The role of Artifical Intelligence within Natural Language

Cristina España-Bonet
Universität des Saarlandes (UdS)
Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI)

Toward Multilingual Public Services in Europe
Brussels, Belgium
17th October 2018

Artificial Intelligence

Artificial Intelligence

What is Al?

Taxonomy of Al definitions (2)

To reason human

- "The exciting new effort to make computers think ... machines with minds, in the full and literal sense" (Haugeland, 1985)
- "The automation of activities that we associate with human thinking, activities such as decision-making, problem solving, learning. . ."
(Bellman, 1978)

To act human

- "The art of creating machines that perform functions that require intelligence when performed by people." (Kurzwil, 1990)
- "The study of how to make computers do things at which, at the moment, people do better." (Rich i Knight, 1991)

To reason rationally

- "The study of mental faculties through the use of computational models." (Charniak i McDermott, 1985)
- "The study of the computations that make it possible to perceive, reason, act." (Winston, 1992)

To act rationally

- "The field of study that seeks to explain and emulate intelligent behavior in terms of computational processes." (Schalkoff, 1990)
- "The branch of computer science concerned with automation of intelligent behavior" (Luger i Stubblefield, 1993)

Artificial Intelligence

What is Intelligence?

Artificial Intelligence

What is (A)?

Artificial Intelligence

 What is (A)I?■ No universally accepted definition

■ Is the complement easier to define?

Artificial Intelligence

```
What is (A)I?
```

■ No universally accepted definition

■ Is the complement easier to define?

■ Stupidity?
Stupidity is doing the same thing over and over again and expecting different results!

Artificial Intelligence

Insanity Is Doing the Same Thing Over and Over Again and Expecting Different Results

Albert Einstein? Narcotics Anonymous? Max Nordau? George Bernard Shaw? George A. Kelly? Rita Mae Brown? John Larroquette? Jessie Potter? Werner Erhard?

https://quoteinvestigator.com/2017/03/23/same/

Artificial Intelligence

What is Al? or even I?

■ Anyway, how do we avoid stupidity?

Artificial Intelligence

■ Anyway, how do we avoid stupidity?

- By learning from examples, mistakes, the environment, etc.

■ Key part of intelligence

Artificial Intelligence

■ Anyway, how do we avoid stupidity?

- By learning from examples, mistakes, the environment, etc.

■ Key part of intelligence

■ Machine learning (deep learning!)

Artificial Intelligence

Achievements: Deep Blue, Chess

Artificial Intelligence

■ 1997: Deep Blue versus Garry Kasparov

■ Deep Blue won by brute force

■ Chess: moves/step ~ 35

- Thinking 8 steps ahead means $\sim 2 \cdot 10^{12}$ states

Artificial Intelligence

■ 1997: Deep Blue versus Garry Kasparov

■ Deep Blue won by brute force

■ Chess: moves/step ~ 35

- Thinking 8 steps ahead means $\sim 2 \cdot 10^{12}$ states

That's brute force!

Artificial Intelligence

Understanding of Natural Languages cannot be approached by brute force

Natural Language understanding is an Al-complete problem
(see later)

Artificial Intelligence

Achievements: AlphaGo, Go

Artificial Intelligence

■ 2016: AlphaGo versus Lee Sedol

■ Go: moves/step ~ 250

- Search space $>10^{100}$!

■ AlphaGo won using a Monte-Carlo tree search guided by deep neural networks with reinforcement learning

Artificial Intelligence

■ 2016: AlphaGo versus Lee Sedol

■ Go: moves/step ~ 250

- Search space $>10^{100}$!

■ AlphaGo won using a Monte-Carlo tree search guided by deep neural networks with reinforcement learning

That's (deep) learning!

Artificial Intelligence

Achievements: IBM Watson @Jeopardy

Artificial Intelligence

■ 2011: IBM Watson @Jeopardy

■ Question Answering System:

■ Natural language processing, knowledge representation, reasoning, information retrieval...

Natural Language Understanding

Artificial Intelligence

■ 2011: IBM Watson @Jeopardy

■ Question Answering System:

■ Natural language processing, knowledge representation, reasoning, information retrieval...

Natural Language Understanding

- 2018: health, weather, chatbots...

Artificial Intelligence

Translator

Home

Neural Machine Translation reaches historic milestone: human parity for Chinese to English translations

Natural Languages

1. Artificial Intelligence

2 Natural Languages

3 Natural Language Processing

4 Neural Networks and Deep Learning

5 Tomorrow (today!) in Europe

Natural Languages

Human languages are a tool to communicate thoughts and they are
elegant, efficient, flexible, complex

Natural Languages

 Description
Human languages are a tool to communicate thoughts and they are elegant, efficient, flexible, complex

Cool for a human, but for a machine...

Natural Languages

One word/sentence may mean many things

Homonymy and Polysemy

Natural Languages

One word/sentence may mean many things

Homonymy and Polysemy
bat

Natural Languages

Bats!

Natural Languages

Bats! (I'm inside a cave)

Natural Languages

Bats! (I'm inside a cave)

This bat is brown

Natural Languages

Bats! (I'm inside a cave)

This bat is brown (I'm watching a baseball match)

Natural Languages

Bats! (I'm inside a cave)

This bat is brown (I'm watching a baseball match)
Streaks and slumps are as common to baseball as bats
He bats the flies away
We bat around a wide variety of issues
When he told me what he'd done, I didn't bat an eye

Natural Languages

Many ways of saying the same thing

Synonymy
gift
present

Natural Languages

This coffee shop is an ice box

VS.

It is very cold in this coffee shop

Natural Languages

The early bird catches the worm VS.

Morgenstund hat Gold im Mund
vs.
Qui matina fa farina

VS.

A quien madruga, Dios le ayuda

Natural Languages

Language is culture

Jurafsky \& Martin, 2007 (Ch.25)

Natural Languages

Understanding of Natural Languages cannot be approached by brute force

Natural Language understanding is an Al-complete problem
(from the intro)

Natural Languages

■ There are more than $\mathbf{7 0 0 0}$ languages (even if the definition of language is not straightforward!)

141 language families
(6 of them account for $2 / 3$ of all languages and $5 / 6$ of the world's population)

Natural Languages
Language Families in Europe

Outline

1. Artificial Intelligence

2 Natural Languages

3 Natural Language Processing

4 Neural Networks and Deep Learning

5 Tomorrow (today!) in Europe

Natural Language Processing General Approaches

Natural Language Processing

Rules in Machine Translation

```
function DIRECT_TRANSLATE_MUCH/MANY(word) returns Russian translation
if preceding word is how return skol'ko
else if preceding word is as return stol'ko zhe
else if word is much
if preceding word is very return nil
else if following word is a noun return mnogo
else /* word is many */
if preceding word is a preposition and following word is a noun return mnogii
else return mnogo
```

Figure 25.7 A procedure for translating much and many into Russian, adapted from Hutchins' (1986, pg. 133) discussion of Panov 1960. Note the similarity to decision list algorithms for word sense disambiguation.
(from Jurafsky \& Martin, 2007)

Natural Language Processing

Statistics in Machine Translation

CLASSIC SOUPS
 Sm. Lg.

(from Josef van Genabith slides)

Natural Language Processing

Learning in Machine Translation

$e=$ (Economic, growth, has, slowed, down, in, recent, years, .)
(from Kyunghyun Cho slides)

Natural Language Processing

Data-based Approaches for Machine Translation

Standard Corpora

Language Pair	\# segments (app.)	\# words (app.)
En-De	$4.5 \cdot 10^{6}$	$222 \cdot 10^{6}$
$\mathrm{En}-\mathrm{Fr}$	$36.3 \cdot 10^{6}$	$2100 \cdot 10^{6}$

Natural Language Processing

Data-based Approaches for Machine Translation

Standard Corpora

Language Pair	\# segments (app.)	\# words (app.)
En-De	$4.5 \cdot 10^{6}$	$222 \cdot 10^{6}$
En-Fr	$36.3 \cdot 10^{6}$	$2100 \cdot 10^{6}$

Books

Title
The Bible
The Dark Tower series
Encyclopaedia Britannica
\# words (approx.)
$0.8 \cdot 10^{6}$
$1.2 \cdot 10^{6}$
$44 \cdot 10^{6}$

Natural Language Processing Other NLP Tasks

Named-Entity Recognition

Natural Language Processing

Other NLP Tasks

Named-Entity Recognition

POS Tagging

Natural Language Processing

Named-Entity Recognition

POS Tagging

Natural Language Processing

Named-Entity Recognition

Sentiment Analysis

POS Tagging

Parsing

Natural Language Processing

Named-Entity Recognition

Sentiment Analysis
POS Tagging

Semantic Role Labeling

Parsing

Natural Language Processing

Named-Entity Recognition

Sentiment Analysis
POS Tagging

Question Answering

Semantic Role Labeling

Parsing

Natural Language Processing

Named-Entity Recognition

Sentiment Analysis
POS Tagging
Question Answering

Semantic Role Labeling

Parsing

Natural Language Processing

Named-Entity Recognition

Sentiment Analysis
POS Tagging
Question Answering

Semantic Role Labeling

Dialogue

Machine Translation
Parsing

Natural Language Processing

Named-Entity Recognition

Sentiment Analysis
POS Tagging
Question Answering

Semantic Role Labeling

Dialogue

Text Summarisation

Machine Translation

Parsing

Natural Language Processing

Seq2Tag

Named-Entity Recognition
Sentiment Analysis
POS Tagging
Question Answering

Semantic Role Labeling

Seq2Seq

Dialogue

Text Summarisation

Machine Translation
Parsing

Natural Language Processing

Data-based Approaches

Yesterday

■ Shallow Machine Learning models
—XGB, SVM, logistic regressiontrained on (lots of!) features

Natural Language Processing

Data-based Approaches

Yesterday
■ Shallow Machine Learning models -XGB, SVM, logistic regressiontrained on (lots of!) features

Tomorrow
■ (Deep) Neural Networks using dense vector representations and learned features

Outline

1. Artificial Intelligence

2 Natural Languages

3 Natural Language Processing

4 Neural Networks and Deep Learning

5 Tomorrow (today!) in Europe

Neural Networks and Deep Learning

A World where Words are Numbers

Basketball $=(0.101159,0.550446,0.543801,-0.973852,-0.680835,0.417193,-0.247181,0.209725$, $-1.136055,-0.059531,-0.401640,0.171540,0.925121,-0.143815,0.781714,-1.482425,0.347008,-0.112342$, $0.442418,-1.020457,-0.071752,1.873548,-0.222886,-0.729569,-0.830224,-0.868407,0.203496,0.469911$, $-0.191363,0.565102,0.687738,0.480823,0.842358,-0.173656,-0.265585,0.685740,0.488047,-0.359772$, $-0.576064,-0.802884,0.081554,0.046882,-0.861532,-0.461855,0.613098,-1.534642,-0.884534,0.207728$, $1.396512,-0.242900,-0.383959,0.570844,-0.703350,-1.368813,-1.008194,1.534660,0.171693,0.640925$, $-0.233116,0.324685,0.483171,0.337947,-0.963290,-0.400558,0.830977,0.913474,0.251693,-0.589420$, $-0.299622,1.047515,-0.266679,-1.247186,1.087610,-0.549028,1.600710,-1.538516,-1.703301,-1.393499$, $-0.894448,0.717204,0.105767,-0.189234,-0.615609,-0.658315,0.051877,0.014180,-0.791282,0.150424$, $1.343751,-0.464859,0.871426,1.542864,-1.202150,-0.767113,-1.734738,0.073633,-1.012583,0.747787$, $0.476070,-0.454807,0.642685,-0.854152,-0.071798,0.233724,0.712329,-0.097752,-0.531132,0.323271$, $-0.447342,0.657913,1.199492,-0.107360,-0.154234,-1.131168,1.354793,1.721385,-0.240023,0.655765$, $-0.217006,-0.801722,0.553369,0.213377,0.323267,-1.516051,2.106244,-0.134282,0.742155,0.426344$, $0.197991,-0.806768,0.372546,-0.160200,-1.552847,-0.286178,-0.707796,0.527352,-0.259658,0.230387$, $0.105294,-0.194481,0.301772,-1.022163,0.557191,1.096709,0.058422,-1.036384,0.353412,-0.623097$, $-0.689515,0.091472,0.783885,0.184088,-0.367950,0.952462,0.183704,0.677562,0.293917,-0.214309$, $-0.487794,0.934296,0.311513,0.286514,-0.085511,0.777691,1.232603,-0.309367,-0.225086,0.005091$, $-0.099195,-0.293117,1.305563,0.595816,0.950316,0.568706,-0.561446,0.911634,-0.383941,0.758054$, $-0.197820,0.506777,-0.290767,-0.356727,1.229474,-0.156489,-0.782741,-0.210163,-0.029169,0.602664$, $0.418375,0.148975,-0.761796,1.322690,-0.173410,0.204111,-1.344531,1.081905,-0.660543,-0.225615$, $-0.444753,-0.929671,0.054136,0.052031,-0.164926,0.159312,-1.316333,0.837011,-1.290353,0.958403$, $1.247478,0.442009,0.455497,-1.856268,-0.358823,-0.230839,-0.206271,0.227012,-0.454163,0.747798$, $-1.252855,1.436849,-0.427915,-0.810428,-0.628144,-0.288458,0.087355,0.356739,0.153036,0.516594$, $-0.504978,0.814432,1.052940,1.094526,-0.219595,0.722178,0.267325,-0.087458,-1.270262,-0.039461$, $0.991926,-0.112005,-0.009605,0.149920,0.164717,0.280475,0.966384,0.327598,0.189590,-0.208946$, $0.838261,0.051847,-0.277932,-0.788527,-0.768702,-1.688721,0.388215,0.170153,-0.555723,-0.529565$, $-0.528982,-0.659930,0.588041,-0.368195,-0.850188,-0.004996,0.925476,1.046587,-0.731761,0.519435$, $0.193188,-0.709557,0.123329,-0.454316,1.885830,-0.201841,-0.728933,-0.953455,-0.205837,-0.724068$, $0.120158,1.765389,-0.192159,1.062490,-0.002634,0.125790,-0.846565,0.548899,-1.062821,-2.146826$, $0.134681,0.570950,0.851783,0.436544,0.688986,1.229008,1.435449,0.118766,-0.132411,2.527890,0.778142)$

Neural Networks and Deep Learning Word Vector Space

Basketball

Neural Networks and Deep Learning Word Vector Space

Neural Networks and Deep Learning

Word Vector Space

Sumo

Basketball

vector space
Football
n-dimensional
Cherry
Strawberry

Neural Networks and Deep Learning

 A World where Words are Numbers

Neural Networks and Deep Learning

 A World where Words are NumbersWould that allow language understanding?

Neural Networks and Deep Learning Word Embeddings

King - Man + Woman $=$ Queen

(Mikolov et al., NAACL HLT, 2013)

Neural Networks and Deep Learning

Multilinguality

(Luong, Pham \& Manning, NAACL, 2015)

Barnes-Hut-SNE visualisation of bilingual embeddings German/English

Neural Networks and Deep Learning

Multilinguality \& Sentence Embeddings

(España-Bonet \& van Genabith, 2018)

ML-NMT $\{d e, e n, n l, i t, r o\} \rightarrow\{d e, e n, n l, i t, r o\}$ with TED talks

Neural Networks and Deep Learning

Embeddings

How? What for?

Neural Networks and Deep Learning

 How? Neurons or Units?Axon Terminal

Dendrite

Nucleus

Myelin sheath

Neural Networks and Deep Learning

 How? Neurons or Units?

Neural Networks and Deep Learning

How? (Deep) Neural Networks

Neural Networks and Deep Learning

Neural Networks (feed-forward-like)

units: IN \Rightarrow transf. \Rightarrow OUT
units are weighted

Neural Networks and Deep Learning

Input Reinterpretation

Example: Autoencoder

Original Input
Latent Representation
Reconstructed Output

(https://towardsdatascience.com/deep-inside-autoencoders)

Neural Networks and Deep Learning

Word Embeddings, also a Reinterpretation (word2vec example)

Credits: Xin Rong

Neural Networks and Deep Learning

Neural Networks, (D)NNs, in Plural!

Backfed Input Cell
Input Cell
Noisy Input Cell
Hidden Cell
Probablistic Hidden Cell
Spiking Hidden Cell
Output Cell
Match Input Output Cell
Recurrent Cell
Memory Cell
Different Memory Cell
Kernel
Convolution or Pool

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

Long / Short Term Memory (LSTM)
ated Recurrent Unit (GRU)

Denoising AE (DAE)
Sparse AE (SAE)

Deep Convolutional Inverse Graphics Network (DCIGN)

Neural Networks and Deep Learning

 Seq2Seq: a single NN for Several Tasks

ヘ̂ fairseq

latest
Docs » fairseq documentation
© Edit on GitHub

fairseq documentation

Fairseq is a sequence modeling toolkit written in PyTorch that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.

Getting Started

- Evaluating Pre-trained Models
- Training a New Model
- Advanced Training Options
- Command-line Tools

NNs with n layers

layers extract features

Neural Networks and Deep Learning

Deep Learning: Features

Successive model lavers learn deeper intermediate representations

Prior: underlying factors \& concepts compactly expressed w/ multiple levels of abstraction
(https://skymind.ai/wiki/neural-network)

Outline

1. Artificial Intelligence

2 Natural Languages

3 Natural Language Processing

4 Neural Networks and Deep Learning

5 Tomorrow (today!) in Europe

Tomorrow (today!) in Europe

Digital Service Infrastructure

Connecting Europe through digital bridges

Tomorrow (today!) in Europe

Digital Service Infrastructure

Connecting Europe through cross-lingual digital bridges

Tomorrow (today!) in Europe Digression

Time for a disgression on multilinguality with NNs?

Tomorrow (today!) in Europe

Different Languages Involved

Tomorrow (today!) in Europe

The role of Artifical Intelligence within Natural Language

■ Natural Language Understanding is thought to be an Al-complete problem

- Current advances in computation power have fired deep learning (DL) for NLP

■ DL is achieving impressive results for several natural language tasks (human performace)

■ In some architectures, multilinguality comes for free

Tomorrow (today!) in Europe

Promote All Languages Used in the EU

■ DL needs huge amounts of high-quality data for good performance

- Lots of data for official EU languages

■ Non-official languages may lack enough data
■ In the DL world, languages without data won't exist

Basque, Catalan, Gaelic, Luxembourgish, Macedonian, Occitan, Romani, Welsh...

Thanks! And...

wait!

The role of Artifical Intelligence within Natural Language

Cristina España-Bonet
Universität des Saarlandes (UdS)
Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI)

Toward Multilingual Public Services in Europe
Brussels, Belgium
17th October 2018

Back-up slides Block I

Similarities and differences among languages

Back-up slides

Different cultures share basic concepts and actions and communicate them with words

■ Vocabulary: We all have a mother, a father, and see trees, water...

- Grammar: nouns and verbs

Back-up slides

Cultures \& Language: Non-Universal Aspects

But different cultures communicate them with words in different ways and cover different necessities

46 words for snow in Icelandic

https://reportsfromtherock.wordpress.com/page/2/

Back-up slides

Differences among languages I

Besides different necessities for concepts and lexicon, languages differ in morphology

Western Greenlandic:
Aliikkusersuillammassuaanerartassagaluarpaalli
English:
However, they will say that he is a great entertainer but...

Back-up slides

Differences among languages II

Declarative sentences with a Subject, a Verb and an Object can follow different syntax orders

SOV: Japanese, Hindi... Inu ga (subject) neko (object) o oikaketa (verb)

SVO: English, French, Mandarin... The dog (subject) chased (verb) the cat (object)

VSO: Irish, Arabic... yutarid (verb) alkalb (subject) alqut (object)

Back-up slides

■ Omision of elements (e.g. pronouns)

- Short range order

Adj Noun Blue house Noun Adj Casa blava

■ Structure, e.g. dates
DD/MM/YY British English MM/DD/YY American English YY/MM/DD Japanese

Back-up slides Block II

Multilinguality with Neural Networks

Back-up slides

Multilinguality in NMT

Vocabulary

Marshmallow, muss, oben, has, to,
be, top...

Vocabulary

 marshmallow, has, top, oben, bovenop, moet
Back-up slides Block II

Multilinguality with Neural Networks

