CAIM: Cerca i Anàlisi d’Informació Massiva
FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá
Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~caim
2. Information Retrieval Models
What is an Information Retrieval Model?

We need to clarify:

- A proposal for a *logical view* of documents
 (what info is stored/indexed about each document?),
- a query language
 (what kinds of queries will be allowed?),
- and a notion of relevance
 (how to handle each document, given a query?).
Information Retrieval Models, II

A couple of IR models

Focus for this course:

- **Boolean model,**
 - Boolean queries, exact answers;
 - extension: phrase queries.

- **Vector model,**
 - weights on terms and documents;
 - similarity queries, approximate answers, ranking.
Boolean Model of Information Retrieval

Relevance assumed binary

Documents:
A document is completely identified by the set of terms that it contains.

- Order of occurrence considered irrelevant,
- number of occurrences considered irrelevant

(but a closely related model, called bag-of-words or BoW, does consider relevant the number of occurrences).

Thus, for a set of terms $\mathcal{T} = \{t_1, \ldots, t_T\}$, a document is just a subset of \mathcal{T}.

Each document can be seen as a bit vector of length T, $d = (d_1, \ldots, d_T)$, where

- $d_i = 1$ if and only if t_i appears in d, or, equivalently,
- $d_i = 0$ if and only if t_i does not appear in d.
Queries in the Boolean Model, I
Boolean queries, exact answers

Atomic query:
a single term.
The answer is the set of documents that contain it.

Combining queries:

- OR, AND: operate as union or intersection of answers;
- Set difference, $t_1 \text{ BUTNOT } t_2 \equiv t_1 \text{ AND NOT } t_2$;
- motivation: avoid unmanageably large answer sets.

In Lucene: $+/−$ signs on query terms, Boolean operators.
Queries in the Boolean Model, II
A close relative to propositional logic

Analogy:

- Terms act as propositional variables;
- documents act as propositional models;
- a document is relevant for a term if it contains the term, that is, if, as a propositional model, satisfies the variable;
- queries are propositional formulas (with a syntactic condition of avoiding global negation);
- a document is relevant for a query if, as a propositional model, it satisfies the propositional formula.
Consider 7 documents with a vocabulary of 6 terms:

d1 = one three

d2 = two two three

d3 = one three four five five five

d4 = one two two two two two three six six

d5 = three four four four six

d6 = three three three six six

d7 = four five
Example, II
Our documents in the Boolean model

<table>
<thead>
<tr>
<th></th>
<th>five</th>
<th>four</th>
<th>one</th>
<th>six</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>[0 0 1 0 1 0 1 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_2</td>
<td>[0 0 0 0 1 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_3</td>
<td>[1 1 1 0 1 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_4</td>
<td>[0 0 1 1 1 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_5</td>
<td>[0 1 0 1 1 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_6</td>
<td>[0 0 0 1 1 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_7</td>
<td>[1 1 0 0 0 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Invent some queries and compute their answers!)
Queries in the Boolean Model, III

No ranking of answers

Answers are not quantified:
A document either
- matches the query (is fully relevant),
- or does not match the query (is fully irrelevant).

Depending on user needs and application, this feature may be good or may be bad.
Phrase Queries, I
Slightly beyond the Boolean model

Phrase queries: conjunction plus adjacency

Ability to answer with the set of documents that have the terms of the query consecutively.

- A user querying “Keith Richards” may not wish a document that mentions both Keith Emerson and Emil Richards.
- Requires extending the notion of “basic query” to include adjacency.
Phrase Queries, II
Options to “hack them in”

Options:

- Run as conjunctive query, then doublecheck the whole answer set to filter out nonadjacency cases.

 This option may be very slow in cases of large amounts of “false positives”.

- Keep in the index dedicated information about adjacency of any two terms in a document (e.g. positions).

- Keep in the index dedicated information about a choice of “interesting pairs” of words.
Vector Space Model of Information Retrieval, I

Basis of all successful approaches

- Order of words still irrelevant.
- Frequence is relevant.
- Not all words are equally important.
- For a set of terms $\mathcal{T} = \{t_1, \ldots, t_T\}$, a document is a vector $d = (w_1, \ldots, w_T)$ of floats instead of bits.
- w_i is the weight of t_i in d.
Moving to vector space

- A document is now a vector in IR^T.
- The document collection conceptually becomes a matrix terms \times documents.
 but we never compute the matrix explicitly.
- Queries may also be seen as vectors in IR^T.
The tf-idf scheme
A way to assign weight vector to documents

Two principles:

▶ The more frequent t is in d, the higher weight it should have.

▶ The more frequent t is in the whole collection, the less it discriminates among documents, so the lower its weight should be in all documents.
The tf-idf scheme, II

The formula

A document is a vector of weights

\[d = [w_{d,1}, \ldots, w_{d,i}, \ldots, w_{d,T}] \].

Each weight is a product of two terms

\[w_{d,i} = tf_{d,i} \cdot idf_i. \]

The term frequency term \(tf \) is

\[tf_{d,i} = \frac{f_{d,i}}{\max_j f_{d,j}}, \quad \text{where } f_{d,j} \text{ is the frequency of } t_j \text{ in } d. \]

And the inverse document frequency \(idf \) is

\[idf_i = \log_2 \frac{D}{df_i}, \quad \text{where } D = \text{number of documents} \]

\[\text{and } df_i = \text{number of documents that contain term } t_i. \]
Example, I

\[
\begin{array}{cccccccc}
\text{five} & \text{four} & \text{one} & \text{six} & \text{three} & \text{two} & \text{maxf} \\
\hline
d1 = & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
d2 = & 0 & 0 & 0 & 0 & 1 & 2 & 2 \\
d3 = & 3 & 1 & 1 & 0 & 1 & 0 & 3 \\
d4 = & 0 & 0 & 1 & 2 & 1 & 4 & 4 \\
d5 = & 0 & 3 & 0 & 1 & 1 & 0 & 3 \\
d6 = & 0 & 0 & 0 & 2 & 3 & 0 & 3 \\
d7 = & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
df = \begin{bmatrix} 2 & 3 & 3 & 3 & 6 & 2 \end{bmatrix}
\]
Example, II

\[\text{df} = \begin{bmatrix} 2 & 3 & 3 & 3 & 6 & 2 \end{bmatrix} \]
\[d3 = \begin{bmatrix} 3 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} \]
\[\rightarrow \]
\[d3 = \begin{bmatrix} \frac{3}{3} \log_2 \frac{7}{2} & \frac{1}{3} \log_2 \frac{7}{3} & \frac{1}{3} \log_2 \frac{7}{3} & \frac{0}{3} \log_2 \frac{7}{3} & \frac{1}{3} \log_2 \frac{7}{6} & \frac{0}{3} \log_2 \frac{7}{2} \end{bmatrix} \]
\[= \begin{bmatrix} 1.81 & 0.41 & 0.41 & 0 & 0.07 & 0 \end{bmatrix} \]
\[d4 = \begin{bmatrix} 0 & 0 & 1 & 2 & 1 & 4 \end{bmatrix} \]
\[\rightarrow \]
\[d4 = \begin{bmatrix} \frac{0}{4} \log_2 \frac{7}{2} & \frac{0}{4} \log_2 \frac{7}{3} & \frac{1}{4} \log_2 \frac{7}{3} & \frac{2}{4} \log_2 \frac{7}{3} & \frac{1}{4} \log_2 \frac{7}{6} & \frac{4}{4} \log_2 \frac{7}{2} \end{bmatrix} \]
\[= \begin{bmatrix} 0 & 0 & 0.61 & 1.22 & 0.11 & 3.61 \end{bmatrix} \]
Similarity of Documents in the Vector Space Model

The cosine similarity measure

- “Similar vectors” may happen to have very different sizes.
- We better compare only their directions.
- Equivalently, we normalize them before comparing them to have the same Euclidean length.

\[\text{sim}(d_1, d_2) = \frac{d_1 \cdot d_2}{|d_1||d_2|} = \frac{d_1}{|d_1|} \cdot \frac{d_2}{|d_2|} \]

where

\[v \cdot w = \sum_i v_i \cdot w_i, \text{ and } |v| = \sqrt{v \cdot v} = \sqrt{\sum_i v_i^2}. \]

- Our weights are all nonnegative.
- Therefore, all cosines / similarities are between 0 and 1.
Cosine similarity, Example

\[
d_3 = \begin{bmatrix}
1.81 & 0.41 & 0.41 & 0 & 0.07 & 0
\end{bmatrix}
d_4 = \begin{bmatrix}
0 & 0 & 0.61 & 1.22 & 0.11 & 3.61
\end{bmatrix}
\]

Then
\[
|d_3| = 1.898, \quad |d_4| = 3.866, \quad d_3 \cdot d_4 = 0.26
\]

and \(sim(d_3, d_4) = 0.035 \) (i.e., small similarity).
Query Answering

- Queries can be transformed to vectors too.
- Sometimes, tf-idf weights; often, binary weights.
- $\text{sim}(\text{doc}, \text{query}) \in [0, 1]$.
- Answer: List of documents sorted by decreasing similarity.
- We will find uses for comparing $\text{sim}(d_1, d_2)$ too.