
Data Streams as Random Permutations: the
Distinct Element Problem

Dedicated to the memory of Philippe Flajolet (1948-2011)

Conrado Martínez,
Univ. Politècnica de Catalunya, Barcelona, Spain

AofA, Montréal, June 2012

Joint work with:

A. Helmi J. Lumbroso A. Viola

Introduction

A data stream is a (very long) sequence

S = s1, s2, s3, . . . , sN

of items si drawn from some (large) domain U, si ∈ U

The goal: to compute y = y(S), but . . .

Introduction

A data stream is a (very long) sequence

S = s1, s2, s3, . . . , sN

of items si drawn from some (large) domain U, si ∈ U

The goal: to compute y = y(S), but . . .

Introduction

. . . there are limitations to our computational power:
a single pass over the sequence
very short time for computation on each item
very small auxiliary memory: M� N; ideally M = Θ(1) or
M = O(logN)

no statistical hypothesis on the data

Introduction

. . . there are limitations to our computational power:
a single pass over the sequence
very short time for computation on each item
very small auxiliary memory: M� N; ideally M = Θ(1) or
M = O(logN)

no statistical hypothesis on the data

Introduction

. . . there are limitations to our computational power:
a single pass over the sequence
very short time for computation on each item
very small auxiliary memory: M� N; ideally M = Θ(1) or
M = O(logN)

no statistical hypothesis on the data

Introduction

. . . there are limitations to our computational power:
a single pass over the sequence
very short time for computation on each item
very small auxiliary memory: M� N; ideally M = Θ(1) or
M = O(logN)

no statistical hypothesis on the data

Introduction

There are lots of applications for this data strem model:
Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
And many more . . .

Introduction

We will often see S as a multiset

{w1 ◦ f1, . . . ,wn ◦ fn},

with
fi = frequency of the ith distinct element wi

Introduction

Some typical problems:
The cardinality of S: card(S) = n 6 N⇐ This paper
Frequency moments Fp =

∑
16i6n f

P
i

(N.B. n = F0,N = F1)

The elements wi such that fi > k (k-elephants)
The elements wi such that fi < k (k-mice)
The elements wi such that fi > cN, 0 < c < 1 (c-icebergs)
The k most frequent elements
. . .

Introduction

Small auxiliary memory⇒
Exact solution too costly (or impossible)⇒

Randomized algorithms⇒
Estimation ŷ of the quantity y

The estimator ŷ must be unbiased

E [ŷ] = y

The estimator must be accurate (small standard error)

SE [ŷ] :=

√
Var [ŷ]
E [ŷ]

< ε,

e.g., ε = 0.01 (1%)

Probabilistic Counting

G.N. Martin

Late in the 70s, G. Nigel N. Martin invents probabilistic
counting, for database query optimization
He detects systematic bias in his estimator, he tweaks the
algorithm to correct the bias

Probabilistic Counting

Ph. Flajolet

When Flajolet learns about the algorithm, he contacts
Martin and they team up to carry out a very detailed
analysis giving the correcting factor and upper bounds for
the standard error
Their pioneering work (Flajolet & Martin, JCSS, 1985)
introduces many of the ideas behind the most practical and
successful cardinality estimators

Estimating the cardinality

The first ingredient:
Map each item si to a value in (0, 1) using a hash function∗

h : U→ (0, 1)⇒ reproducible randomness
The multiset S is mapped to a multiset

S ′ = h(S) = {x1 ◦ f1, . . . , xn ◦ fn},

with xi = hash(wi), fi = # of xi’s
The set of distinct elements X = {x1, . . . , xn} is a set of n
independent and uniformly distributed real numbers in
(0, 1)

Estimating the cardinality

The first ingredient:
Map each item si to a value in (0, 1) using a hash function∗

h : U→ (0, 1)⇒ reproducible randomness
The multiset S is mapped to a multiset

S ′ = h(S) = {x1 ◦ f1, . . . , xn ◦ fn},

with xi = hash(wi), fi = # of xi’s
The set of distinct elements X = {x1, . . . , xn} is a set of n
independent and uniformly distributed real numbers in
(0, 1)

∗We disregard here collisions: if the hash values have enough bits the
probability of collision can be neglected

Probabilistic Counting
The second ingredient:

Define some easily computable observable R which is
insensitive to repetitions, that is, it only depends on the
underlying set of distinct elements:

R = R(S) = R(X)

Perform the probabilistic analysis of R for a set X of n
random real numbers. If

En [R] = ϕ(n)

then it is reasonable to assume that the expected value of
ϕ−1(R) will be close to n; we will need some correcting
factor κ to get an (asymptotically) unbiased estimator

En
[
κϕ−1(R)

]
= n+ l.o.t.

Probabilistic Counting

For instance, in Flajolet & Martin’s Probabilistic Counting
the observable R is the length of the longest prefix 0.0R−11
such that all prefixes 0.0k1 appear among the hashed
values, for 0 6 k 6 R− 1
R is easy to compute and it does not depend on repetitions

En [R] ≈ log2 n

and
En
[
κ2R

]
= n+ o(n)

for

κ−1 =
eγ
√

2
3

∏
k>1

(
(4k+ 1)(2k+ 1)

2k(4k+ 3)

)(−1)ν(k)

≈ 0.77351 . . .

Other estimators

LogLog (Durand, Flajolet, 2003) and HyperLogLog
(Flajolet, Fusy, Gandouet, Meunier, 2007) use bit patterns
in the hash values to estime, like in Probabilistic Counting
Order statistics (e.g., the kth smallest in the set of distinct
hash values) have also been used to estimate cardinality:
Bar-Yossef, Kumar & Sivakumar (2002); Bar-Yossef,
Jayram, Kumar, Sivakumar & Trevisan (2002); Giroire
(2005, 2009); Chassaing & Gérin (2006); Lumbroso (2010)

Recordinality

RECORDINALITY counts the number of records (more
generally, k-records) in the sequence
It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators
If we assume that the first occurrences of distinct values
form a random permutation then no need for hash values!

Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all
j < i

This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements
in σ(1), . . . ,σ(i)

Recordinality

procedure RECORDINALITY(S)
fill T with the first k distinct elements (hash values)
of the stream S

R← k

for all y ∈ S do
x← h(y)
if x > min(T)∧ x 6∈ T then
R← R+ 1; T ← T ∪ {x} \ min(T)

end if
end for

end procedure

Memory: k hash values (k logn bits) + 1 counter (log logn bits)

Recordinality

Theorem (Helmi, Martínez and Panholzer)

Let rk denote the number of k-records in a permutation of size
n. The exact distribution of rk is

Probn {rk = j} =


[[n = j]] if k > n,

kj−k
k!
n!

[
n− k+ 1
j− k+ 1

]
if k 6 j 6 n

[
n
j

]
= signless Stirling numbers of the first kind; [[P]] = 1 if P

true, = 0 otherwise

Recordinality

The expected value of rk is k log(n/k) + l.o.t.; it is
reasonable then to assume that for

Z := k exp(φ · rk)

we should have En [Z] ∼ n for some suitable correcting
factor φ
We can use the formula for Probn {rk = j} to explictly
compute En [Z] and to determine φ, and then compute the
standard error

Recordinality

Theorem
The RECORDINALITY estimator

Z := k

(
1 +

1
k

)rk−k+1

− 1

is an unbiased estimator of n: En [Z] = n.

Recordinality

Theorem

The accuracy of RECORDINALITY, expressed in terms of
standard error, asymptotically satisfies

SEn [Z] ∼

√(n
ke

) 1
k
− 1

Recordinality

For practical values of n, even for small k, the estimates may
be significantly concentrated.
For instance, for k = 10, the estimates are within σ, 2σ, 3σ of
the exact count in respectively 91%, 96% and 99% of all cases.

100 200 300 400 500

0.6

0.8

1.0

1.2

1.4

1.6

1.8

100 200 300 400 500

0.9

1.0

1.1

1.2

1.3

k = 64 k = 256
500 estimates of cardinality in Shakespare’s A Midsummer Night’s Dream; top and bottom lines (5%), centermost

lines (70%); gray area (1 standard deviation)

Other issues

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

Original texts Randomly permuted texts

RECORDINALITY does not depend on the hash values, only
the relative ordering⇒ we can avoid using the hash
function, provided the distinct elements appear (for the first
time) in random order
We can combine RECORDINALITY with any of the other kth
order statistic estimators since they are independent; we
can get both estimators with a single pass of the
“scanning” algorithm

Other issues

The table of kth largest hash values gives us a random
sample of k distinct elements out of the n⇒ distinct
sampling for free
If we keep all distinct k-records, not just the k largest
distinct values, we have a random sample of expected size
k log(n/k)⇒ variable-size sampling!

Concluding remarks

First (?) application of combinatorics of random
permutations to data stream algorithms
Simple and elegant algorithms
Nice combinatorics and mathematical analysis
Many extensions to explore: sampling, sliding windows,
similarity index,

Thanks a lot
for your attention!

