Data Streams as Random Permutations: the Distinct Element Problem

Dedicated to the memory of Philippe Flajolet (1948-2011)

Conrado Martínez,

 Univ. Politècnica de Catalunya, Barcelona, SpainAofA, Montréal, June 2012

Joint work with:

A. Helmi

J. Lumbroso

A. Viola

Introduction

- A data stream is a (very long) sequence

$$
\mathcal{S}=s_{1}, s_{2}, s_{3}, \ldots, s_{N}
$$

of items s_{i} drawn from some (large) domain $\mathcal{U}, s_{i} \in \mathcal{U}$

- The goal: to compute $y=y(\mathcal{S})$, but

Introduction

- A data stream is a (very long) sequence

$$
\mathcal{S}=s_{1}, s_{2}, s_{3}, \ldots, s_{N}
$$

of items s_{i} drawn from some (large) domain $\mathcal{U}, s_{i} \in \mathcal{U}$

- The goal: to compute $y=y(\mathcal{S})$, but \ldots

Introduction

... there are limitations to our computational power:

- a single pass over the sequence
- very short time for computation on each item - very small auxiliary memory: $M \ll N$; ideally $M=\Theta(1)$ or

Introduction

... there are limitations to our computational power:

- a single pass over the sequence
- very short time for computation on each item
- very small auxiliary memory: $M \ll N$; ideally $M=\Theta(1)$ or $M=\mathcal{O}(\log N)$
- no statistical hypothesis on the data

Introduction

... there are limitations to our computational power:

- a single pass over the sequence
- very short time for computation on each item
- very small auxiliary memory: $M \ll N$; ideally $M=\Theta(1)$ or $M=\mathcal{O}(\log N)$
- no statistical hypothesis on the data

Introduction

... there are limitations to our computational power:

- a single pass over the sequence
- very short time for computation on each item
- very small auxiliary memory: $M \ll N$; ideally $M=\Theta(1)$ or $M=\mathcal{O}(\log N)$
- no statistical hypothesis on the data

Introduction

There are lots of applications for this data strem model:

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index
- Data mining
- And many more ...

Introduction

We will often see \mathcal{S} as a multiset

$$
\left\{w_{1} \circ f_{1}, \ldots, w_{n} \circ f_{n}\right\}
$$

with
$f_{i}=$ frequency of the i th distinct element w_{i}

Introduction

Some typical problems:

- The cardinality of \mathcal{S} : $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N} \Leftarrow$ This paper
- Frequency moments $F_{p}=\sum_{1 \leqslant i \leqslant n} f_{i}^{P}$
(N.B. $n=F_{0}, N=F_{1}$)
- The elements w_{i} such that $f_{i} \geqslant k$ (k-elephants)
- The elements w_{i} such that $f_{i}<k$ (k-mice)
- The elements w_{i} such that $f_{i} \geqslant c N, 0<c<1$ (c-icebergs)
- The k most frequent elements
- ...

Introduction

Small auxiliary memory \Rightarrow
Exact solution too costly (or impossible) \Rightarrow
Randomized algorithms \Rightarrow
Estimation \hat{y} of the quantity y

- The estimator \hat{y} must be unbiased

$$
E[\hat{y}]=y
$$

- The estimator must be accurate (small standard error)

$$
\operatorname{SE}[\hat{y}]:=\frac{\sqrt{\operatorname{Var}[\hat{y}]}}{\mathrm{E}[\hat{y}]}<\epsilon,
$$

e.g., $\epsilon=0.01$ (1\%)

Probabilistic Counting

G.N. Martin

- Late in the 70s, G. Nigel N. Martin invents probabilistic counting, for database query optimization
- He detects systematic bias in his estimator, he tweaks the algorithm to correct the bias

Probabilistic Counting

Ph. Flajolet

- When Flajolet learns about the algorithm, he contacts Martin and they team up to carry out a very detailed analysis giving the correcting factor and upper bounds for the standard error
- Their pioneering work (Flajolet \& Martin, JCSS, 1985) introduces many of the ideas behind the most practical and successful cardinality estimators

Estimating the cardinality

The first ingredient:

- Map each item s_{i} to a value in $(0,1)$ using a hash function* $h: \mathcal{U} \rightarrow(0,1) \Rightarrow$ reproducible randomness
- The multiset \mathcal{S} is mapped to a multiset

$$
\mathcal{S}^{\prime}=h(\mathcal{S})=\left\{x_{1} \circ f_{1}, \ldots, x_{n} \circ f_{n}\right\},
$$

with $x_{i}=\operatorname{hash}\left(w_{i}\right), f_{i}=\#$ of x_{i} 's

- The set of distinct elements $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n independent and uniformly distributed real numbers in $(0,1)$

Estimating the cardinality

The first ingredient:

- Map each item s_{i} to a value in $(0,1)$ using a hash function* $h: \mathcal{U} \rightarrow(0,1) \Rightarrow$ reproducible randomness
- The multiset \mathcal{S} is mapped to a multiset

$$
\mathcal{S}^{\prime}=h(\mathcal{S})=\left\{\mathrm{x}_{1} \circ \mathrm{f}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \circ \mathrm{f}_{\mathrm{n}}\right\},
$$

with $x_{i}=\operatorname{hash}\left(w_{i}\right), f_{i}=\#$ of x_{i} 's

- The set of distinct elements $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n independent and uniformly distributed real numbers in $(0,1)$
*We disregard here collisions: if the hash values have enough bits the probability of collision can be neglected

Probabilistic Counting

The second ingredient:

- Define some easily computable observable R which is insensitive to repetitions, that is, it only depends on the underlying set of distinct elements:

$$
R=R(S)=R(X)
$$

- Perform the probabilistic analysis of R for a set X of n random real numbers. If

$$
\mathrm{E}_{\mathrm{n}}[\mathrm{R}]=\varphi(\mathrm{n})
$$

then it is reasonable to assume that the expected value of $\varphi^{-1}(R)$ will be close to n; we will need some correcting factor κ to get an (asymptotically) unbiased estimator

$$
\mathrm{E}_{\mathrm{n}}\left[\kappa \varphi^{-1}(\mathrm{R})\right]=\mathrm{n}+\text { l.o.t. }
$$

Probabilistic Counting

- For instance, in Flajolet \& Martin’s Probabilistic Counting the observable R is the length of the longest prefix $0.0^{R-1} 1$ such that all prefixes $0.0^{\mathrm{k}} 1$ appear among the hashed values, for $0 \leqslant k \leqslant R-1$
- R is easy to compute and it does not depend on repetitions

$$
\mathrm{E}_{\mathrm{n}}[\mathrm{R}] \approx \log _{2} \mathrm{n}
$$

and

$$
E_{n}\left[k 2^{R}\right]=n+o(n)
$$

for

$$
\kappa^{-1}=\frac{e^{\gamma} \sqrt{2}}{3} \prod_{k \geqslant 1}\left(\frac{(4 k+1)(2 k+1)}{2 k(4 k+3)}\right)^{(-1)^{v(k)}} \approx 0.77351 \ldots
$$

Other estimators

- LogLog (Durand, Flajolet, 2003) and HyperLogLog (Flajolet, Fusy, Gandouet, Meunier, 2007) use bit patterns in the hash values to estime, like in Probabilistic Counting
- Order statistics (e.g., the kth smallest in the set of distinct hash values) have also been used to estimate cardinality: Bar-Yossef, Kumar \& Sivakumar (2002); Bar-Yossef, Jayram, Kumar, Sivakumar \& Trevisan (2002); Giroire (2005, 2009); Chassaing \& Gérin (2006); Lumbroso (2010)

Recordinality

- Recordinality counts the number of records (more generally, k-records) in the sequence
- It depends in the underlying permutation of the first occurrences of distinct values, very different from the other estimators
- If we assume that the first occurrences of distinct values form a random permutation then no need for hash values!

Recordinality

- $\sigma(\mathfrak{i})$ is a record of the permutation σ if $\sigma(\mathfrak{i})>\sigma(\mathfrak{j})$ for all $j<i$
- This notion is generalized to k-records: $\sigma(i)$ is a k-record if there are at most $k-1$ elements $\sigma(j)$ larger than $\sigma(i)$ for $\mathfrak{j}<\mathfrak{i}$; in other words, $\sigma(i)$ is among the k largest elements in $\sigma(1), \ldots, \sigma(i)$

Recordinality

procedure REcordinality(S)

fill T with the first k distinct elements (hash values)
of the stream \mathcal{S}
$\mathrm{R} \leftarrow \mathrm{k}$
for all $y \in S$ do

if $x>\min (T) \wedge x \notin T$ then
$R \leftarrow R+1 ; T \leftarrow T \cup\{x\} \backslash \min (T)$
end if
end for
end procedure

Memory: k hash values ($k \log n$ bits) +1 counter ($\log \log n$ bits)

Recordinality

Theorem (Helmi, Martínez and Panholzer)

Let r_{k} denote the number of k-records in a permutation of size n . The exact distribution of r_{k} is

$$
\operatorname{Prob}_{n}\left\{r_{k}=j\right\}= \begin{cases}\llbracket n=j \rrbracket & \text { if } k>n, \\
k^{j-k} \frac{k!}{n!}\left[\begin{array}{l}
n-k+1 \\
j-k+1
\end{array}\right] & \text { if } k \leqslant j \leqslant n\end{cases}
$$

$\left[\begin{array}{c}\mathfrak{n} \\ j\end{array}\right]=$ signless Stirling numbers of the first kind; $\mathbb{P} \rrbracket=1$ if P true, $=0$ otherwise

Recordinality

- The expected value of r_{k} is $k \log (n / k)+$ l.o.t.; it is reasonable then to assume that for

$$
Z:=k \exp \left(\phi \cdot r_{k}\right)
$$

we should have $\mathrm{E}_{\mathrm{n}}[\mathrm{Z}] \sim \mathrm{n}$ for some suitable correcting factor ϕ

- We can use the formula for $\operatorname{Prob}_{n}\left\{r_{k}=j\right\}$ to explictly compute $\mathrm{E}_{\mathrm{n}}[\mathrm{Z}]$ and to determine ϕ, and then compute the standard error

Recordinality

Theorem
The Recordinality estimator

$$
Z:=k\left(1+\frac{1}{k}\right)^{r_{k}-k+1}-1
$$

is an unbiased estimator of $n: E_{n}[Z]=n$.

Recordinality

Theorem
The accuracy of RECORDINALITY, expressed in terms of standard error, asymptotically satisfies

$$
S E_{\mathrm{n}}[Z] \sim \sqrt{\left(\frac{\mathrm{n}}{\mathrm{ke}}\right)^{\frac{1}{k}}-1}
$$

Recordinality

For practical values of n, even for small k, the estimates may be significantly concentrated.
For instance, for $k=10$, the estimates are within $\sigma, 2 \sigma, 3 \sigma$ of the exact count in respectively $91 \%, 96 \%$ and 99% of all cases.

500 estimates of cardinality in Shakespare's A Midsummer Night's Dream; top and bottom lines (5\%), centermost lines (70%); gray area (1 standard deviation)

Other issues

Original texts

Randomly permuted texts

- Recordinality does not depend on the hash values, only the relative ordering \Rightarrow we can avoid using the hash function, provided the distinct elements appear (for the first time) in random order
- We can combine Recordinality with any of the other kth order statistic estimators since they are independent; we can get both estimators with a single pass of the "scanning" algorithm

Other issues

- The table of kth largest hash values gives us a random sample of k distinct elements out of the $n \Rightarrow$ distinct sampling for free
- If we keep all distinct k-records, not just the k largest distinct values, we have a random sample of expected size $k \log (n / k) \Rightarrow$ variable-size sampling!

Concluding remarks

- First (?) application of combinatorics of random permutations to data stream algorithms
- Simple and elegant algorithms
- Nice combinatorics and mathematical analysis
- Many extensions to explore: sampling, sliding windows, similarity index,

