Data Streams as Random Permutations: the
Distinct Element Problem

Dedicated to the memory of Philippe Flajolet (1948-2011)

Conrado Martinez,
Univ. Politécnica de Catalunya, Barcelona, Spain

AofA, Montréal, June 2012

Joint work with:

A. Helmi J. Lumbroso A. Viola

Introduction

@ A data stream is a (very long) sequence
S:S1,82,S3,...,SN

of items s; drawn from some (large) domain U, s; € U

Introduction

@ A data stream is a (very long) sequence
S:S1,82,S3,...,SN

of items s; drawn from some (large) domain U, s; € U
@ The goal: to compute y =y(8), but ...

Introduction

...there are limitations to our computational power:
@ asingle pass over the sequence

Introduction

...there are limitations to our computational power:
@ asingle pass over the sequence
@ very short time for computation on each item

Introduction

...there are limitations to our computational power:

@ asingle pass over the sequence

@ very short time for computation on each item

@ very small auxiliary memory: M < N; ideally M = ©(1) or
M = O(log N)

Introduction

...there are limitations to our computational power:
@ asingle pass over the sequence
@ very short time for computation on each item

@ very small auxiliary memory: M < N; ideally M = ©(1) or
M = O(logN)

@ no statistical hypothesis on the data

Introduction

There are lots of applications for this data strem model:
@ Network traffic analysis = DoS/DDoS attacks, worms, . ..
@ Database query optimization
@ Information retrieval = similarity index
@ Data mining
@ And many more ...

Introduction

We will often see § as a multiset
{W1 Of1! "'JWT\. Ofn}s

with
f; = frequency of the ith distinct element w;

Introduction

Some typical problems:
@ The cardinality of 8: card(8) =n < N <« This paper

e Frequency moments Fp, = 3 ;i 7
(N.B.n=Fy,N=Fy)

@ The elements w; such that f; > k (k-elephants)

@ The elements w; such that f; < k (k-mice)

@ The elements w; such that f; > ¢N, 0 < ¢ < 1 (c-icebergs)
@ The k most frequent elements

o ...

Introduction

Small auxiliary memory =
Exact solution too costly (or impossible) =
Randomized algorithms =
Estimation { of the quantity y

@ The estimator {j must be unbiased
El=y
@ The estimator must be accurate (small standard error)

SE [] - VYar o

E [I:J] < €,

e.g., € =0.01 (1%)

Probabilistic Counting

G.N. Martin

@ Late in the 70s, G. Nigel N. Martin invents probabilistic
counting, for database query optimization

@ He detects systematic bias in his estimator, he tweaks the
algorithm to correct the bias

Probabilistic Counting

'
s 1 eaid over Mo phone , T chaned wwdns o o
aleothm whian kz’u— \7‘9=th w;ma Cowar dewd wqy;(’.:m;f}m,j e

ol swaaled #jwﬂ[,,,-w / ok dese I fud B gl gﬂg:

awa

Gk %i, powe: fu

Ph. Flajolet

@ When Flajolet learns about the algorithm, he contacts
Martin and they team up to carry out a very detailed

analysis giving the correcting factor and upper bounds for
the standard error

@ Their pioneering work (Flajolet & Martin, JCSS, 1985)
introduces many of the ideas behind the most practical and
successful cardinality estimators

Estimating the cardinality

The first ingredient:

@ Map each item s; to a value in (0, 1) using a hash function*
h:U — (0,1) = reproducible randomness

@ The multiset 8 is mapped to a multiset
8/ :h(S) :{X1 Of1s---sxnofn},

with x; = hash(wi), fi =#o0ofxi’s

@ The set of distinct elements X ={x1,...,xn}isasetofn
independent and uniformly distributed real numbers in
(0,1)

Estimating the cardinality

The first ingredient:

@ Map each item s; to a value in (0, 1) using a hash function*
h:U — (0,1) = reproducible randomness

@ The multiset 8 is mapped to a multiset
S/ :h(S) :{X1 Of‘],...,Xnofn},

with x; = hash(wi), f; =#of xi’s

@ The set of distinct elements X = {x1,...,xn}isasetofn
independent and uniformly distributed real numbers in
(0,1)

*We disregard here collisions: if the hash values have enough bits the
probability of collision can be neglected

Probabilistic Counting
The second ingredient:

@ Define some easily computable observable R which is
insensitive to repetitions, that is, it only depends on the
underlying set of distinct elements:

R =R(8) = R(X)

@ Perform the probabilistic analysis of R for a set X of n
random real numbers. If

En Rl =@(n)

then it is reasonable to assume that the expected value of
@ 1(R) will be close to n; we will need some correcting
factor k to get an (asymptotically) unbiased estimator

En [K(p_1 (R)} —n+lot.

Probabilistic Counting

@ For instance, in Flajolet & Martin’s Probabilistic Counting
the observable R is the length of the longest prefix 0.0% "1
such that all prefixes 0.0%1 appear among the hashed
values, for0 < k <R -1

@ Ris easy to compute and it does not depend on repetitions
En [R] = log,n

and
En [k2%] =n +o(n)

for

. evV2 (4k + 1)(2k + 1

()
K =
3 LA\ 2K(4k+3)

~ 0.77351...

Other estimators

@ LoglLog (Durand, Flajolet, 2003) and HyperLogLog
(Flajolet, Fusy, Gandouet, Meunier, 2007) use bit patterns
in the hash values to estime, like in Probabilistic Counting

@ Order statistics (e.g., the kth smallest in the set of distinct
hash values) have also been used to estimate cardinality:
Bar-Yossef, Kumar & Sivakumar (2002); Bar-Yossef,
Jayram, Kumar, Sivakumar & Trevisan (2002); Giroire
(2005, 2009); Chassaing & Gérin (2006); Lumbroso (2010)

Recordinality

@ RECORDINALITY counts the number of records (more
generally, k-records) in the sequence

@ |t depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators

@ If we assume that the first occurrences of distinct values
form a random permutation then no need for hash values!

Recordinality

@ o(i) is a record of the permutation o if o(i) > o(j) for all
j<i

@ This notion is generalized to k-records: o(i) is a k-record if
there are at most k — 1 elements o(j) larger than o(1i) for
j < i; in other words, o(1) is among the k largest elements
ino(1),...,0(1)

Recordinality

procedure RECORDINALITY(S)
fill T with the first k distinct elements (hash values)
of the stream 8
R+ k
forally € Sdo
x < h(y)
if x >min(T) Ax ¢ T then
R+ R+1;T«+ TU{x}\ min(T)
end if
end for
end procedure

Memory: k hash values (klog n bits) + 1 counter (loglogn bits)

Recordinality

Theorem (Helmi, Martinez and Panholzer)

Let ry, denote the number of k-records in a permutation of size
n. The exact distribution of vy is

n =il ifk >n,
Probn{rv =j}=4¢ 1im—
it Ll I
nlj—k+1

[}] = signless Stirling numbers of the first kind; [P] = 1 if P
true, = 0 otherwise

Recordinality

@ The expected value of ri is klog(n/k) + l.o.t.; it is
reasonable then to assume that for

Z:=kexp(d - k)

we should have E,, [Z] ~ n for some suitable correcting
factor ¢

@ We can use the formula for Prob,, {rx = j} to explictly

compute E,, [Z] and to determine ¢, and then compute the
standard error

Recordinality

Theorem
The RECORDINALITY estimator

1 Tr—k+1
= 1+ — —1
Z:=k (+ k)

is an unbiased estimator of n: E,, [Z] = n.

Recordinality

Theorem

The accuracy of RECORDINALITY, expressed in terms of
standard error, asymptotically satisfies

SE, [Z] ~ (;)‘1‘—1

Recordinality

For practical values of n, even for small k, the estimates may
be significantly concentrated.

For instance, for k = 10, the estimates are within o, 20, 30 of
the exact count in respectively 91%, 96% and 99% of all cases.

k = 64 k =256

500 estimates of cardinality in Shakespare’s A Midsummer Night's Dream; top and bottom lines (5%), centermost
lines (70%); gray area (1 standard deviation)

Other issues

EJ 00 50 ES

Original texts Randomly permuted texts

@ RECORDINALITY does not depend on the hash values, only
the relative ordering = we can avoid using the hash
function, provided the distinct elements appear (for the first
time) in random order

@ We can combine RECORDINALITY with any of the other kth
order statistic estimators since they are independent; we
can get both estimators with a single pass of the
“scanning” algorithm

Other issues

@ The table of kth largest hash values gives us a random
sample of k distinct elements out of the n = distinct
sampling for free

@ If we keep all distinct k-records, not just the k largest
distinct values, we have a random sample of expected size
klog(n/k) = variable-size sampling!

Concluding remarks

@ First (?) application of combinatorics of random
permutations to data stream algorithms

@ Simple and elegant algorithms
@ Nice combinatorics and mathematical analysis

@ Many extensions to explore: sampling, sliding windows,
similarity index,

- W . Y
i”l J’nn”'"f ! uu:ntﬂ:!ﬂ‘:"mInﬂ ﬂ Ud
%m 1) SgboaE nm@ﬁ%
'ﬂlun e rru‘“"l':ll:ilﬂﬂm ‘
[k

hf al .| at

llIu '
)0 ’.-' '

