# Self-Supervised Neural Machine Translation and More! 

Cristina España-Bonet

DFKI GmbH


Low-Resource NLP:
Multilinguality and Machine Translation
Webinar Series - Session IV
14th September 2021

## Session IV

1 Recap

- Embeddings in Multilingual NMT

2 Multilingual Sentence Embeddings with LASER
3 Self-Supervised NMT

- Basic Architecture
- Digression: Pre-trained Models for Language Generation
- The Low Resource Setting

4 Automatic Evaluation in the Low-Resource Setting

## Recap

## Multilingual Semantic Space for Context Vectors (easy)

(España-Bonet \& van Genabith, 2018)


ML-NMT $\{d e, e n, n l, i t, r o\} \rightarrow\{d e, e n, n l, i t, r o\}$ with TED talks

## Recap

## Evolution of Context Vectors through Training (hard)

(España-Bonet et al., 2017)


ML-NMT $\{e n, e s, a r\} \rightarrow\{e n, e s, a r\}$ with heterogeneous corpora

- NMT embeddings differentiate translations from non-translations very soon
- In a standard NMT, all training sentences are (should be) translations
- Can we feed the system with any kind of sentence pair and let itself decide if it is useful or not?
- NMT embeddings differentiate translations from non-translations very soon
- In a standard NMT, all training sentences are (should be) translations
- Can we feed the system with any kind of sentence pair and let itself decide if it is useful or not?
- Yes, we can!


## Self-Supervised NMT

## Main Idea I



## Self-Supervised NMT

■ Parallel data extraction as an auxiliary task to enable NMT training

- NMT training as an auxiliary task to enhance parallel sentence extraction


## Self-Supervised NMT

■ Parallel data extraction as an auxiliary task to enable NMT training
■ NMT training as an auxiliary task to enhance parallel sentence extraction

## Self-supervision?

Just in a non-standard way, none of the tasks is completely supervised

## Digression

LASER \& parallel sentence extraction


## Digression

Language Agnostic SEntence Representations, LASER

1 Training with (multilingual) parallel corpora, MT task with seq2seq
2 Sentence embeddings from the language agnostic encoder

3 Extract most similar pairs according to semantic similarity

4 Use the parallel sentences to train a supervised NMT system

## Digression

## Architecture (based on Schwenk 2018)

ENCODER


DECODER


- Training with (multilingual) parallel corpora, MT task
- Sentence embeddings from the language agnostic encoder
- Language Agnostic SEntence Representations: 1024-dim embeddings


## Digression



Threshold $=0.80(\forall i)$

## Digression

## The Key Point: Margin-based Similarity for Scoring Pairs

| (A) | Les produits agricoles sont constitués de thé, de riz, de sucre, de tabac, de camphre, de fruits et de soie. |
| :---: | :--- |
| 0.818 | Main crops include wheat, sugar beets, potatoes, cotton, tobacco, vegetables, and fruit. |
| 0.817 | The fertile soil supports wheat, corn, barley, tobacco, sugar beet, and soybeans. |
| 0.814 | Main agricultural products include grains, cotton, oil, pigs, poultry, fruits, vegetables, and edible fungus. |
| 0.808 | The important crops grown are cotton, jowar, groundnut, rice, sunflower and cereals. |
|  |  |
| (B) | Mais dans le contexte actuel, nous pourrons les ignorer sans risque. |
| 0.737 | But, in view of the current situation, we can safely ignore these. |
| 0.499 | But without the living language, it risks becoming an empty shell. |
| 0.498 | While the risk to those working in ceramics is now much reduced, it can still not be ignored. |
| 0.488 | But now they have discovered they are not free to speak their minds. |

■ Cosine similarity has a different scale per sentence

## Digression



$$
\operatorname{margin}_{\mathrm{LASER}}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)=\frac{\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)}{\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 1}, P_{k}\right) / 2+\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 2}, Q_{k}\right) / 2}
$$

where

$$
\operatorname{avr}_{\mathrm{kNN}}\left(X, Y_{k}\right)=\sum_{Y \in k \mathrm{NN}(X)} \frac{\cos (X, Y)}{k}
$$

(average similarity)

## Digression

Artetxe et al.

$$
\operatorname{margin}_{\mathrm{LASER}}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)=\frac{\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)}{\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 1}, P_{k}\right) / 2+\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 2}, Q_{k}\right) / 2}
$$

Conneau et al., 2018

$$
\operatorname{margin}_{\mathrm{CSLS}}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)=\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)-\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 1}, P_{k}\right) / 2-\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 2}, Q_{k}\right) / 2
$$

where

$$
\operatorname{avr}_{\mathrm{kNN}}\left(X, Y_{k}\right)=\sum_{Y \in k \mathrm{NN}(X)} \frac{\cos (X, Y)}{k}
$$

(average similarity)

## Digression



Threshold=1.04 ( $\forall i$ )

## Digression

## Parallel Sentence Extraction

|  | Func. | Retrieval | EN-DE |  |  | EN-FR |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | P | R | F1 | P | R | F1 |
| $\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ | Abs. <br> (cos) | Forward | 78.9 | 75.1 | 77.0 | 82.1 | 74.2 | 77.9 |
|  |  | Backward | 79.0 | 73.1 | 75.9 | 77.2 | 72.2 | 74.7 |
|  |  | Intersection | 84.9 | 80.8 | 82.8 | 83.6 | 78.3 | 80.9 |
|  |  | Max. score | 83.1 | 77.2 | 80.1 | 80.9 | 77.5 | 79.2 |
| $\operatorname{margin}_{\mathrm{CSLS}}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ | Dist. | Forward | 94.8 | 94.1 | 94.4 | 91.1 | 91.8 | 91.4 |
|  |  | Backward | 94.8 | 94.1 | 94.4 | 91.5 | 91.4 | 91.4 |
|  |  | Intersection | 94.9 | 94.1 | 94.5 | 91.2 | 91.8 | 91.5 |
|  |  | Max. score | 94.9 | 94.1 | 94.5 | 91.2 | 91.8 | 91.5 |
| $\operatorname{margin}_{\mathrm{LASER}}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ | Ratio | Forward | 95.2 | 94.4 | 94.8 | 92.4 | 91.3 | 91.8 |
|  |  | Backward | 95.2 | 94.4 | 94.8 | 92.3 | 91.3 | 91.8 |
|  |  | Intersection | 95.3 | 94.4 | 94.8 | 92.4 | 91.3 | 91.9 |
|  |  | Max. score | 95.3 | 94.4 | 94.8 | 92.4 | 91.3 | 91.9 |

Table 2: BUCC results (precision, recall and F1) on the training set, used to optimize the filtering threshold.

## Digression

Applications

Mining of parallel corpora
■ WikiMatrix: Mining 135M Parallel Sent. in 1620 Language Pairs from WP
■ CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB
■ https://github.com/facebookresearch/LASER

## Digression

## Applications

Mining of parallel corpora
■ WikiMatrix: Mining 135M Parallel Sent. in 1620 Language Pairs from WP
■ CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB
■ https://github.com/facebookresearch/LASER

## Others

- Cross-lingual Natural Language Inference (XNLI)

■ Cross-lingual text classification

- Cross-lingual similarity search


## Digression

Let's join the main path again

## Self-Supervised NMT

## Self-Supervised NMT

■ Parallel data extraction as an auxiliary task to enable NMT training

- NMT training as an auxiliary task to enhance parallel sentence extraction


## Self-Supervised NMT

■ Parallel data extraction as an auxiliary task to enable NMT training
■ NMT training as an auxiliary task to enhance parallel sentence extraction

## Self-supervision?

Just in a non-standard way, none of the tasks is completely supervised

## Self-Supervised NMT

- Joint selection of sentences \& training NMT

■ Uses internal embeddings, i.e., architecture independent
■ Bidirectional training $\{\mathrm{L} 1, \mathrm{~L} 2\} \rightarrow\{\mathrm{L} 1, \mathrm{~L} 2\}$ (shared encoder)
■ On-line process: embeddings change through epochs, therefore selected sentences change through epochs

## Self-Supervised NMT

## Training Procedure



## Self-Supervised NMT

Algorithm Description

1 Internal NMT representation: $E_{w}$ (words); $E_{h}$ (sentence)
2 Score all sentence pairs in a lot (i.e. WP article)
3 Filter options
4 Add filtered sentences into a mini-batch
5 Train system when mini-batch is complete
$\boxed{6}$ Update weights and continue with more data and go again to 1

Self-Supervised NMT
Joint Training: Key Points

1 Sentence Representation

2 Scoring function

## Self-Supervised NMT

Joint Training: Key Points

1 Sentence Representation
the sum of word embeddings ( $E_{w}$ ) and the hidden states in an RNN or the encoder outputs in a transformer $\left(E_{h}\right)$ :

$$
E_{w}=\sum_{t=1}^{T} e_{t},
$$

$$
E_{h}=\sum_{t=1}^{T} h_{t}
$$

2. Scoring function

## Self-Supervised NMT

1 Sentence Representation
$S_{\mathrm{L} 1}$ and $S_{\mathrm{L} 2}$ vector representations for each sentence of a pair $\left(E_{w}\right.$ or $\left.E_{h}\right)$
2 Scoring function
cosine similarity:

$$
\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)=\frac{S_{\mathrm{L} 1} \cdot S_{\mathrm{L} 2}}{\left\|S_{\mathrm{L} 1}\right\|\left\|S_{\mathrm{L} 2}\right\|}
$$

margin-based score:

$$
\operatorname{margin}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)=\frac{\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)}{\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 1}, P_{k}\right) / 2+\operatorname{avr}_{\mathrm{kNN}}\left(S_{\mathrm{L} 2}, Q_{k}\right) / 2}
$$

where

$$
\operatorname{avr}_{\mathrm{kNN}}\left(X, Y_{k}\right)=\sum_{Y \in k \mathrm{NN}(X)} \frac{\cos (X, Y)}{k} \text { (average similarity) }
$$

## Self-Supervised NMT

1 Input a lot (e.g. set of WP article pairs, web pages, etc)
2 Score all sentence pairs

3 Keep the top one pairs (with constraints!)

$$
E_{h} \quad \operatorname{src} 2 \operatorname{tgt}
$$



## Self-Supervised NMT

Joint Training: Sentence Selection (Filtering)

1 Input a lot (e.g. set of WP article pairs, web pages, etc)
2 Score all sentence pairs

3 Keep the top one pairs (with constraints!)


## Self-Supervised NMT

1 Input a lot (e.g. set of WP article pairs, web pages, etc)
2 Score all sentence pairs

3 Keep the top one pairs (with constraints!)


## Self-Supervised NMT

## Joint Training: Sentence Selection (Filtering)

Intersection of intersection of intersection...

to avoid the need for a threshold
(as compared to LASER bitext mining approach)

## Self-Supervised NMT

low permissibility

high recall mode

## Self-Supervised NMT

$\operatorname{cosP}: E_{w}, E_{h}$ in high precision mode and $\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ are used.
$\operatorname{marg} \mathbf{P}: E_{w}, E_{h}$ in high precision mode and $\operatorname{margin}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ are used.

## Self-Supervised NMT

$\operatorname{cosP}: E_{w}, E_{h}$ in high precision mode and $\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ are used.
$\operatorname{marg} \mathbf{P}: E_{w}, E_{h}$ in high precision mode and $\operatorname{margin}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ are used. $\operatorname{margR}$ : As margP but $E_{w}$ and $E_{h}$ are used in the high recall mode.

## Self-Supervised NMT

$\operatorname{cosP}: E_{w}, E_{h}$ in high precision mode and $\cos \left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ are used. $\operatorname{margP}: E_{w}, E_{h}$ in high precision mode and $\operatorname{margin}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$ are used. $\operatorname{margR}$ : As margP but $E_{w}$ and $E_{h}$ are used in the high recall mode. $\operatorname{margH}$ : As margP with $E_{h}$ as only representation.

A hard threshold of 1.01 is used.
margE: As margP with $E_{w}$ as only representation.
A hard threshold of 1.00 is used.

## Self-Supervised NMT

## Automatic Evaluation (Transformer; en-fr, en-de, en-es)

| Model |  | $\begin{array}{c}\text { Corpus, } \\ \text { en+fr sent. } \\ \text { (in millions) }\end{array}$ | BLEU |  |
| :--- | :---: | :---: | :---: | :---: |
| en2fr | fr2en |  |  |  |
| (newstest2014) |  |  |  |  |$]$

$\operatorname{margP}: E_{w}, E_{h}$ in high precision mode and $\operatorname{margin}\left(S_{\mathrm{L} 1}, S_{\mathrm{L} 2}\right)$

## Self-Supervised NMT

What's going on? - margP models


$-*$ Transformer •+•• LSTM

- The mean difference in similarity between accepted and rejected pairs increases ( $\Delta$ )
- The number of extracted sentences increases with $\Delta$
- Changes are more prominent at the beginning of the training


## Self-Supervised NMT

Built-In Curriculum (Ruiter et al., EMNLP, 2020)

|  | \#Pairs enfr | en2fr | fr2en | \#Pairs $_{\text {ende }}$ | en2de | de2en | \#Pairs enes | en2es | es2en |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{NMT}_{\text {init }}$ | 2.14 M | $21.8 \pm .6$ | $21.1 \pm .5$ | 0.32 M | $3.4 \pm .3$ | $4.7 \pm .3$ | 2.51 M | $27.0 \pm .7$ | $25.0 \pm .7$ |
| $\mathrm{NMT}_{\text {mid }}$ | 3.14 M | $29.0 \pm .6$ | $26.6 \pm .6$ | 1.13 M | $11.2 \pm .4$ | $15.0 \pm .6$ | 3.96 M | $28.3 \pm .7$ | $26.1 \pm .7$ |
| $\mathrm{NMT}_{\text {end }}$ | 3.17 M | $28.8 \pm .6$ | $26.5 \pm .6$ | 1.18 M | $11.9 \pm .5$ | $15.3 \pm .5$ | 3.99 M | $28.3 \pm .7$ | $26.2 \pm .7$ |
| $\mathrm{NMT}_{\text {all }}$ | 5.38 M | $26.8 \pm .7$ | $25.2 \pm .6$ | 2.21 M | $11.6 \pm .5$ | $15.0 \pm .6$ | 5.41 M | $27.9 \pm .6$ | $25.9 \pm .8$ |
| $\mathrm{SS}_{\text {NMT }}$ | 5.38 M | $29.5 \pm .6$ | $27.7 \pm .6$ | 2.21 M | $14.4 \pm .6$ | $18.1 \pm .6$ | 5.41 M | $28.6 \pm .7$ | $28.4 \pm .7$ |

Supervised NMT systems trained on the unique pairs collected by SS-NMT in the first $\left(\mathrm{NMT}_{\text {init }}\right)$, intermediate $\left(\mathrm{NMT}_{\text {mid }}\right)$, final $\left(\mathrm{NMT}_{\text {end }}\right)$ and all $\left(\mathrm{NMT}_{\text {all }}\right)$ epochs of training

## Learning Process in SS-NMT

What's going on? - Built-In Curriculum Learning

## Input Documents

## Transformers (comics)

There have been three main publishers of the comic book series bearing the name Transformers based on the toy lines of the

## URNT Futimex

 same name.The first series was produced by Marvel Comics from 1984 to 1991, which ran for 80 issues and produced four spin-off miniseries.

This was followed by a second volume titled Transformers: Generation 2, which ran for 12 issues starting in 1993.
The third series is currently being produced by IDW Publishing starting with an issue \#0 in October 2005 and a regular series starting in January 2006.
There are also several limited series being produced by IDW as well.
In addition to these three main publishers, there have also been several other smaller publishers with varying degrees of success.

## Transformers (cómics)

Ha habido tres editores principales en la serie de cómics de Transformers, basados en las líneas de juguetes del mismo nombre.

## Trans <br> Firdiln

La primera serie fue producida por Marvel Comics desde 1984 hasta 1991, para ayudar en las ventas de la línea de juguetes de Hasbro.
Desarrolló 80 tomos y produjo cuatro miniseries de spin-off.
Esto fue seguido por un segundo volumen titulado Transformers: Generación 2, que tuvo 12 ediciones a partir de 1993
La segunda gran serie fue producida por Producciones Dreamwave en 2002 a 2004 con series limitadas, hasta que el compañía se quedó en bancarrota en 2005.

Además de estos tres editores principales, también ha habido varias otras editoriales más pequeñas con diferentes grados de éxito.
Por favor, véase la lista de los cómics de Transformers menores para obtener más información.

En 1984, Marvel comenzó a publicar cómics de Transformers para ayudar en las ventas de la línea de juguetes de Hasbro.

## Learning Process in SS-NMT

## Built-In Curriculum Learning

## Sentence selection through epochs: Epoch 1

## Transformers (comics)

There have been three main publishers of the comic book series bearing the name Transformers based on the toy lines of the

## UR Fublizix

 same name.The first series was produced by Marvel Comics from 1984 to 1991, which ran for 80 issues and produced four spin-off miniseries.

This was followed by a second volume titled Transformers: Generation 2, which ran for 12 issues starting in 1993.

The third series is currently being produced by IDW Publishing starting with an issue \#0 in October 2005 and a regular series starting in January 2006.
There are also several limited series being produced by IDW as well.
In addition to these three main publishers, there have also been several other smaller publishers with varying degrees of success.

## Transformers (cómics)

Ha habido tres editores principales en la serie de cómics de Transformers, basados en las líneas de juguetes del mismo nombre.

## जravt <br> Tratmant

La primera serie fue producida por Marvel Comics desde 1984 hasta 1991 para ayudar en las ventas de la línea de juguetes de Hasbro.
Desarrolló 80 tomos y produjo cuatro miniseries de spin-off.
Esto fue seguido por un segundo volumen titulado Transformers: Generación 2, que tuvo 12 ediciones a partir de 1993
La segunda gran serie fue producida por Producciones Dreamwave en 2002 a 2004 con series limitadas, hasta que el compañía se quedó en bancarrota en 2005.

Además de estos tres editores principales, también ha habido varias otras editoriales más pequeñas con diferentes grados de éxito.
Por favor, véase la lista de los cómics de Transformers menores para obtener más información.

En 1984, Marvel comenzó a publicar cómics de Transformers para ayudar en las ventas de la línea de juguetes de Hasbro.

## Learning Process in SS-NMT

## Built-In Curriculum Learning

## Sentence selection through epochs: Epoch 6

## Transformers (comics)

There have been three main publishers of the comic book series bearing the name

## HRans Findmane

 Transformers based on the toy lines of the same name.The first series was produced by Marvel Comics from 1984 to 1991, which ran for 80 issues and produced four spin-off miniseries.

This was followed by a second volume titled Transformers: Generation 2, which ran for 12 issues starting in 1993.

The third series is currently being produced by IDW Publishing starting with an issue \#0 in October 2005 and a regular series starting in January 2006
There are also several limited series being produced by IDW as well.
In addition to these three main publishers, there have also been several other smaller publishers with varying degrees of success.

Transformers (cómics)

Ha habido tres editores principales en la serie de cómics de Transformers, basados en las líneas de juguetes del mismo nombre.

## जravis <br> Firdullx

La primera serie fue producida por Marvel Comics desde 1984 hasta 1991 para ayudar en las ventas de la línea de juguetes de Hasbro.

Desarrolló 80 tomos y produjo cuatro miniseries de spin-off.
Esto fue seguido por un segundo volumen titulado Transformers: Generación 2, que tuvo 12 ediciones a partir de 1993
La segunda gran serie fue producida por Producciones Dreamwave en 2002 a 2004 con series limitadas, hasta que el compañía se quedó en bancarrota en 2005.

Además de estos tres editores principales, también ha habido varias otras editoriales más pequeñas con diferentes grados de éxito.
Por favor, véase la lista de los cómics de Transformers menores para obtener más información

En 1984, Marvel comenzó a publicar cómics de Transformers para ayudar en las ventas de la línea de juguetes de Hasbro.

## Learning Process in SS-NMT

Self-Induced Curricula

■ SS-NMT induces a curriculum when selecting the data to train the MT task

■ The order in which sentences are extracted is vital for translation quality (NMTall vs. SS-NMT)

■ The data selection shows (at least) 3 curricula:
11 a task-specific (MT) curriculum
2 a denoising curriculum
3 a complexity curriculum

## Self-Induced Curricula in SSNMT

## Task-specific (MT) Curriculum


$\rightsquigarrow$ more cross-lingual similarity $\rightarrow$ more parallel
$\rightsquigarrow$ more parallel $\rightarrow$ closer to MT purpose

## Self-Induced Curricula in SSNMT

## Complexity Curriculum



Gunning Fog, readability measure: $G F=0.4\left[\left(\frac{w}{s}\right)+100\left(\frac{c}{w}\right)\right]$
■ Increment from GF=11 (high school students) to $G F=13$ (undergrads)

## Self-Induced Curricula in SSNMT

Key Point: Homographs!


- Large \% of homographs in the sentences at the beginning of the training less sentences (punctuation, numbers, common BPE), noisier, easier


## Self-Induced Curricula in SSNMT

Key Point: Homographs!


■ Large \% of homographs in the sentences at the beginning of the training less sentences (punctuation, numbers, common BPE), noisier, easier
$\rightsquigarrow$ What if no homographs?

## Self-Induced Curricula in SSNMT

Open Problems

1 Distant Languages (no/few homographs)
■ Low-resourced languages

Similar issues in unsupervised NMT, bilingual embeddings, etc.
Same "solutions"?

## Digression

Pre-trained models for language generation


## Pre-trained Models for Language Generation

Transformer Encoder/Decoder for Language Modeling


Google 1.600.000M!
(Adapted from https://www.programmersought.com/article/24793362644/)

## Pre-trained Models for Language Generation

Similarities and Differences

- Encoder vs. decoder vs. both
- Loss function (task)
- Monolingual vs. parallel data

■ Monolingual vs. multilingual model

- Noise function (if any)


## Pre-trained Models for Language Generation

## Denoising Autoencoders for Language Generation

## Masked Language Modeling (MLM) with XLM (Bert-like)


(Conneau and Lample, NIPS 2019)

## Pre-trained Models for Language Generation

## Denoising Autoencoders for Language Generation

## Translation Language Modeling (TLM) with XLM


(Conneau and Lample, NIPS 2019)

## Pre-trained Models for Language Generation

## Denoising Autoencoders for Language Generation (BERT)



- BERT

■ Masked LM

## Pre-trained Models for Language Generation

```
Autoregressive Decoding for Language Generation (GPT-X)
```



■ GPT

- Causal LM

■ Good for generation
(Image from Lewis et al., ACL 2020)

Pre-trained Models for Language Generation


## Language Generation with (m)BART



## Language Generation with (m)BART

BART for Machine Translation


## Language Generation with (m)BART

Multilingual Denoising Pre-training (mBART)

Transformer Encoder

4
Where did from ? </s> Who
$\qquad$ I_ </s> <En>


■ Noise: word-span masking (text infilling) and sentence permutation

## Language Generation with (m)BART

Multilingual Denoising Pre-training (mBART)


■ Noise: word-span masking (text infilling) and sentence permutation

## Language Generation with (m)BART

 mBART: Finetuning for MT

Sentence-level finetuning
(Image from Liu et al., TACL 2020)

## Language Generation with (m)BART

mBART: Finetuning for MT, Results

| Languages Data Source Size | En-Gu WMT19 |  | $\begin{gathered} \text { En-Kk } \\ \text { WMT19 } \end{gathered}$ |  | En-Vi IWSLT15 |  | $\mathrm{En}-\mathrm{Tr}$ WMT17 | $\begin{aligned} & \text { Tr } \\ & \text { T17 } \\ & 7 \mathrm{~K} \end{aligned}$ | $\begin{array}{r} \text { En } \\ \text { IWS } \\ 22 \end{array}$ | Ja <br> T17 K | $\begin{array}{r} \text { En } \\ \text { IWS } \\ 23 \end{array}$ | Ko <br> T17 <br> K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direction | $\leftarrow$ | $\rightarrow$ |
| Random | 0.0 | 0.0 | 0.8 | 0.2 | 23.6 | 24.8 | 12.2 | 9.5 | 10.4 | 12.3 | 15.3 | 16.3 |
| mBART25 | 0.3 | 0.1 | 7.4 | 2.5 | 36.1 | 35.4 | 22.5 | 17.8 | 19.1 | 19.4 | 24.6 | 22.6 |
| Languages Data Source | En-NI |  | En-Ar |  | En-It <br> IWSIT17 |  | En-My WAT19 |  | $\mathrm{En}-\mathrm{Ne}$ |  | En | Ro T16 |
| Size | 237K |  | 250K |  | 250K |  | 259K |  | 564K |  | 608 K |  |
| Direction | $\leftarrow$ | $\rightarrow$ |
| Random | 34.6 | 29.3 | 27.5 | 16.9 | 31.7 | 28.0 | 23.3 | 34.9 | 7.6 | 4.3 | 34.0 | 34.3 |
| mBART25 | 43.3 | 34.8 | 37.6 | 21.6 | 39.8 | 34.0 | 28.3 | 36.9 | 14.5 | 7.4 | 37.8 | 37.7 |

## Language Generation with (m)BART

mBART: Finetuning for MT, Results

| Languages Data Source Size | En-Si <br> FLoRes 647K |  | En-Hi <br> ITTB |  | En-Et WMT18 <br> 1.94 M |  | $\begin{gathered} \text { En-Lt } \\ \text { WMT19 } \\ 2.11 \mathrm{M} \end{gathered}$ |  | $\begin{gathered} \text { En-Fi } \\ \text { WMT17 } \\ 2.66 \mathrm{M} \end{gathered}$ |  | $\begin{gathered} \text { En-Lv } \\ \text { WMT17 } \\ \text { 4.50M } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direction | $\leftarrow$ | $\rightarrow$ |
| Random | 7.2 | 1.2 | 10.9 | 14.2 | 22.6 | 17.9 | 18.1 | 12.1 | 21.8 | 20.2 | 15.6 | 12.9 |
| mBART25 | 13.7 | 3.3 | 23.5 | 20.8 | 27.8 | 21.4 | 22.4 | 15.3 | 28.5 | 22.4 | 19.3 | 15.9 |

## Language Generation with (m)BART

mBART: Finetuning for MT (II)


## Document-level finetuning

## Language Generation with (m)BART

 mBART: Finetuning for MT (II)| Model | Random |  | mBART25 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | s-BLEU | d-BLEU | s-BLEU | d-BLEU |
| Sent-MT | 34.5 | 35.9 | 36.4 | 38.0 |
| Doc-MT | $\times$ | 7.7 | $\mathbf{3 7 . 1}$ | $\mathbf{3 8 . 5}$ |

■ No document-level data for previous tests
■ Results with German-English

## Language Generation with (m)BART

mBART: Comparison with Other Pre-training Approaches

| Pre-training |  | Fine-tuning |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Model | Data | En $\rightarrow$ Ro | Ro $\rightarrow$ En | +BT |
| Random | None | 34.3 | 34.0 | 36.8 |
| XLM | En Ro | - | 35.6 | 38.5 |
| MASS | En Ro | - | - | 39.1 |
| BART | En | - | - | 38.0 |
| XLM-R | CC100 | 35.6 | 35.8 | - |
| BART-En | En | 36.0 | 35.8 | 37.4 |
| BART-Ro | Ro | 37.6 | 36.8 | 38.1 |
| mBART02 | En Ro | $\mathbf{3 8 . 5}$ | 38.5 | 39.9 |
| mBART25 | CC25 | 37.7 | 37.8 | 38.8 |

## Digression

Let's join the main path again

## Self-Supervised NMT

## SSNMT in the Low Resource Setting

Open Problems

1 Distant Languages (no/few homographs)
■ Low-resourced languages

Similar issues in unsupervised NMT, bilingual embeddings, etc.
Same "solutions"?

## SSNMT in the Low Resource Setting

Additions (Unsupervised NMT-inspired?)

- Initalisation
- Word embeddings (bilingual word2vec-like embeddings, BWE)
- Sentence embeddings (BART-style training, Denoising Autoencoder DAE)

■ Data augmentation

- Online back-translation
- Word by word translation (nearest neighbour in BWE)
- Noise (token deletion, substitution and permutation)


## SSNMT in the Low Resource Setting

How does it Work?

1 System initialisation (WE, DAE)
2 Extract pairs as usual (scoring, filtering)
3 On-line back-translation of rejected pairs (BT)
1 SS-NMT filtering to remove low-quality back-translations
2 Word translation for rejected back-translations (WT)

4 Add noise (N)

## SSNMT in the Low Resource Setting

## A Simulated Setting: Data Augmentation vs. Corpus Size



- WT and N damage high-resource setting
- Significant improvements mid-resource setting
- Small improvements in the low-resource setting
(English \& French Wikipedias)


## SSNMT in the Low Resource Setting

## But, is this Real Low Resource?

- Artificial low-resourced setting (lots of mono data, few comparable)
- Real setting (few mono data, few comparable, distant languages)

|  | English | Afrikaans | Nepali | Kannada | Yorúbà | Swahili | Burmese |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Typology | fusional | fusional | fusional | agglutinative | analytic | agglutinative | analytic |
| Word Order | SVO | SOV,SVO | SOV | SOV | SOV,SVO | SVO | SOV |
| Script | Latin | Latin | Brahmic | Brahmic | Latin | Latin | Brahmic |
| $\operatorname{sim}($ L-en $)$ | 1.000 | 0.822 | 0.605 | 0.602 | 0.599 | 0.456 | 0.419 |

## SSNMT in the Low Resource Setting

## Automatic Evaluation (BLEU scores on Different Sets)



## SSNMT in the Low Resource Setting

Mmmm... What else?

- Multilinguality
- Fine-tuning


## SSNMT in the Low Resource Setting

Mmmm... What else?

- Multilinguality
- Multilingual comparable corpora
- Multilingual denosing autoencoder, MDAE

■ Fine-tuning

- Bilingual comparable corpora


## SSNMT in the Low Resource Setting

## Automatic Evaluation (BLEU scores on Different Sets)



## SSNMT in the Low Resource Setting

Data Augmentation vs. Multilinguality vs. Fine-tuning

BLEU scores on different test sets per language

|  | en-af |  | en-kn |  |  | en-my |  | en-ne |  | en-sw |  |  | en-yo |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rightarrow$ | $\leftarrow$ | $\rightarrow$ | $\leftarrow$ | $\rightarrow$ | $\rightarrow$ | $\leftarrow$ | $\rightarrow$ | $\leftarrow$ | $\rightarrow$ | $\leftarrow$ | $\rightarrow$ | $\leftarrow$ |  |  |
| Baseline | 48.1 | 48.6 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 4.4 | 3.6 | 0.5 | 0.6 |  |  |  |
| Best Bilingual | $\mathbf{5 1 . 2}$ | $\mathbf{5 2 . 2}$ | 0.3 | 0.9 | 0.1 | 0.7 | 0.3 | 0.5 | 7.7 | 6.8 | $\mathbf{2 . 9}$ | 3.1 |  |  |  |
| MDAE | 42.5 | 42.5 | 3.1 | 5.3 | 0.1 | 1.7 | 1.0 | 3.3 | 7.4 | 7.9 | 1.5 | 4.7 |  |  |  |
| MDAE+F | 46.3 | 50.2 | $\mathbf{5 . 0}$ | $\mathbf{9 . 0}$ | $\mathbf{0 . 2}$ | $\mathbf{2 . 8}$ | $\mathbf{2 . 3}$ | $\mathbf{5 . 7}$ | $\mathbf{1 1 . 6}$ | $\mathbf{1 1 . 2}$ | $\mathbf{2 . 9}$ | $\mathbf{5 . 8}$ |  |  |  |

## SSNMT in the Low Resource Setting

## Data Augmentation vs. Multilinguality vs. Fine-tuning

BLEU scores on different test sets per language

|  | $e n-a f$ |  | $e n-k n$ |  | en-my |  | en-ne |  | en-sw |  | en-yo |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rightarrow$ | $\leftarrow$ |
| Baseline | 48.1 | 48.6 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 4.4 | 3.6 | 0.5 | 0.6 |
| Best Bilingual | 51.2 | 52.2 | 0.3 | 0.9 | 0.1 | 0.7 | 0.3 | 0.5 | 7.7 | 6.8 | 2.9 | 3.1 |
| MDAE | 42.5 | 42.5 | 3.1 | 5.3 | 0.1 | 1.7 | 1.0 | 3.3 | 7.4 | 7.9 | 1.5 | 4.7 |
| MDAE+F | 46.3 | 50.2 | 5.0 | 9.0 | 0.2 | 2.8 | 2.3 | 5.7 | 11.6 | 11.2 | 2.9 | 5.8 |
| Typology L | fusional |  | agglutinative |  | analytic |  | fusional |  | agglutinative |  | analytic |  |
| Word Order L | SOV,SVO |  | SOV |  | SOV |  | SOV |  | SVO |  | SOV,SVO |  |
| Word Overlap | 7.1\% |  | 1.4\% |  | 2.1\% |  | 0.6\% |  | 6.5\% |  | 5.7\% |  |
| Tokens L | 27.6 M |  | 30.0 M |  | 15.3 M |  | 7.5 M |  | 8.7 M |  | 0.5 M |  |

## SSNMT in the Low Resource Setting

## SSNMT vs. UMT (vs. NMT)

| Pair | Init. | Config. | Best | Base | UMT | UMT+NMT | Laser | TSS | \#P (k) |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| en2af | WE | B+BT | $\mathbf{5 1 . 2} \pm . \mathbf{9}$ | $48.1 \pm .9$ | $27.9 \pm .8$ | $44.2 \pm .9$ | $\mathbf{5 2 . 1} \pm \mathbf{1 . 0}$ | 35.3 | 37 |
| af2en | WE | B+BT | $\mathbf{5 2 . 2} \pm . \mathbf{9}$ | $47.9 \pm .9$ | $1.4 \pm .1$ | $0.7 \pm .1$ | $\mathbf{5 2 . 9} \pm . \mathbf{9}$ | - | - |
| en2kn | MDAE | B+BT+F | $\mathbf{5 . 0} \pm . \mathbf{2}$ | $0.0 \pm .0$ | $0.0 \pm .0$ | $0.0 \pm .0$ | - | 21.3 | 397 |
| kn2en | MDAE | B+BT+F | $\mathbf{9 . 0} \pm \mathbf{. 2}$ | $0.0 \pm .0$ | $0.0 \pm .0$ | $0.0 \pm .0$ | - | 40.3 | 397 |
| en2my | MDAE | B+BT+F | $\mathbf{0 . 2} \pm . \mathbf{0}$ | $0.0 \pm .0$ | $0.1 \pm .0$ | $0.0 \pm .0$ | $0.0 \pm .0$ | 39.3 | 223 |
| my2en | MDAE | B+BT+F | $\mathbf{2 . 8} \pm . \mathbf{1}$ | $0.0 \pm .0$ | $0.0 \pm .0$ | $0.0 \pm .0$ | $0.1 \pm .0$ | 38.6 | 223 |
| en2ne | MDAE | B+BT+F | $\mathbf{2 . 3} \pm . \mathbf{1}$ | $0.0 \pm .0$ | $0.1 \pm .0$ | $0.0 \pm .0$ | $0.5 \pm .1$ | 8.8 | - |
| ne2en | MDAE | B+BT+F | $\mathbf{5 . 7} \pm . \mathbf{2}$ | $0.0 \pm .0$ | $0.0 \pm .0$ | $0.0 \pm .0$ | $0.2 \pm .0$ | 21.5 | - |
| en2sw | MDAE | B+BT+F | $\mathbf{1 1 . 6} \pm . \mathbf{3}$ | $4.2 \pm .2$ | $3.6 \pm .2$ | $0.2 \pm .0$ | $10.0 \pm .3$ | 14.8 | 995 |
| sw2en | MDAE | B+BT+F | $\mathbf{1 1 . 2 \pm . \mathbf { 3 }}$ | $3.6 \pm .2$ | $0.3 \pm .0$ | $0.0 \pm .0$ | $8.4 \pm .3$ | 19.7 | 995 |
| en2yo | MDAE | B+BT+F | $\mathbf{2 . 9} \pm . \mathbf{1}$ | $0.3 \pm .1$ | $1.0 \pm .1$ | $0.3 \pm .1$ |  | - | 12.3 |
| yo2en | MDAE | B+BT+F | $\mathbf{5 . 8} \pm . \mathbf{1}$ | $0.5 \pm .1$ | $0.6 \pm .0$ | $0.0 \pm .0$ | - | 22.4 | - |

## Automatic Evaluation in the Low-Resource Setting

## Thoughts

■ We have seen several ways to approach LR-MT (and we'll see more!)

- Multilinguality, fine-tuning, UMT, SSNMT, etc.

■ What makes MT low-resource?

- data size, word overlap, typology, word order, and a long etc.
- How can we compare?
- few standardized data, test sets... of course, low-resource!
- Even more... what is a good metric?
- BLEU makes sense with small values? Metrics based on multilingual LMs (BertScore, Comet, etc) don't know the language!

Automatic Evaluation in the Low-Resource Setting As Always, it's Late...

More to come!!

Thanks! And...
wait!


# Self-Supervised Neural Machine Translation and More! 

Cristina España-Bonet

DFKI GmbH


Low-Resource NLP:
Multilinguality and Machine Translation
Webinar Series - Session IV
14th September 2021

