current situation, we can safely ignore these.				
	0.499 0.498 0.488	But without the living language, it risks becoming an empty shell. While the risk to those working in ceramics is now much reduced, it can still not be ignored. But now they have discovered they are not free to speak their minds.				

Cosine similarity has a different scale per sentence

The Key Point: Margin-based Similarity for Scoring Pairs

(Adapted from Yang et al, 2019)

The Key Point: Margin-based Similarity for Scoring Pairs

$$ext{margin}_{ ext{LASER}}(S_{ ext{L1}}, S_{ ext{L2}}) = rac{ ext{cos}(S_{ ext{L1}}, S_{ ext{L2}})}{ ext{avr}_{ ext{kNN}}(S_{ ext{L1}}, P_k)/2 + ext{avr}_{ ext{kNN}}(S_{ ext{L2}}, Q_k)/2}$$

where
$$\operatorname{avr}_{k\mathrm{NN}}(X,Y_k) = \sum_{Y \in k\mathrm{NN}(X)} \frac{\cos(X,Y)}{k}$$
 (average similarity)

The Key Point: Margin-based Similarity for Scoring Pairs

Artetxe et al.

$$\operatorname{margin}_{\text{LASER}}(S_{\text{L1}}, S_{\text{L2}}) = \frac{\cos(S_{\text{L1}}, S_{\text{L2}})}{\operatorname{avr}_{k\text{NN}}(S_{\text{L1}}, P_k)/2 + \operatorname{avr}_{k\text{NN}}(S_{\text{L2}}, Q_k)/2}$$

Conneau et al., 2018

 $\mathrm{margin}_{\mathrm{CSLS}}(\textit{S}_{\mathrm{L1}},\textit{S}_{\mathrm{L2}}) = \mathrm{cos}(\textit{S}_{\mathrm{L1}},\textit{S}_{\mathrm{L2}}) - \mathrm{avr}_{\mathrm{kNN}}(\textit{S}_{\mathrm{L1}},\textit{P}_k)/2 - \mathrm{avr}_{\mathrm{kNN}}(\textit{S}_{\mathrm{L2}},\textit{Q}_k)/2$

where
$$\operatorname{avr}_{kNN}(X, Y_k) = \sum_{Y \in kNN(X)} \frac{\cos(X, Y)}{k}$$
 (average similarity)

The Key Point: Margin-based Similarity for Scoring Pairs

Parallel Sentence Extraction

	Func.	Retrieval	EN-DE			EN-FR		
			Р	R	F1	Р	R	F1
$\cos(\textit{S}_{ ext{L1}},\textit{S}_{ ext{L2}})$	Abs. (cos)	Forward Backward Intersection Max. score	78.9 79.0 84.9 83.1	75.1 73.1 80.8 77.2	77.0 75.9 82.8 80.1	82.1 77.2 83.6 80.9	74.2 72.2 78.3 77.5	77.9 74.7 80.9 79.2
$\mathrm{margin}_{\mathrm{CSLS}}(S_{\mathrm{L1}},S_{\mathrm{L2}})$	Dist.	Forward Backward Intersection Max. score	94.8 94.8 94.9 94.9	94.1 94.1 94.1 94.1	94.4 94.4 94.5 94.5	91.1 91.5 91.2 91.2	91.8 91.4 91.8 91.8	91.4 91.4 91.5 91.5
$\mathrm{margin}_{\mathrm{LASER}}(\mathcal{S}_{\mathrm{L1}},\mathcal{S}_{\mathrm{L2}})$	Ratio	Forward Backward Intersection Max. score	95.2 95.2 95.3 95.3	94.4 94.4 94.4 94.4	94.8 94.8 94.8 94.8	92.4 92.3 92.4 92.4	91.3 91.3 91.3 91.3	91.8 91.8 91.9 91.9

Table 2: BUCC results (precision, recall and F1) on the training set, used to optimize the filtering threshold.

Mining of parallel corpora

- WikiMatrix: Mining 135M Parallel Sent. in 1620 Language Pairs from WP
- **CCMatrix**: Mining Billions of High-Quality Parallel Sentences on the WEB
- https://github.com/facebookresearch/LASER

Mining of parallel corpora

- WikiMatrix: Mining 135M Parallel Sent. in 1620 Language Pairs from WP
- **CCMatrix**: Mining Billions of High-Quality Parallel Sentences on the WEB
- https://github.com/facebookresearch/LASER

Others

- Cross-lingual Natural Language Inference (XNLI)
- Cross-lingual text classification
- Cross-lingual similarity search

Let's join the main path again

Self-Supervised NMT

Main Idea II

- Parallel data extraction as an auxiliary task to enable NMT training
- NMT training as an auxiliary task to enhance parallel sentence extraction

Main Idea II

- Parallel data extraction as an auxiliary task to enable NMT training
- NMT training as an auxiliary task to enhance parallel sentence extraction

Self-supervision?

Just in a non-standard way, none of the tasks is completely supervised

Main Idea III (Ruiter et al., ACL, 2019)

- Joint selection of sentences & training NMT
- Uses internal embeddings, i.e., architecture independent
- Bidirectional training {L1, L2} \rightarrow {L1, L2} (shared encoder)
- On-line process: embeddings change through epochs, therefore selected sentences change through epochs

Training Procedure

Algorithm Description

- **1** Internal NMT **representation**: E_w (words); E_h (sentence)
- **Score** all sentence pairs in a lot (i.e. WP article)
- **3 Filter** options
- 4 Add filtered sentences into a mini-batch
- **5** Train system when mini-batch is complete

Joint Training: Key Points

I Sentence Representation

2 Scoring function

Joint Training: Key Points

1 Sentence Representation

the sum of word embeddings (E_w) and the hidden states in an RNN or the encoder outputs in a transformer (E_h) :

$$E_w = \sum_{t=1}^T e_t, \qquad \qquad E_h = \sum_{t=1}^T h_t$$

2 Scoring function

Joint Training: Key Points

1 Sentence Representation

 S_{L1} and S_{L2} vector representations for each sentence of a pair (E_w or E_h)

2 Scoring function

cosine similarity:
$$\cos(S_{L1}, S_{L2}) = \frac{S_{L1} \cdot S_{L2}}{\|S_{L1}\| \|S_{L2}\|}$$

margin-based score:

$$\operatorname{margin}(S_{\text{L1}}, S_{\text{L2}}) = \frac{\cos(S_{\text{L1}}, S_{\text{L2}})}{\operatorname{avr}_{\text{kNN}}(S_{\text{L1}}, P_k)/2 + \operatorname{avr}_{\text{kNN}}(S_{\text{L2}}, Q_k)/2}$$

where
$$\operatorname{avr}_{kNN}(X, Y_k) = \sum_{Y \in kNN(X)} \frac{\cos(X, Y)}{k}$$
 (average similarity)

Joint Training: Sentence Selection (Filtering)

Input a lot (e.g. set of WP article pairs, web pages, etc)
 Score all sentence pairs

B Keep the top one pairs (with constraints!)

Joint Training: Sentence Selection (Filtering)

- Input a lot (e.g. set of WP article pairs, web pages, etc)
 Score all sentence pairs
- **B** Keep the top one pairs (with constraints!)

Joint Training: Sentence Selection (Filtering)

- Input a lot (e.g. set of WP article pairs, web pages, etc)
- **2** Score all sentence pairs
- **3** Keep the top one pairs (with constraints!)

Joint Training: Sentence Selection (Filtering)

Intersection of intersection of intersection...

to avoid the need for a threshold (as compared to LASER bitext mining approach)

Sentence Selection: Precision or Recall?

high precision mode

high recall mode

Evaluation, Selected Models

cosP: E_w , E_h in high precision mode and $\cos(S_{L1}, S_{L2})$ are used.

margP: E_w , E_h in high precision mode and margin(S_{L1} , S_{L2}) are used.
Evaluation, Selected Models

cosP: E_w , E_h in high precision mode and $\cos(S_{L1}, S_{L2})$ are used. **margP**: E_w , E_h in high precision mode and $\operatorname{margin}(S_{L1}, S_{L2})$ are used. **margR**: As **margP** but E_w and E_h are used in the high recall mode.

- **cosP**: E_w , E_h in high precision mode and $\cos(S_{L1}, S_{L2})$ are used.
- **margP**: E_w , E_h in high precision mode and margin(S_{L1} , S_{L2}) are used.
- margR: As margP but E_w and E_h are used in the high recall mode.
- **margH**: As **margP** with E_h as only representation. A hard threshold of 1.01 is used.
- **margE**: As **margP** with E_w as only representation. A hard threshold of 1.00 is used.

Self-Supervised NMT

Automatic Evaluation (Transformer; en-fr, en-de, en-es)

	Corpus,	BL	EU	
Model	en+fr sent.	en2fr	fr2en	
	(in millions)	(newstest2014)		
$\cos P$	Wikipedia, 12+8	25.21	24.96	
margE	Wikipedia, 12+8	27.33	25.87	
margH	Wikipedia, 12+8	24.45	23.83	
margP	Wikipedia, 12+8	29.21	27.36	
margR	Wikipedia, 12+8	28.01	26.78	

margP: E_w , E_h in high precision mode and margin(S_{L1} , S_{L2})

Self-Supervised NMT

What's going on? — margP models

- The mean difference in similarity between accepted and rejected pairs increases (Δ)
- The number of extracted sentences increases with Δ
- Changes are more prominent at the beginning of the training

Self-Supervised NMT

Built-In Curriculum (Ruiter et al., EMNLP, 2020)

		#Pairs _{enfr}	en2fr	fr2en	$\#Pairs_{\mathit{ende}}$	en2de	de2en	$\#Pairs_{\mathit{enes}}$	en2es	es2en
	NMT _{init}	2.14M 3.14M	$21.8 \pm .6$	$21.1 \pm .5$ 26.6 ± 6	0.32M 1.13M	$3.4\pm.3$	$4.7 \pm .3$	2.51M 3.96M	$27.0 \pm .7$	$25.0 \pm .7$
	NMT _{end}	3.17M 5.38M	$28.8\pm.6$ $26.8\pm.7$	$26.5\pm.6$ $25.2\pm.6$	1.18M 2.21M	$11.2\pm.4$ $11.9\pm.5$ $11.6\pm.5$	$15.0\pm.0$ $15.3\pm.5$ $15.0\pm.6$	3.99M 5.41M	$28.3 \pm .7$ $27.9 \pm .6$	$26.2 \pm .7$ $25.9 \pm .8$
-	SS-NMT	5.38M	29.5±.6	27.7±.6	2.21M	14.4±.6	18.1±.6	5.41M	28.6±.7	28.4±.7

Supervised NMT systems trained on the unique pairs collected by SS-NMT in the first (NMT_{init}), intermediate (NMT_{mid}), final (NMT_{end}) and all (NMT_{all}) epochs of training

What's going on? — Built-In Curriculum Learning

Input Documents

The third series is currently being produced by IDW Publishing starting with an issue #0 in October 2005 and a regular series starting in January 2006.

There are also several limited series being produced by IDW as well.

In addition to these three main publishers, there have also been several other smaller publishers with varying degrees of success.

Artículo Discusión Leer Editar Verhistorial Buscar en Wikipedia Q

Transformers (cómics)

Ha habido tres editores principales en la serie de cómics de Transformers, basados en las líneas de juguetes del mismo nombre.

La primera serie fue producida por Marvel Comics desde 1984 hasta 1991, para ayudar en las ventas de la línea de juguetes de Hasbro.

Desarrolló 80 tomos y produjo cuatro miniseries de spin-off.

Esto fue seguido por un segundo volumen titulado Transformers: Generación 2, que tuvo 12 ediciones a partir de 1993.

La segunda gran serie fue producida por Producciones Dreamwave en 2002 a 2004 con series limitadas, hasta que el compañía se quedó en bancarrota en 2005.

Además de estos tres editores principales, también ha habido varias otras editoriales más pequeñas con diferentes grados de éxito.

Por favor, véase la lista de los cómics de Transformers menores para obtener más información.

En 1984, Marvel comenzó a publicar cómics de Transformers para ayudar en las ventas de la línea de juguetes de Hasbro.

Built-In Curriculum Learning

Sentence selection through epochs: Epoch 1

Leer Editar Verhistorial

Transformers (cómics)

Artículo Discusión

Ha habido tres editores principales en la serie de cómics de Transformers, basados en las líneas de juquetes del mismo nombre.

Buscar en Wikipedia

Q

La primera serie fue producida por Marvel Comics desde 1984 hasta 1991. para avudar en las ventas de la línea de juquetes de Hasbro.

Desarrolló 80 tomos y produjo cuatro miniseries de spin-off.

2, que tuvo 12 ediciones a partir de 1993.

La segunda gran serie fue producida por Producciones Dreamwaye en 2002 a 2004 con series limitadas, hasta que el compañía se guedó en bancarrota en 2005

Además de estos tres editores principales, también ha habido varias otras editoriales más pequeñas con diferentes grados de éxito.

Por favor, véase la lista de los cómics de Transformers menores para obtener más información

En 1984, Marvel comenzó a publicar cómics de Transformers para avudar en las ventas de la línea de juquetes de Hasbro.

Built-In Curriculum Learning

Sentence selection through epochs: Epoch 6

This was followed by a second volume titled *Transformers: Generation 2*, which ran for 12 issues starting in 1993.

The third series is currently being produced by IDW Publishing starting with an issue #0 in October 2005 and a regular series starting in January 2006.

There are also several limited series being produced by IDW as well.

In addition to these three main publishers, there have also been several other smaller publishers with varying degrees of success.

Transformers (cómics)

Ha habido tres editores principales en la serie de cómics de Transformers, basados en las líneas de juguetes del mismo nombre.

La primera serie fue producida por Marvel Comics desde 1984 hasta 1991, para ayudar en las ventas de la línea de juguetes de Hasbro.

Desarrolló 80 tomos y produjo cuatro miniseries de spin-off.

Esto fue seguido por un segundo volumen titulado Transformers: Generación 2, que tuvo 12 ediciones a partir de 1993.

La segunda gran serie fue producida por Producciones Dreamwave en 2002 a 2004 con series limitadas, hasta que el compañía se quedó en bancarrota en 2005.

Además de estos tres editores principales, también ha habido varias otras editoriales más pequeñas con diferentes grados de éxito.

Por favor, véase la lista de los cómics de Transformers menores para obtener más información.

En 1984, Marvel comenzó a publicar cómics de Transformers para ayudar en las ventas de la línea de juguetes de Hasbro.

Self-Induced Curricula

- SS-NMT induces a curriculum when selecting the data to train the MT task
- The order in which sentences are extracted is vital for translation quality (NMTall vs. SS-NMT)
- The data selection shows (at least) 3 curricula:
 - 1 a task-specific (MT) curriculum
 - 2 a denoising curriculum
 - **3** a complexity curriculum

Task-specific (MT) Curriculum

- \rightsquigarrow more cross-lingual similarity \rightarrow more parallel
- \rightsquigarrow more parallel \rightarrow closer to MT purpose

Complexity Curriculum

Gunning Fog, readability measure: $GF = 0.4 \left[\left(\frac{w}{s} \right) + 100 \left(\frac{c}{w} \right) \right]$

■ Increment from GF=11 (high school students) to GF=13 (undergrads)

Key Point: Homographs!

 Large % of homographs in the sentences at the beginning of the training less sentences (punctuation, numbers, common BPE), noisier, easier

Key Point: Homographs!

- Large % of homographs in the sentences at the beginning of the training less sentences (punctuation, numbers, common BPE), noisier, easier
- \rightsquigarrow What if no homographs?

Open Problems

Distant Languages (no/few homographs)

Low-resourced languages

Similar issues in unsupervised NMT, bilingual embeddings, etc.

Same "solutions"?

Transformer Encoder/Decoder for Language Modeling

(Adapted from https://www.programmersought.com/article/24793362644/)

Similarities and Differences

- Encoder vs. decoder vs. both
- Loss function (task)
- Monolingual vs. parallel data
- Monolingual vs. multilingual model
- Noise function (if any)

Denoising Autoencoders for Language Generation

Masked Language Modeling (MLM) with XLM (Bert-like)

(Conneau and Lample, NIPS 2019)

Denoising Autoencoders for Language Generation

Translation Language Modeling (TLM) with XLM

(Conneau and Lample, NIPS 2019)

Denoising Autoencoders for Language Generation (BERT)

Autoregressive Decoding for Language Generation (GPT-X)

- GPT
- Causal LM
- Good for generation

Seq2seq for Language Generation (BART)

From MLMs to Noise

BART for Machine Translation

Multilingual Denoising Pre-training (mBART)

Noise: word-span masking (text infilling) and sentence permutation

Multilingual Denoising Pre-training (mBART)

■ Noise: word-span masking (text infilling) and sentence permutation

mBART: Finetuning for MT

Sentence-level finetuning

mBART: Finetuning for MT, Results

Languages En-Gu Data Source WMT19 Size 10K		En-Kk En-Vi WMT19 IWSLT15 91K 133K		En-Tr WMT17 207K		En-Ja IWSLT17 223K		En-Ko IWSLT17 230K					
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	
Random	0.0	0.0	0.8	0.2	23.6	24.8	12.2	9.5	10.4	12.3	15.3	16.3	
mBART25	0.3	0.1	7.4	2.5	36.1	35.4	22.5	17.8	19.1	19.4	24.6	22.6	
Languages Data Source	;uages En-NI Source IWSLT17		En-NI En-Ar IWSLT17 IWSLT17		En-It IWSLT17		En-My WAT19		En-Ne FLoRes		En- WM	En-Ro WMT16	
Size	23	7K	25	0K	25	0K	25	9K	56	4K	60	8K	
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	
Random mBART25	34.6 43.3	29.3 34.8	27.5 37.6	16.9 21.6	31.7 39.8	28.0 34.0	23.3 28.3	34.9 36.9	7.6 14.5	4.3 7.4	34.0 37.8	34.3 37.7	

mBART: Finetuning for MT, Results

Languages	- En	Si	En	- Hi	En	- Et	En	- Lt	Lt En-F		En-Lv	
Data Source	FLo	Res	IT	TB	WM	T18	WM	T19	19 WMT		WMT17	
Size	647	K	1.5	6M	1.9	4M	2.1	1M	M 2.66N		4.50M	
Direction	\leftarrow	\rightarrow										
Random	7.2	1.2	10.9	14.2	22.6	17.9	18.1	12.1	21.8	20.2	15.6	12.9
mBART25	13.7	3.3	23.5	20.8	27.8	21.4	22.4	15.3	28.5	22.4	19.3	15.9

mBART: Finetuning for MT (II)

Document-level finetuning

mBART: Finetuning for MT (II)

Madal	Ran	dom	mBART25			
woder	s-BLEU	d-BLEU	s-BLEU	d-BLEU		
Sent-MT	34.5	35.9	36.4	38.0		
Doc-MT	\times	7.7	37.1	38.5		

- No document-level data for previous tests
- Results with German–English

mBART: Comparison with Other Pre-training Approaches

Pre-trai	ning	Fine-tuning					
Model	Data	En→Ro	+BT				
Random	None	34.3	34.0	36.8			
XLM	En Ro	-	35.6	38.5			
MASS	En Ro	-	-	39.1			
BART	En	-	-	38.0			
XLM-R	CC100	35.6	35.8	-			
BART-En	En	36.0	35.8	37.4			
BART-Ro	Ro	37.6	36.8	38.1			
mBART02	En Ro	38.5	38.5	39.9			
mBART25	CC25	37.7	37.8	38.8			

Digression

Let's join the main path again

Self-Supervised NMT

SSNMT in the Low Resource Setting

Open Problems

Distant Languages (no/few homographs)

Low-resourced languages

Similar issues in unsupervised NMT, bilingual embeddings, etc.

Same "solutions"?

SSNMT in the Low Resource Setting

Additions (Unsupervised NMT-inspired?)

Initalisation

- Word embeddings (bilingual word2vec-like embeddings, BWE)
- Sentence embeddings (BART-style training, Denoising Autoencoder DAE)

Data augmentation

- Online back-translation
- Word by word translation (nearest neighbour in BWE)
- Noise (token deletion, substitution and permutation)

SSNMT in the Low Resource Setting

How does it Work?

1 System initialisation (WE, DAE)

- 2 Extract pairs as usual (scoring, filtering)
- **3** On-line back-translation of rejected pairs (**BT**)
 - **1** SS-NMT filtering to remove low-quality back-translations
 - **2** Word translation for rejected back-translations (**WT**)

4 Add noise (N)
A Simulated Setting: Data Augmentation vs. Corpus Size

- WT and N damage high-resource setting
- Significant improvements mid-resource setting
- Small improvements in the low-resource setting

(English & French Wikipedias)

But, is this Real Low Resource?

Artificial low-resourced setting 🖄 (lots of mono data, few comparable)

	English	Afrikaans	Nepali	Kannada	Yorúbà	Swahili	Burmese
Typology Word Order Script	fusional SVO Latin	fusional SOV,SVO Latin	fusional SOV Brahmic	agglutinative SOV Brahmic	analytic SOV,SVO Latin	agglutinative SVO Latin	analytic SOV Brahmic
sim(L-en)	1.000	0.822	0.605	0.602	0.599	0.456	0.419

Automatic Evaluation (BLEU scores on Different Sets)

Mmmm... What else?

Multilinguality

Mmmm... What else?

Multilinguality

- Multilingual comparable corpora
- Multilingual denosing autoencoder, MDAE

Fine-tuning

Bilingual comparable corpora

Automatic Evaluation (BLEU scores on Different Sets)

Data Augmentation vs. Multilinguality vs. Fine-tuning

en-kn en-af en-my en-sw en-ne en-yo \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \leftarrow \rightarrow \leftarrow Baseline 48.1 48.6 0.0 0.0 0.0 0.1 0.0 0.1 4.4 3.6 0.5 0.6 Best Bilingual 51.2 52.2 0.3 0.9 0.10.7 0.3 0.5 7.7 6.8 2.9 3.1 MDAF 42.5 42.5 3.15.3 0.11.71.03.3 7.4 7.9 1.54.7 0.2 MDAE+F 46.3 50.2 5.0 9.0 2.8 2.3 5.7 11.6 11.2 2.9 5.8

BLEU scores on different test sets per language

Data Augmentation vs. Multilinguality vs. Fine-tuning

BLEU scores on different test sets per language

	en—af		en—kn		en–my		en–ne		en—sw		en—yo	
	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow
Baseline	48.1	48.6	0.0	0.0	0.0	0.1	0.0	0.1	4.4	3.6	0.5	0.6
Best Bilingual	51.2	52.2	0.3	0.9	0.1	0.7	0.3	0.5	7.7	6.8	2.9	3.1
MDAE	42.5	42.5	3.1	5.3	0.1	1.7	1.0	3.3	7.4	7.9	1.5	4.7
MDAE+F	46.3	50.2	5.0	9.0	0.2	2.8	2.3	5.7	11.6	11.2	2.9	5.8
Typology <i>L</i> Word Order <i>L</i> Word Overlap Tokens <i>L</i>	fusional SOV,SVO 7.1% 27.6 M		agglutinative SOV 1.4% 30.0 M		analytic SOV 2.1% 15.3 M		fusional SOV 0.6% 7.5 M		agglutinative SVO 6.5% 8.7 M		analytic SOV,SVO 5.7% 0.5 M	

SSNMT vs. UMT (vs. NMT)

Pair	Init.	Config.	Best Bas	e UMT	UMT+NMT	Laser	TSS	#P (k)
en2af af2en	WE WE	B+BT B+BT	51.2±.9 48.1± 52.2±.9 47.9±	$\begin{array}{ccc} 9 & 27.9 {\pm}.8 \\ 9 & 1.4 {\pm}.1 \end{array}$	44.2±.9 0.7±.1	52.1±1.0 52.9±.9	35.3 –	37
en2kn kn2en	MDAE MDAE	B+BT+F B+BT+F	5.0±.2 0.0± 9.0±.2 0.0±	$\begin{array}{ccc} 0 & 0.0 \pm .0 \\ 0 & 0.0 \pm .0 \end{array}$	0.0±.0 0.0±.0	-	21.3 40.3	397 397
en2my my2en	MDAE MDAE	B+BT+F B+BT+F	0.2±.0 0.0± 2.8±.1 0.0±	$\begin{array}{ccc} 0 & 0.1 \pm .0 \\ 0 & 0.0 \pm .0 \end{array}$	0.0±.0 0.0±.0	$0.0 \pm .0 \\ 0.1 \pm .0$	39.3 38.6	223 223
en2ne ne2en	MDAE MDAE	B+BT+F B+BT+F	2.3±.1 0.0± 5.7±.2 0.0±	$\begin{array}{ccc} 0 & 0.1 \pm .0 \\ 0 & 0.0 \pm .0 \end{array}$	0.0±.0 0.0±.0	$0.5 \pm .1 \\ 0.2 \pm .0$	8.8 21.5	
en2sw sw2en	MDAE MDAE	B+BT+F B+BT+F	11.6±.3 4.2± 11.2±.3 3.6±	$\begin{array}{ccc} 2 & 3.6 \pm .2 \\ 2 & 0.3 \pm .0 \end{array}$	$0.2 {\pm}.0$ $0.0 {\pm}.0$	$\begin{array}{c c} 10.0 \pm .3 \\ 8.4 \pm .3 \end{array}$	14.8 19.7	995 995
en2yo yo2en	MDAE MDAE	B+BT+F B+BT+F	2.9±.1 0.3± 5.8±.1 0.5±	$\begin{array}{ccc} 1 & 1.0 \pm .1 \\ 1 & 0.6 \pm .0 \end{array}$	0.3±.1 0.0±.0		12.3 22.4	501

BLEU on heterogeneous test sets

Automatic Evaluation in the Low-Resource Setting

Thoughts

- We have seen several ways to approach LR-MT (and we'll see more!)
 - Multilinguality, fine-tuning, UMT, SSNMT, etc.
- What makes MT low-resource?
 - data size, word overlap, typology, word order, and a long etc.
- How can we compare?
 - few standardized data, test sets... of course, low-resource!
- Even more... what is a good metric?
 - BLEU makes sense with small values? Metrics based on multilingual LMs (BertScore, Comet, etc) don't know the language!

Automatic Evaluation in the Low-Resource Setting

As Always, it's Late...

More to come!!

Thanks! And...

wait!

Self-Supervised Neural Machine Translation and More!

Cristina España-Bonet DFKI GmbH

Low-Resource NLP: Multilinguality and Machine Translation Webinar Series — Session IV 14th September 2021