CAIM: Cerca i Anàlisi d’Informació Massiva
FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá
Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~caim
8. Locality Sensitive Hashing
Motivation, I
Find similar items in high dimensions, quickly

Could be useful, for example, in nearest neighbor algorithm. But in a large, high dimensional dataset this may be difficult!
Motivation, II
Hashing is good for checking existence, not nearest neighbors

what is the nearest neighbor of 6?
Motivation, III

Main idea: want hashing functions that map similar objects to nearby positions using *projections*

[FIG1] Two examples showing projections of two close (circles) and two distant (squares) points onto the printed page.
Different types of hashing functions

Perfect hashing

- Provide 1-1 mapping of objects to bucket ids
- Any two different objects mapped to different buckets (no collisions)

Universal hashing

- A family of functions $\mathcal{F} = \{h : U \rightarrow [n]\}$ is called universal if $P[h(x) = h(y)] \leq \frac{1}{n}$ for all $x \neq y$
- i.e. probability of collision for different objects is at most $1/n$

Locality sensitive hashing (lsh)

- Collision probability for similar objects is high enough
- Collision probability for dissimilar objects is low
A family \mathcal{F} is called $(s, c \cdot s, p_1, p_2)$-sensitive if for any two objects x and y we have:

- If $s(x, y) \geq s$, then $P[h(x) = h(y)] \geq p_1$
- If $s(x, y) \leq c \cdot s$, then $P[h(x) = h(y)] \leq p_2$

where the probability is taken over choosing h from \mathcal{F}, and $c < 1$, $p_1 > p_2$
How to use LSH to find nearest neighbor

The main idea

Pick a hashing function h from appropriate family \mathcal{F}

Preprocessing

- Compute $h(x)$ for all objects x in our available dataset

On arrival of query q

- Compute $h(q)$ for query object
- Sequentially check nearest neighbor in “bucket” $h(q)$
Locality sensitive hashing I
An example for bit vectors

- Objects are vectors in \(\{0, 1\}^d \)
- Distances are measured using Hamming distance

\[
d(x, y) = \sum_{i=1}^{d} |x_i - y_i|
\]

- Similarity is measured as nr. of common bits divided by length of vector

\[
s(x, y) = 1 - \frac{d(x, y)}{d}
\]

- For example, if \(x = 10010 \) and \(y = 11011 \), then \(d(x, y) = 2 \) and \(s(x, y) = 1 - 2/5 = 0.6 \).
Consider the following “hashing family”: sample the i-th bit of a vector, i.e. $\mathcal{F} = \{f_i | i \in [d]\}$ where $f_i(x) = x_i$

Then, the probability of collision

$$P[h(x) = h(y)] = s(x, y)$$

(the probability is taken over choosing a random $h \in \mathcal{F}$)

Hence \mathcal{F} is (s, cs, s, cs)-sensitive (with $c < 1$ so that $s > cs$ as required)
Locality sensitive hashing III
An example for bit vectors

- If gap between s and cs is too small (between p_1 and p_2), we can amplify it:
 - By stacking together k hash functions
 - $h(x) = (h_1(x), .., h_k(x))$ where $h_i \in \mathcal{F}$
 - Probability of collision of similar objects decreases to s^k
 - Probability of collision of dissimilar objects decreases even more to $(cs)^k$
 - By repeating the process m times
 - Probability of collision of similar objects increases to $1 - (1 - s)^m$
 - Choosing k and m appropriately, can achieve a family that is $(s, cs, 1 - (1 - s^k)^m, 1 - (1 - (cs)^k)^m)$-sensitive
Locality sensitive hashing IV
An example for bit vectors

Here, $k = 5, m = 3$
Locality sensitive hashing V

An example for bit vectors

Collision probability is $1 - (1 - s^k)^m$
Similarity search becomes...

Pseudocode

Preprocessing

- Input: set of objects \(X \)
- for \(i = 1..m \)
 - for each \(x \in X \)
 - stack \(k \) hash functions and form \(x_i = (h_1(x), .., h_k(x)) \)
 - store \(x \) in bucket given by \(f(x_i) \)

On query time

- Input: query object \(q \)
- \(Z = \emptyset \)
- for \(i = 1..m \)
 - stack \(k \) hash functions and form \(q_i = (h_1(q), .., h_k(q)) \)
 - \(Z_i = \{ \text{objects found in bucket } f(q_i) \} \)
 - \(Z = Z \cup Z_i \)
- Output all \(z \in Z \) such that \(s(q, z) \geq s \)
For objects in \([1..M]^d\)

The idea is to represent each coordinate in unary form

- For example, if \(M = 10\) and \(d = 2\), then \((5, 2)\) becomes \((1111100000, 1100000000)\)

- In this case, we have that the \(L_1\) distance of two points in \([1..M]^d\) is

\[
d(x, y) = \sum_{i=1}^{d} |x_i - y_i| = \sum_{i=1}^{d} d_{Hamming}(u(x), u(y))
\]

so we can concatenate vectors in each coordinate into one single \(dM\) bit-vector

- In fact, one does not need to store these vectors, they can be computed on-the-fly
Generalizing the idea..

- If we have a family of hash functions such that for all pairs of objects x, y

$$P[h(x) = h(y)] = s(x, y) \quad (1)$$

- We can then amplify the gap of probabilities by stacking k functions and repeating m times

- .. and so the core of the problem becomes to find a similarity function s and hash family satisfying (1)
Another example: finding similar sets I
Using the Jaccard coefficient as similarity function

Jaccard coefficient
For pairs of sets x and y from a ground set U (i.e. $x \subseteq U$, $y \subseteq U$) is

$$J(x, y) = \frac{|x \cap y|}{|x \cup y|}$$
Another example: finding similar sets II
Using the Jaccard coefficient as similarity function

Main idea

- Suppose elements in U are ordered (randomly)
- Now, look at the smallest element in each of the sets
- The more similar x and y are, the more likely it is that their smallest element coincides
Another example: finding similar sets III

Using the Jaccard coefficient as similarity function

So, define family of hash functions for Jaccard coefficient:

- Consider a random permutation $r : U \rightarrow [1..|U|]$ of elements in U
- For a set $x = \{x_1, .., x_l\}$, define $h_r(x) = \min_i \{r(x_i)\}$
- Let $\mathcal{F} = \{h_r | r \text{ is a permutation}\}$
- And so: $P[h(x) = h(y)] = J(x, y)$ as desired!

Scheme known as *min-wise independent permutation* hashing, in practice inefficient due to the cost of storing random permutations.