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Abstract. An exponential lower bound for the size of tree-like cutting planes refutations of
a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refu-
tations is proved. This implies an exponential separation between the tree-like versions and the
dag-like versions of resolution and cutting planes. In both cases only superpolynomial separations
were known [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425–467; J. Johannsen, Inform. Pro-
cess. Lett., 67 (1998), pp. 37–41; P. Clote and A. Setzer, in Proof Complexity and Feasible Arith-
metics, Amer. Math. Soc., Providence, RI, 1998, pp. 93–117]. In order to prove these separations,
the lower bounds on the depth of monotone circuits of Raz and McKenzie in [Combinatorica, 19
(1999), pp. 403–435] are extended to monotone real circuits.

An exponential separation is also proved between tree-like resolution and several refinements of
resolution: negative resolution and regular resolution. Actually, this last separation also provides
a separation between tree-like resolution and ordered resolution, and thus the corresponding super-
polynomial separation of [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425–467] is extended.

Finally, an exponential separation between ordered resolution and unrestricted resolution (also
negative resolution) is proved. Only a superpolynomial separation between ordered and unrestricted
resolution was previously known [A. Goerdt, Ann. Math. Artificial Intelligence, 6 (1992), pp. 169–
184].

Key words. resolution, cutting planes proof system, computational complexity, proof complex-
ity, circuit complexity

AMS subject classifications. 03F20, 68Q17, 68T15

PII. S0097539799352474

1. Introduction. The motivation for research on the proof length of proposi-
tional proof systems is double. First, by the work of Cook and Reckhow [10] we know
that the claim that for every propositional proof system there is a class of tautologies
that have no polynomial size proofs is equivalent to NP �= co-NP . This connection
explains the interest in developing combinatorial techniques to prove lower bounds
for proof systems. The second motivation comes from the interest in studying effi-
ciency issues in automated theorem proving. The question is which proof systems
have efficient algorithms to find proofs. Actually, the proof system most widely used
for implementations is resolution or refinements of resolution. Our work is relevant
to both motivations. On one hand, all the separation results of this paper improve
previously known superpolynomial separations to exponential. On the other hand,
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these exponential separations harden the known results showing inefficiency of several
widely used strategies for finding proofs, especially for the resolution system.

Haken [16] was the first to prove exponential lower bounds for unrestricted reso-
lution. He showed that the pigeonhole principle requires exponential size resolution
refutations. Urquhart [28] found another class of tautologies with the same property.
Chvátal and Szemerédi [7] showed that in some sense, almost all classes of tautologies
require exponential size resolution proofs (see [2, 3] for simplified proofs of these re-
sults). These exponential lower bounds are bad news for automated theorem proving,
since they mean that often the time used in finding proofs will be exponentially long
in the size of the tautology, just because the shortest proofs are exponentially long in
the size of the tautology.

Many strategies for finding resolution proofs are described in the literature (see,
e.g., Schöning’s textbook [27]). One commonly used type of strategy is to reduce
the search space by defining restricted versions of resolution that are still complete.
Such restricted forms are commonly referred to as resolution refinements. One par-
ticularly important resolution refinement is tree-like resolution. Its importance stems
from the close relationship between the complexity of tree-like resolution proofs and
the runtime of a certain class of satisfiability testing algorithms, the so-called DLL
Algorithms (cf. [24, 1]). We prove an exponential separation between tree-like reso-
lution and unrestricted resolution (Corollary 4.3), thus showing that finding tree-like
resolution proofs is not an efficient strategy for finding resolution proofs. Until now
only superpolynomial separations were known [29, 8].

We also consider three more of the most commonly used resolution refinements:
negative resolution, regular resolution, and ordered resolution. We show an exponen-
tial separation between tree-like resolution and each one of the above restrictions. (See
Corollary 4.3 for negative resolution and Corollary 4.6 for both regular and ordered
resolution.)

Goerdt [14, 13, 15] gave several superpolynomial separations between unrestricted
resolution and some refinements of resolution; in particular, he gave a superpolynomial
separation between ordered resolution and unrestricted resolution. In this paper we
consider the case of ordered resolution and we improve his separation to exponential.
We prove that a certain conjunctive normal form (CNF) formula requires exponential
size ordered resolution refutations but can be refuted with a polynomial size nega-
tive resolution proof (Corollary 5.7), thus, in particular, showing that unrestricted
resolution can have an exponential speed-up over ordered resolution.

The cutting planes proof system, CP from now on, is a refutation system based
on manipulating integer linear inequalities. Exponential lower bounds for the size
of CP refutations have already been proven. Impagliazzo, Pitassi, and Urquhart
[17] proved exponential lower bounds for tree-like CP. Bonet, Pitassi, and Raz [6]
proved a lower bound for the subsystem CP*, where the coefficients appearing in
the inequalities are polynomially bounded in the size of the formula being refuted.
This is a very important result because all known CP refutations fulfill this property.
Finally, Pudlák [23] and Cook and Haken [9] gave general circuit complexity results
from which exponential lower bounds for CP follow. To this day it is still unknown
whether CP is more powerful than CP*, i.e., whether it produces shorter proofs or
not.

Since there is an exponential speed-up of CP over resolution, it would be nice
to find an efficient algorithm for finding CP proofs and a question to ask is whether
trying to find tree-like CP proofs would be an efficient strategy for finding CP proofs.
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Johannsen [18] gave a superpolynomial separation, with a lower bound of the form
Ω(nlogn), between tree-like CP and dag-like CP. (This was previously known for CP*
from [6].) Here we improve that separation to exponential (Corollary 4.3). This shows
that searching for tree-like proofs is also not a good strategy for finding proofs in CP.

The separation between tree-like and dag-like versions of resolution and CP is
obtained using the technique of the interpolation method introduced by Kraj́ıček
[21]. Closely related ideas appeared previously in the mentioned works that gave
lower bounds for fragments of CP [17, 6]. The interpolation method applied on CP
translates proofs of certain formulas to monotone real circuits (a generalization of
boolean circuits). The translation has two important features. First, it preserves the
size; that is, the size of the circuit is similar to the size of the proof from which the
circuit is built. Second, if the proof is tree-like, the circuit will be also tree-like, i.e.,
a formula. So we can prove size lower bounds for tree-like CP proofs by proving size
lower bounds for monotone real formulas.

In section 3 we prove that a certain boolean function Genn requires exponential
size monotone real formulas. This is a consequence of extending the result of Raz and
McKenzie [25], proving linear depth lower bounds for monotone boolean circuits to
the case of monotone real circuits. We use these circuit complexity lower bounds to
obtain proof complexity lower bounds using the interpolation method.

2. Preliminaries and outline of the paper. In this section we introduce the
notions we use and our main results. We also discuss the structure of the paper and
the dependency among our main results.

2.1. Proof systems. We start by giving a short description of the proof systems
studied in this paper. Most proof systems can be used in a tree-like or dag-like fashion.
In a tree-like proof any line in the proof can be used only once as a premise. Should
the same line be used twice, it must be rederived. A proof system that only produces
tree-like proofs is called tree-like. Otherwise we will call it dag-like, or when nothing
is said it is understood that the system is dag-like.

2.1.1. Resolution. Resolution is a refutation proof system for CNF formulas,
which are represented as sets of clauses, i.e., disjunctions of literals. Clauses that
contain the same literals are considered equal. The only inference rule is the resolution
rule

C ∨x D ∨ x̄
C ∨D

.

That is, from clauses C ∨x and D ∨ x̄ we get clause C ∨D, called the resolvent . We
say that the variable x is eliminated in this resolution step. A resolution refutation
of a set Σ of clauses is a derivation of the empty clause from Σ using the resolution
rule. Resolution is a sound and complete refutation system, i.e., a set of clauses has
a resolution refutation if and only if it is unsatisfiable.

Several refinements of the resolution proof system have been proposed. These
refinements reduce the search space by restricting the choice of pairs of clauses to
which the resolution rule can be applied. In this paper we consider the following
three refinements, all of which are still complete.

1. The regular resolution system: Viewing the refutations as graph, in any path
from the empty clause to any initial clause, no variable is eliminated twice.
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2. The ordered1 resolution system: There exists an ordering of the variables in
the formula being refuted, such that if a variable x is eliminated before a
variable y on any path from an initial clause to the empty clause, then x
is before y in the ordering. As no variable is eliminated twice on any path,
ordered resolution is a restriction of regular resolution.

3. The negative resolution system: To apply the resolution rule, one of the two
clauses must consist of negative literals only.

There is an algorithm (see, e.g., Urquhart [29]) that transforms a tree-like resolu-
tion proof into a possibly smaller regular tree-like resolution proof; therefore, tree-like
resolution proofs of minimal size are regular. This means that from the point of view
of proof complexity, tree-like resolution and tree-like regular resolution are equivalent.

2.1.2. Cutting planes. The CP proof system is a refutation system for CNF
formulas, as resolution is. It works with linear inequalities. The initial clauses are
transformed into linear inequalities. A generic clause

k∨
i=1

pji ∨
m∨
i=1

¬pli

is transformed into a linear inequality

k∑
i=1

pji +

m∑
i=1

(1− pli) ≥ 1.

The CP rules are basic algebraic manipulations, additions of two inequalities, multi-
plication of an inequality by a positive integer, and the following division rule:∑

i∈I aixi ≥ k∑
i∈I

ai
b xi ≥

⌈
k
b

⌉ ,
where b is a positive integer that evenly divides all ai, i ∈ I. A CP refutation of a set E
of inequalities is a derivation of 0 ≥ 1 from the inequalities in E and the axioms x ≥ 0
and −x ≥ −1 for every variable x, using the CP rules. It can be shown that a set of
inequalities has a CP refutation iff it has no {0, 1}-solution. Any assignment satisfying
the original clauses is actually a {0, 1}-solution of the corresponding inequalities,
provided that we assign the numerical value 1 to True and the value 0 to False. It is
easy to translate (see [11]) resolution refutations into CP refutations similar in size to
the original resolution refutations. Moreover, if the resolution refutation is tree-like,
the resulting CP refutation is also tree-like.

2.2. Monotone real circuits. An important part of this paper is concerned
with monotone real circuits, which were introduced by Pudlák [23]. A monotone real
circuit is a circuit of fan-in 2 computing with real numbers where every gate computes
a nondecreasing real function. We require that monotone real circuits output 0 or 1
on every input of 0’s and 1’s only, so that they are a generalization of monotone
boolean circuits. The depth and size of a monotone real circuit are defined as for
boolean circuits. A formula is a circuit in which every gate has at most fan-out 1,
i.e., a tree-like circuit.

1In Goerdt’s paper [13] and in the preliminary version [5] of this paper, this refinement is called
the Davis–Putnam resolution. In the meantime, we have learned that it is better known as the
ordered resolution.
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Pudlák [23], Cook and Haken [9], and Fu [12] gave lower bounds on the size of
monotone real circuits. Rosenbloom [26] showed that they are strictly more power-
ful than monotone boolean circuits, since every slice function can be computed by
a linear-size, logarithmic-depth monotone real circuit, whereas most slice functions
require exponential size general boolean circuits. On the other hand, Jukna [19]
gives a general lower bound criterion for monotone real circuits, and uses it to show
that certain functions in P/poly require exponential size monotone real circuits, and
hence the computing power of monotone real circuits and general boolean circuits is
incomparable.

For a monotone boolean function f , we denote by dR(f) the minimal depth of a
monotone real circuit computing f , and by sR(f) the minimal size of a monotone real
formula computing f .

2.3. Deterministic and real communication complexity. The use of com-
munication complexity as a tool to prove depth lower bounds for monotone circuits
was introduced by Karchmer and Wigderson [20]. They gave an Ω(log2 n) lower bound
on the depth of monotone circuits computing st-connectivity.

Kraj́ıček [22] introduced a notion of real communication complexity, generalizing
ordinary communication complexity, that is suitable to prove depth lower bounds for
monotone real circuits. This was used by Johannsen [18] to extend the depth lower
bound for st-connectivity to monotone real circuits.

Raz and McKenzie [25] proved an Ω(nε) lower bound on the depth of monotone
circuits computing a certain function Genn, which, on the other hand, can be com-
puted by monotone circuits of polynomial size. This gives a strong separation of
the depth and size complexity of monotone circuits. We extend this lower bound to
monotone real circuits, again using the notion of real communication complexity.

2.3.1. Communication complexity. Let R ⊆ X × Y × Z be a multifunction,
i.e., for every pair (x, y) ∈ X × Y , there is a z ∈ Z with (x, y, z) ∈ R. We view such
a multifunction as a search problem, i.e., given input (x, y) ∈ X × Y , the goal is to
find a z ∈ Z such that (x, y, z) ∈ R.

A deterministic communication protocol P over X×Y ×Z specifies the exchange
of information bits between two players, I and II, that receive as inputs, respectively,
x ∈ X and y ∈ Y and finally agree on a value P (x, y) ∈ Z such that (x, y, P (x, y)) ∈ R.
The deterministic communication complexity of R, CC(R), is the number of bits
communicated between players I and II in an optimal protocol for R.

2.3.2. Real communication complexity. A real communication protocol over
X × Y × Z is executed by two players I and II who exchange information by simul-
taneously playing real numbers and then comparing them according to the natural
order of R. This generalizes ordinary deterministic communication protocols in the
following way: in order to communicate a bit, the sender plays this bit, while the
receiver plays a constant between 0 and 1, so that he can determine the value of the
bit from the outcome of the comparison.

Formally, such a protocol P is specified by a binary tree, where each internal node
v is labeled by two functions f Iv : X → R, giving player I’s move, and f IIv : Y → R,
giving player II’s move, and each leaf is labeled by an element z ∈ Z. On input
(x, y) ∈ X×Y , the players construct a path through the tree according to the following
rule:

At node v, if f Iv (x) > f
II
v (y), then the next node is the left son of v

and otherwise the right son of v.
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The value P (x, y) computed by P on input (x, y) is the label of the leaf reached by
this path.

A real communication protocol P solves a search problem R ⊆ X × Y × Z if for
every (x, y) ∈ X × Y , (x, y, P (x, y)) ∈ R holds. The real communication complexity
CCR(R) of a search problem R is the minimal depth of a real communication protocol
that solves R.

For a natural number n, let [n] denote the set {1, . . . , n}. Let f : {0, 1}n → {0, 1}
be a monotone boolean function, let X := f−1(1) and Y := f−1(0), and let the
multifunction Rf ⊆ X × Y × [n] be defined by

(x, y, i) ∈ Rf iff xi = 1 and yi = 0.

The Karchmer–Wigderson game for f is defined as follows. Player I receives an input
x ∈ X and player II an input y ∈ Y . They have to agree on a position i ∈ [n]
such that (x, y, i) ∈ Rf . The Karchmer–Wigderson game for a monotone boolean
function f is also denoted by Rf . As happens with monotone boolean functions
and communication complexity, there is a relation between the real communication
complexity of Rf and the depth of monotone real circuits (and the size of a monotone
real formulas) computing f .

Lemma 2.1 (see Kraj́ıček [22]). Let f be a monotone boolean function. Then

1. CCR(Rf ) ≤ dR(f);
2. CCR(Rf ) ≤ log3/2 sR(f).

For a proof see [22] or [18]. Notice that by Lemma 2.1 a linear lower bound for
the real communication complexity of Rf gives an exponential lower bound for the
size of the smallest monotone real formula computing f .

2.4. DART games and structured protocols. Raz and McKenzie [25] in-
troduced a special kind of communication games, called DART games, and a special
class of communication protocols, the structured protocols, for solving them.

For m, k ∈ N, DART(m, k) is the set of communication games specified by a
relation R ⊆ X × Y × Z such that the following hold.

• X = [m]k; i.e., the inputs for player I are k-tuples of elements xi ∈ [m].
• Y = ({0, 1}m)k; i.e., the inputs for player II are k-tuples of binary colorings
yi of [m].

• For all i = 1, . . . , k let ei = yi(xi) ∈ {0, 1} (i.e., the xi-th bit in the m-bits
string yi). The relation R ⊆ X × Y × Z defining the game only depends on
e1, . . . , ek and z, i.e., we can describe R(x, y, z) as R((e1, . . . , ek), z).

• R((e1, . . . , ek), z) can be expressed as a disjunctive normal form (DNF)-
search-problem, i.e., there exists a DNF-tautology FR defined over the vari-
ables e1, . . . , ek such that Z is the set of terms of FR, and R((e1, . . . , ek), z)
holds iff the term z is satisfied by the assignment (e1, . . . , ek).

A structured protocol for a DART game is a communication protocol for solving
the search problem R, where player I gets input x ∈ X, player II gets input y ∈ Y ,
and in each round, player I reveals the value xi for some i, and II replies with yi(xi).
The structured communication complexity of R ∈ DART(m, k), denoted by SC(R),
is the minimal number of rounds in a structured protocol solving R. In [25] it was
proved that CC(R) = SC(R) · Ω(logm) for R ∈ DART(m, k). We generalize this
result to real communication complexity, proving

CCR(R) = SC(R) · Ω(logm).
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Observe that at each structured round the two players transmit �logm�+1 bits. The
first player transmits a number in [m] and the second answers with a bit. Since both
players know the structure of the protocol for the game, at each round they both
know the coordinate i of the inputs they are talking about and they have no need to
transmit it. So for a DART game R we have CCR(R) ≤ SC(R) · Ω(logm).

Proving the opposite inequality, which is one of our main results, is much harder.
In Theorem 3.4 we show that for every relation R ∈ DART(m, k), where m ≥ k14,
CCR(R) ≥ SC(R) · Ω(logm).

2.5. The interpolation method. The separations between tree-like CP (re-
spectively, tree-like resolution) and CP (resolution) are among our main results about
proof complexity. The lower bound part of the separation is obtained employing the
following theorem which relates the size of CP refutations with size of monotone real
circuits.

Theorem 2.2 (see Pudlák [23]). Let $p, $q, $r be disjoint vectors of variables, and
let A($p, $q) and B($p, $r) be sets of inequalities in the indicated variables such that the
variables $p either have only nonnegative coefficients in A($p, $q) or have only nonpositive
coefficients in B($p, $r).

Suppose there is a CP refutation P of A($p, $q)∪B($p, $r). Then there is a monotone
real circuit C($p) of size O(|P |) such that for any vector $a ∈ {0, 1}|�p|

C($a) = 0 → A($a, $q) is unsatisfiable,

C($a) = 1 → B($a, $r) is unsatisfiable.

Furthermore, if P is tree-like, then C($p) is a monotone real formula.
The fact that the interpolant C($p) is a monotone real formula if the refutation is

tree-like is not stated explicitly in [23], but it can be checked easily by analyzing the
original proof of Theorem 2.2 in [23].

We use this theorem to get lower bounds for CP refutations from lower bounds
for monotone real formulas. Recall that a minterm (respectively, a maxterm) of a
boolean function f : {0, 1}n → {0, 1} is a set of inputs x ∈ {0, 1}n such that f(x) = 1
(respectively, f(x) = 0) and for each y ∈ {0, 1}n obtained from x by changing a
bit from 1 to 0 (respectively, by changing a bit from 0 to 1) it holds that f(y) = 0
(respectively, f(y) = 1).

For a certain boolean function f we will apply Theorem 2.2 to a CNF formula
A($p, $q) ∪ B($p, $r) such that A($p, $q) will encode that $p is a minterm of f and B($p, $r)
will encode that $p is maxterm of f . Clearly the formula is unsatisfiable. Using the
interpolation theorem, from any tree-like CP refutation of A($p, $q)∪B($p, $r) we will get
an interpolant which is a monotone real formula computing f . Therefore if we prove
exponential lower bounds for the size of the tree-like monotone real circuits computing
f , we immediately obtain an exponential lower bound for tree-like CP refutations for
A($p, $q) ∪B($p, $r). The same result also holds for tree-like resolution.

To get the separation results we need a monotone boolean function with some
nice properties, namely,

1. exponential lower bounds for monotone real formulas computing the function,
and

2. the corresponding A($p, $q) ∪ B($p, $r) formula must have polynomial-size reso-
lution (and, therefore, also CP) refutations.

The chosen monotone boolean function f is the function Genn : {0, 1}n3 → {0, 1}
considered by Raz and McKenzie [25]. The input bits are called ta,b,c for a, b, c ∈ [n].
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The function is defined as follows: Genn(t111 · · · tnnn) = 1 iff � n, where for c ∈ [n],
� c (meaning c is generated) is defined recursively by

� c iff c = 1 or there are a, b ≤ n with � a , � b, and ta,b,c = 1 .

From now on we will write a, b � c for ta,b,c = 1.
To get the exponential separation the task to be done is as follows.
1. Prove exponential lower bounds for the size of monotone real formulas com-

puting Genn.
2. Find CNF formulas A($p, $q) and B($p, $r) expressing, respectively, a minterm

and a maxterm of Genn.
3. Show polynomial size resolution (and CP) refutations for A($p, $q) ∪B($p, $r).

In section 3 we will show, among other things, that CCR(RGenn) ≥ Ω(nε) for
some ε > 0. From this, it follows by part 2 of Lemma 2.1 that sR(Genn) ≥ 2Ω(nε);
thus task 1 is achieved. Tasks 2 and 3 will be developed in section 4.

3. Lower bounds for real communication complexity. In this section we
prove an Ω(nε) lower bound for the real communication complexity of the Karchmer–
Wigderson game associated to Genn, denoted by RGenn

.
Theorem 3.1. For some ε > 0 and sufficiently large n

CCR(RGenn) ≥ Ω(nε).

To prove Theorem 3.1 we define a DART game PyrGen(m, d) in section 3.1
related to the Genn function. This game is used with parameters m = d28 and
n =

(
d+1
2

)
m + 2, so that d ≈ n1/30. Then we will prove the following results from

which Theorem 3.1 directly follows:

SC(PyrGen(m, d)) ≥ d (Lemma 3.2),

CCR(PyrGen(m, d)) ≥ SC(PyrGen(m, d)) Ω(logm) (Theorem 3.4),

CCR(RGenn) ≥ CCR(PyrGen(m, d)) (Lemma 3.3).

Lemma 3.2 is proved in [25]; therefore, we omit its proof. Theorem 3.4 is proved in
section 3.2 for any DART game R. Lemma 3.3 is proved in section 3.1. In section 3.3
we deduce some lower bounds for monotone real circuits from these results.

3.1. The pyramidal generation game. For d ∈ N, let

Pyrd := { (i, j) : 1 ≤ j ≤ i ≤ d } .
Following [25], a communication game in DART (m,

(
d+1
2

)
) called PyrGen(m, d) is

defined as follows. We regard the indices as elements of Pyrd, so that the inputs for
the two players I and II in the PyrGen(m, d) game are, respectively, sequences of
elements xi,j ∈ [m] and yi,j ∈ {0, 1}m with (i, j) ∈ Pyrd, and we picture these as laid
out in a pyramidal form with (1, 1) at the top and (d, j), 1 ≤ j ≤ d, at the bottom.
The goal of the game is to find either an element colored 0 at the top of the pyramid,
or an element colored 1 at the bottom of the pyramid, or an element colored 1 with
the two elements below it colored 0. That is, we have to find indices (i, j) such that
one of the following holds:

1. i = j = 1 and y1,1(x1,1) = 0, or
2. yi,j(xi,j) = 1 and yi+1,j(xi+1,j) = 0 and yi+1,j+1(xi+1,j+1) = 0, or
3. i = d and yd,j(xd,j) = 1.
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Observe that, setting ei,j = yi,j(xi,j) for 1 ≤ j ≤ i ≤ d, this search problem can be
defined as a DNF-search-problem given by the following DNF-tautology:

ē1,1 ∨
∨

1≤j≤i≤d−1

(ei,j ∧ ēi+1,j ∧ ēi+1,j+1) ∨
∨

1≤j≤d
ed,j .

Therefore, PyrGen(m, d) is a game in DART(m,
(
d+1
2

)
).

A lower bound on the structured communication complexity of PyrGen(m, d)
was proved in [25].

Lemma 3.2 (see Raz and McKenzie [25]). SC(PyrGen(m, d)) ≥ d.
The following reduction shows that the real communication complexity of

the game PyrGen(m, d) is bounded by the real communication complexity of the
Karchmer–Wigderson game for Genn (denoted by RGenn

) for a suitable n. The proof
is taken from [25]. It is included because it can help the reader to understand other
parts of this paper.

Lemma 3.3. Let d,m ∈ N and let n := m · (d+1
2

)
+ 2. Then

CCR(PyrGen(m, d)) ≤ CCR(RGenn
).

Proof. We prove that any protocol solving the Karchmer–Wigderson game for
Genn can be used to solve the PyrGen(m, d) game. Recall that PyrGen(m, d) is
a DART(m,

(
d+1
2

)
) game, so the two players I and II receive inputs, respectively, of

the form (x1,1, . . . , xd,d), where xi,j ∈ [m] for all (i, j) ∈ Pyrd and (y1,1, . . . , yd,d),
where yi,j ∈ {0, 1}m for all (i, j) ∈ Pyrd.

From their respective inputs for the PyrGen(m, d) game, players I and II com-
pute, respectively, a minterm txa,b,c and a maxterm tya,b,c, for Genn, and then they
play the Karchmer–Wigderson game applying the protocol P .

As in [25] we consider fixed the element 1 as a bottom generator and the element
n as the element we want to generate. We interpret the remaining n − 2 =

(
d+1
2

)
m

elements between 2 and n− 1 as triples (i, j, k), where (i, j) ∈ Pyrd and k ∈ [m].
Now player I computes from his input (x1,1, . . . , xd,d) an input txa,b,c for Genn

such that Genn(t
x
a,b,c) = 1 by setting the following (recall that a, b � c means ta,b,c =

1):

1, 1 � gd,j for 1 ≤ j ≤ d,
g1,1, g1,1 � n,
gi+1,j , gi+1,j+1 � gi,j for (i, j) ∈ Pyrd−1,

where gi,j := (i, j, xi,j) ∈ {2, . . . , n − 1} and all the other bits txa,b,c = 0. This
completely determines txa,b,c, and obviously Genn(t

x
a,b,c) = 1 since we have forced a

generation of n (in a pyramidal form).
Likewise, player II computes from his input (y1,1, . . . , yd,d) a coloring col of the

elements from [n] by setting col(1) = 0, col(n) = 1, and col((i, j, k)) = yi,j(k) (the kth
bit of y(i,j)). From this coloring, he computes an input tya,b,c by setting tya,b,c = 1 iff it

is not the case that col(c) = 1 and col(a) = col(b) = 0. Obviously, Genn(t
y
a,b,c) = 0.

Running the protocol for the Karchmer–Wigderson game for Genn now yields a
triple (a, b, c) such that txa,b,c = 1 and tya,b,c = 0. By definition of ty, this means that
col(a) = col(b) = 0 and col(c) = 1, and by definition of tx one of the following cases
must hold.

• a = b = 1 and c = gd,j for some j ≤ d. By definition of col, yd,j(xd,j) = 1.
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• c = n and a = b = g1,1. In this case, y1,1(x1,1) = 0.
• a = gi+1,j , b = gi+1,j+1, and c = gi,j . Then we have yi,j(xi,j) = 1, and
yi+1,j(xi+1,j) = yi+1,j+1(xi+1,j+1) = 0.

In either case, the players have solved PyrGen(m, d) without any additional com-
munication.

3.2. Relation between structured complexity and real communication
complexity. We prove here the following general theorem for DART games.

Theorem 3.4. Let m, k ∈ N. For every relation R ∈ DART(m, k), where
m ≥ k14,

CCR(R) ≥ SC(R) · Ω(logm) .

We first need some combinatorial notions from [25] and some lemmas. Let A ⊆
[m]k and 1 ≤ j ≤ k. For x ∈ [m]k−1, let degj(x,A) be the number of ξ ∈ [m] such
that (x1, . . . , xj−1, ξ, xj , . . . , xk−1) ∈ A. Then we define

A[j] :=
{
x ∈ [m]k−1 : degj(x,A) > 0

}
,

AVDEGj (A) :=
|A|

|A[j]| ,

MINDEGj (A) := min
x∈A[j]

degj(x,A),

Thickness(A) := min
1≤j≤k

MINDEGj (A) .

The following lemmas about these notions were proved in [25].
Lemma 3.5 (see [25]). For every A′ ⊆ A and 1 ≤ j ≤ k,

AVDEGj (A
′) ≥ |A′|

|A| AVDEGj (A),(3.1)

Thickness(A[j]) ≥ Thickness(A).(3.2)

Lemma 3.6 (see [25]). Let 0 < δ < 1 be given. If for every 1 ≤ j ≤ k,
AVDEGj (A) ≥ δm, then for every α > 0 there is A′ ⊆ A with |A′| ≥ (1− α)|A| and

Thickness(A′) ≥ αδm
k
.

In particular, setting α = 1
2 and δ = 4m− 1

14 , we get the following corollary.

Corollary 3.7. If m ≥ k14 and for every 1 ≤ j ≤ k, AVDEGj (A) ≥ 4m
13
14 ,

then there is A′ ⊆ A with |A′| ≥ 1
2 |A| and Thickness(A) ≥ m 11

14 .
For a relation R ∈ DART(m, k), A ⊆ X and B ⊆ Y , let CCR(R,A,B) be the

real communication complexity of R restricted to A×B.
Definition 3.8 ((α, β, 3)-game). Let m ∈ N, m ≥ k14. Let A ⊆ X and B ⊆ Y .

A triple (R,A,B) is called an (α, β, 3)-game if the following conditions hold:
1. R ∈ DART(m, k),
2. SC(R) ≥ 3,
3. |A| ≥ 2−α|X| and |B| ≥ 2−β |Y |,
4. Thickness(A) ≥ m 11

14 .
The following lemma and its proof are slightly different from the corresponding

lemma in [25], because we use the strong notion of real communication complexity
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where [25] uses ordinary communication complexity. The modification we apply is
analogous to that introduced by Johannsen [18] to improve the result of Karchmer
and Wigderson [20] to the case of real communication complexity. This modification
will affect the proof of the first point of the next lemma. We include a proof of the
second part for completeness.

Lemma 3.9. For every α, 3 ≥ 0 and 0 ≤ β ≤ m
1
7 , m ≥ 100014, and every

(α, β, 3)-game (R,A,B),

1. if for every 1 ≤ j ≤ k, AVDEGj (A) ≥ 8m
13
14 , then there is an (α+2, β+1, 3)-

game (R′, A′, B′) with

CCR(R
′, A′, B′) ≤ CCR(R,A,B)− 1;

2. if 3 ≥ 1 and for some 1 ≤ j ≤ k, AVDEGj (A) < 8m
13
14 , then there is an

(α+ 3− logm
14 , β + 1, 3− 1)-game (R′, A′, B′) with

CCR(R
′, A′, B′) ≤ CCR(R,A,B) .

Proof (proof of Lemma 3.9 (part 1)). Let (R,A,B) be an (α, β, 3)-game. First we
show that CCR(R,A,B) �= 0. Assume by contradiction that CCR(R,A,B) = 0. Then
the players have no need to transmit information to solve R. This means that the
answer to the game is implicit in the domain A×B and, therefore, by requirement (4)
of DART games there is a term in the DNF-tautology FR defining R that is satisfied
for every (x, y) ∈ A × B. Therefore, there is at least a coordinate j, 1 ≤ j ≤ k,
such that yj(xj) is constant (i.e., is always 0 or always 1). If γ denotes the number of
possible different values of xj in elements of A, then this implies that |B| ≤ 2mk−γ . On
the other hand, |B| ≥ 2mk−β , and hence it follows that β ≥ γ, which is a contradiction

since β ≤ m 1
7 , whereas AVDEGj (A) ≥ 8m

13
14 implies γ ≥ 8m

13
14 .

Let an optimal real communication protocol solving R restricted to A × B be
given. For a ∈ A and b ∈ B, let ρa and σb be the real numbers played by I and II
in the first round on input a and b, respectively. Without loss of generality we can
assume that these are |A|+ |B| pairwise distinct real numbers.

Now consider a {0, 1}-matrix of size |A| × |B| with columns indexed by the ρa
and rows indexed by the σb, both in increasing order, and where the entry in position
(ρa, σb) is 1 if ρa > σb and 0 if ρa ≤ σb. Thus this entry determines the outcome of the
first round, when these numbers are played. It is now obvious that either the upper
right quadrant or the lower left quadrant must form a monochromatic rectangle.

Hence there are A◦ ⊆ A and B′ ⊆ B with |A◦| ≥ 1
2 |A| and |B′| ≥ 1

2 |B| such that
R restricted to A◦ × B′ can be solved by a protocol with one round fewer than the
original protocol. This means that CCR(R,A

◦, B′) ≤ CCR(R,A,B)− 1. By (3.1) of

Lemma 3.5, AVDEGj (A
◦) ≥ 4m

13
14 for every 1 ≤ j ≤ k; hence by Corollary 3.7 there

is A′ ⊆ A◦ with |A′| ≥ 1
2 |A◦| ≥ 1

4 |A| and Thickness(A′) ≥ m 11
14 . Thus (R,A′, B′) is

an (α + 2, β + 1, 3)-game; moreover, since A′ ⊆ A◦, we have that CCR(R,A
′, B′) ≤

CCR(R,A
◦, B′), from which the lemma follows.

(Part 2). We proceed like in the proof of the corresponding lemma of [25], with the
numbers slightly adjusted. Assume without loss of generality that k is the coordinate
for which AVDEGk (A) < 8m

13
14 . Let R0 and R1 be the restrictions of R in which the

kth coordinate ek = yk(xk) is fixed to 0 and 1, respectively. Obviously, R0 and R1

are DART(m, k − 1) relations, and therefore at least one of SC(R0) and SC(R1) is
at least 3− 1. Assume without loss of generality that SC(R0) ≥ 3− 1. We will prove
that there are two sets A′ ⊆ [m]k−1 and B′ ⊆ ({0, 1}m)k−1 such that the following
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properties hold:

|A′| ≥ mk−1

2α+3− log m
14

,(3.3)

|B′| ≥ 2m(k−1)

2β+1
,(3.4)

Thickness(A′) ≥ m 11
14 ,(3.5)

CCR(R0, A
′, B′) ≤ CCR(R,A,B).(3.6)

This means that there is an (α + 3 − logm
14 , β + 1, 3 − 1)-game (R0, A

′, B′) such that
CCR(R0, A

′, B′) ≤ CCR(R,A,B) and this proves part 2 of Lemma 3.9.
Given any set U ⊂ [m], consider the sets AU ⊆ [m]k−1 and BU ⊆ ({0, 1}m)k−1

associated to the set U by the following definition of [25]:
• (x1, . . . xk−1) ∈ AU iff there is an u ∈ U such that (x1, . . . xk−1, u) ∈ A;
• (y1, . . . yk−1) ∈ BU iff there is a w ∈ {0, 1}m such that w(u) = 0 for all u ∈ U
and (y1, . . . yk−1, w) ∈ B.

The following two claims can be proved exactly as the corresponding claims of [25]
and we omit their proof.

Claim 3.10. For a random set U of size m
5
14 , with m ≥ 100014, we have that

ProbU
[
AU = A[k]

] ≥ 3

4
.

Claim 3.11. For a random set U of size m
5
14 , with m ≥ 100014, we have that

ProbU

[
|BU | ≥ |B|

2m+1

]
≥ 3

4
.

Moreover, it is immediate to see that the same reduction used in Claim 6.3 of [25] also
works for the case of real communication complexity. Therefore, we get the following
claim.

Claim 3.12. For every set U ⊂ [m],

CCR(R0, AU , BU ) ≤ CCR(R,A,B) .

Take a random set U which, with probability greater than 1
2 , satisfies both the

properties of Claim 3.10 and Claim 3.11, and define A′ := AU and B′ := BU . This

means that with probability at least 1
2 both A′ = A[k] and |B′| ≥ |B|

2m+1 hold.

Recall that |A|
|A′| =

|A|
|A[k]| = AVDEGk (A) and that, by hypothesis on part 2 of the

lemma |AVDEGk (A)| ≤ 8m
13
14 . Therefore, we have that

|A′| ≥ |A|
8m

13
14

≥ mk

2α8m
13
14

=
mk−1

2α+3− log m
14

.

This proves (3.3). For (3.4) observe that by Claim 3.11 we have

|B′| ≥ |B|
2m+1

≥ 2mk

2β2m+1
=

2m(k−1)

2β+1
.

The property (3.5) follows directly from Lemma 3.5 (3.2), and finally (3.6) follows
from Claim 3.12.



1474 M. BONET, J. ESTEBAN, N. GALESI, AND J. JOHANNSEN

3.2.1. Proof of Theorem 3.4.

Proof. Let k ∈ N, k ≥ 1000. We prove that for any α, β, 3,m ≥ 0, with β ≤ m1/7,
3 ≥ 1, and m ≥ k14, every (α, β, 3)-game (R,A,B) is such that

CCR(R,A,B) ≥ 3 ·
(
logm

42
− 4

3

)
− α+ β

3
.(3.7)

Observe that by the definition of an (α, β, 3)-game, when α = β = 0 we have that
A = X and B = Y . Therefore, CCR(R,A,B) = CCR(R). Moreover, the right side of
(3.7) reduces to 3 · Ω(logm). Since by the same definition 3 ≤ SC(R) for α = β = 0
we get the claim of the theorem:

CCR(R) ≥ SC(R) · Ω(logm).

To prove (3.7), we proceed by induction on 3 ≥ 1 and β ≤ m1/7. In the base case

3 < 1 (that is, 3 = 0) and β > m
1
7 , the inequality (3.7) is trivial, since the right-hand

side gets negative for large m. In the inductive step consider (R,A,B) as an (α, β, 3)-
game, and assume that (3.7) holds for all (α′, β′, 3′)-games with 3′ ≤ 3 and β′ > β.
For the sake of contradiction, suppose that CCR(R,A,B) < 3 · ( logm

42 − 4
3 ) − α+β

3 .

Then either for every 1 ≤ j ≤ k, AVDEGj (A) ≥ 8m
13
14 , and Lemma 3.9 gives an

(α+ 2, β + 1, 3)-game (R′, A′, B′) with

CCR(R
′, A′, B′) ≤ CCR(R,A,B)− 1

< 3 ·
(
logm

42
− 4

3

)
− (α+ 2) + (β + 1)

3
,

or for some 1 ≤ j ≤ k, AVDEGj (A) < 8m
13
14 , and Lemma 3.9 gives an (α + 3 −

logm
14 , β + 1, 3− 1)-game (R′, A′, B′) with

CCR(R
′, A′, B′) < 3 ·

(
logm

42
− 4

3

)
− α+ β

3

= (3− 1) ·
(
logm

42
− 4

3

)
− (α+ 3− logm

14 ) + (β + 1)

3
,

both contradicting the assumption.

3.3. Consequences for monotone real circuits. As a first corollary to Theo-
rem 3.4, we observe that for DART games, real communication protocols are no more
powerful than deterministic communication protocols.

Corollary 3.13. Let m, k ∈ N. For R ∈ DART(m, k) with m ≥ k14,

CCR(R) = Θ(CC(R)) .

Proof. CC(R) ≥ CCR(R) ≥ SC(R) · Ω(logm) ≥ Ω(CC(R)).

From Theorem 3.1 we obtain consequences for monotone real circuits analogous
to those obtained in [25] for monotone boolean circuits. An immediate consequence
of Theorem 3.1 and Lemma 2.1 is the following theorem.

Theorem 3.14. Any tree-like monotone real circuit computing the boolean func-
tion Genn must have size 2Ω(nε) for some ε > 0.
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Definition 3.15 (pyramidal generation). Let $t be an input to Genn. We say
that n is generated in a depth d pyramidal fashion by $t if there is a mapping m :
Pyrd → [n] such that the following hold (recall that a, b � c means ta,b,c = 1):

1, 1 � m(d, j) for every j ≤ d,
m(i+ 1, j),m(i+ 1, j + 1) � m(i, j) for every (i, j) ∈ Pyrd−1,

m(1, 1),m(1, 1) � n.

We can obtain an analogue of Theorem 3.14 also for the simpler case in which
the generation is restricted to be only in a pyramidal form.

Corollary 3.16. Every monotone real formula that outputs 1 on every input to
Genn for which n is generated in a depth d pyramidal fashion, and outputs 0 on all
inputs where Genn is 0, has to be of size Ω(2n

ε

) for some ε > 0.
Proof. To simplify, let Pyrgenn be any monotone boolean function that outputs 1

on every input to Genn for which n is generated in a depth d pyramidal fashion, and
outputs 0 on all inputs where Genn is 0. Note that there are many such functions,
since the output is not specified in the case where n can be generated, but not in
a depth d pyramidal fashion. Observe that in Lemma 3.3, player I builds from his
input an input for Genn which enforces a depth d pyramidal generation. So the proof
of Lemma 3.4 also shows that CCR(PyrGen(m, d)) ≤ CCR(RPyrgenn). Lemma 3.2
and Theorem 3.4 then imply that CCR(RPyrgenn) ≥ Ω(nε) for some ε > 0. Finally,
Lemma 2.1 gives the statement of the corollary.

The other consequences drawn from Theorem 3.4 and Lemma 3.2 in [25] apply to
monotone real circuits as well, e.g., we just state without proof the following result.

Theorem 3.17. There are constants 0 < ε, γ < 1 such that for every function
d(n) ≤ nε, there is a family of monotone functions fn : {0, 1}n → {0, 1} that can be
computed by monotone boolean circuits of size nO(1) and depth d(n), but cannot be
computed by monotone real circuits of depth less than γ · d(n).

The method also gives a simpler proof of the lower bounds in [18] in the same
way that [25] simplifies the lower bound of [20].

4. Separation between tree-like and dag-like versions of resolution and
cutting planes. We will define an unsatisfiable CNF formula Gen($p, $q) ∧ Col($p, $r)
that fulfills the assumptions of Theorem 2.2, so any CP refutation of it can be trans-
formed into a monotone real circuit, and any tree-like CP refutation into a monotone
real formula. This circuit (or formula) is similar in size to the original CP refuta-
tion. We will show that it computes a boolean function related to Genn: It out-
puts 1 if n is generated in a pyramidal way, so the exponential size lower bound in
Corollary 3.16 implies an exponential size lower bound for tree-like CP refutations
of Gen($p, $q) ∧ Col($p, $r). Besides, we give a polynomial size resolution refutation of
Gen($p, $q)∧Col($p, $r). As CP polynomially simulates resolution, we get the separation
between tree-like CP and CP; in fact, we also get a separation of tree-like resolution
from resolution.

Let n and d be natural numbers whose values are to be fixed. Recall that the
set Pyrd is { (i, j) : 1 ≤ j ≤ i ≤ d }. The vector $p, that is, the variables pa,b,c for
a, b, c ∈ [n], represent the input to Genn.

The set of clauses Gen($p, $q) is designed to be satisfiable if in the input $p, n is
generated in a depth d pyramidal fashion. To this end, the variables qi,j,a for (i, j) ∈
Pyrd and a ∈ [n] encode a mapping m : Pyrd → [n] as in the definition of pyramidal
generation in section 3.15, where qi,j,a is intended to express that m(i, j) = a.
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On the other hand, the set of clauses Col($p, $r) is designed to be satisfiable if for
the input $p, Genn($p) = 0. To achieve this, the variables ra for a ∈ [n] encode a
coloring of the elements of [n] such that element 1 is colored 0, element n is colored
1, and the elements colored 0 are closed under generation, i.e., if a and b are colored
0 and a, b � c, then c is also colored 0.

The set Gen($p, $q) is given by (4.1)–(4.4), and Col($p, $r) by (4.5)–(4.7).∨
1≤a≤n

qi,j,a for (i, j) ∈ Pyrd,(4.1)

q̄d,j,a ∨ p1,1,a for 1 ≤ j ≤ d and a ∈ [n],(4.2)

q̄1,1,a ∨ pa,a,n for a ∈ [n],(4.3)

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ pa,b,c for (i, j) ∈ Pyrd−1 and a, b, c ∈ [n],(4.4)

p̄1,1,a ∨ r̄a for a ∈ [n],(4.5)

p̄a,a,n ∨ ra for a ∈ [n],(4.6)

ra ∨ rb ∨ p̄a,b,c ∨ r̄c for a, b, c ∈ [n].(4.7)

Obviously, Gen($p, $q) ∧ Col($p, $r) is unsatisfiable. Observe that the variables $p occur
only positively in Gen($p, $q) and only negatively in Col($p, $r); thus Theorem 2.2 yields
an interpolating monotone real formula C($p).

Now if, for a assignment $t to the variables $p, n is generated in a depth d pyra-
midal fashion, then Gen($t, $q) is satisfiable by setting the values of the variables qi,j,a
according to the mapping m. Therefore, Col($t, $r) must be unsatisfiable, and thus
C($t) = 1.

If, on the other hand, Genn($t) = 0, then Col($t, $r) can be satisfied by assigning
the color 0 to precisely those elements that can be generated in $t. Therefore, Gen($t, $q)
must be unsatisfiable, and so C($t) = 0.

Thus C($p) is a monotone real formula satisfying the assumptions of Corollary 3.16,
and therefore it has to be of size 2Ω(nε). Note that Theorem 2.2 gives no information
about the behavior of C($t) in the case where Gen($t, $q) and Col($t, $r) are both unsatis-
fiable; thus we need Corollary 3.16 in precisely the general form in which it is stated.
From the size bounds in Theorem 2.2 we now obtain the following theorem.

Theorem 4.1. Every tree-like CP refutation of the clauses Gen($p, $q)∪Col($p, $r)
has to be of size 2Ω(nε) for some ε > 0.

On the other hand, there are polynomial size dag-like resolution refutations of
these clauses.

Theorem 4.2. There are (dag-like) resolution refutations of size nO(1) of the
clauses Gen($p, $q) ∪ Col($p, $r).

Proof. First we resolve clauses (4.2) and (4.5) to get

q̄d,j,c ∨ r̄c(4.8)

for 1 ≤ j ≤ d and 1 ≤ c ≤ n.
Now we want to derive q̄i,j,c ∨ r̄c for every (i, j) ∈ Pyrd and 1 ≤ c ≤ n, by

induction on i downward from d to 1. The induction base is just (4.8).
Now by induction we have

q̄i+1,j,a ∨ r̄a and q̄i+1,j+1,b ∨ r̄b .

We resolve them against (4.7) to get q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ p̄a,b,c ∨ r̄c for 1 ≤ a, b, c ≤ n
and then resolve them against (4.4) and get

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ r̄c



RESOLUTION AND CUTTING PLANES 1477

for every 1 ≤ a, b ≤ n. All of these are then resolved against two instances of (4.1),
and we get the desired q̄i,j,c ∨ r̄c for every 1 ≤ c ≤ n.

Finally, we have, in particular, q̄1,1,a ∨ r̄a for every 1 ≤ c ≤ n. We resolve them
with (4.6) and get q̄1,1,a ∨ p̄a,a,n for every 1 ≤ a ≤ n. These are resolved with (4.3) to
get q̄1,1,a for every 1 ≤ a ≤ n. Finally, this clause is resolved with another instance
of (4.3) (the one with i = j = 1) to get the empty clause.

It is easy to check that the above refutation is a negative resolution refutation.
The following corollary is an easy consequence of the above theorems and known
simulation results.

Corollary 4.3. The clauses Gen($p, $q) ∪ Col($p, $r) exponentially separate tree-
like resolution from dag-like resolution; in fact, they separate tree-like resolution from
dag-like negative resolution. They also separate tree-like cutting planes from dag-like
cutting planes.

The resolution refutation of Gen($p, $q) ∪ Col($p, $r) that appears in the proof of
Theorem 4.2 is not regular. We do not know whether Gen($p, $q) ∪ Col($p, $r) has poly-
nomial size regular resolution refutations. To obtain a separation between tree-like
resolution and regular resolution we will modify the clauses Col($p, $r).

4.1. Separation of tree-like cp from regular resolution. The clauses Col($p, $r)
are modified (and the modification is called RCol($p, $r)), so that Gen($p, $q)∪RCol($p, $r)
allow small regular resolutions, but in such a way that the lower bound proof still ap-
plies. We replace the variables ra by ra,i,D for a ∈ [n], 1 ≤ i ≤ d, and D ∈ {L,R},
giving the coloring of element a, with auxiliary indices i being a row in the pyramid
and D distinguishing whether an element is used as a left or right predecessor in the
generation process.

The set RCol($p, $r) is defined as follows:

p̄1,1,a ∨ r̄a,d,D for a ∈ [n] and D ∈ {L,R},(4.9)

p̄a,a,n ∨ ra,1,D for a ∈ [n] and D ∈ {L,R},(4.10)

ra,i+1,L ∨ rb,i+1,R ∨ p̄a,b,c ∨ r̄c,i,D for i < d, a, b, c ∈ [n], and D ∈ {L,R},(4.11)

r̄a,i,D ∨ ra,i,D̄ for 1 ≤ i ≤ d and D ∈ {L,R},(4.12)

r̄a,i,D ∨ ra,j,D for 1 ≤ i, j ≤ d and D ∈ {L,R}.(4.13)

Due to the clauses (4.12) and (4.13), the variables ra,i,D are equivalent for all values
of the auxiliary indices i,D. Hence a satisfying assignment for RCol($p, $r) still codes
a coloring of [n] such that elements a with 1, 1 � a are colored 0, the elements b with
b, b � n are colored 1, and the 0-colored elements are closed under generation. Hence
if RCol($t, $r) is satisfiable, then Gen($t) = 0.

Hence any interpolant for the clauses Gen($p, $q)∪RCol($p, $r) satisfies the assump-
tions of Corollary 3.16, and we can conclude the following theorem.

Theorem 4.4. Tree-like CP refutations of the clauses Gen($p, $q) ∪ RCol($p, $r)
have to be of size 2Ω(nε).

On the other hand, we have the following upper bound on (dag-like) regular
resolution refutations of these clauses.

Theorem 4.5. There are (dag-like) regular resolution refutations of the clauses
Gen($p, $q) ∪RCol($p, $r) of size nO(1).

Proof. First we resolve clauses (4.2) and (4.9) to get

q̄d,j,a ∨ r̄a,d,D(4.14)
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for 1 ≤ j ≤ d, 1 ≤ a ≤ n, and D ∈ {L,R}. Next we resolve (4.3) and (4.10) to get

q̄1,1,a ∨ ra,1,D(4.15)

for 1 ≤ a ≤ n, and D ∈ {L,R}. Finally, from (4.4) and (4.11) we obtain

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ ra,i+1,L ∨ rb,i+1,R ∨ r̄c,i,D(4.16)

for 1 ≤ j ≤ i < d, 1 ≤ a, b, c ≤ n, and D ∈ {L,R}.
Now we want to derive q̄i,j,a ∨ r̄a,i,D for every (i, j) ∈ Pyrd, 1 ≤ a ≤ n, and

D ∈ {L,R}, by induction on i downward from d to 1. The induction base is just
(4.14).

For the inductive step, resolve (4.16) against the clauses

q̄i+1,j,a ∨ r̄a,i+1,L and q̄i+1,j+1,b ∨ r̄b,i+1,R ,

which we have by induction to give

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ r̄c,i,D

for every 1 ≤ a, b ≤ n. All of these are then resolved against two instances of (4.1),
and we get the desired q̄i,j,c ∨ r̄c,i,D.

Finally, we have, in particular, q̄1,1,a ∨ r̄a,1,L, which we resolve against (4.15) to
get q̄1,1,a for every a ≤ n. From these and an instance of (4.1) we get the empty
clause.

Note that the refutation given in the proof of Theorem 4.5 is actually an ordered
refutation. It respects the following elimination order:

p1,1,1 . . . pn,n,n

r1,d,L r1,d,R . . . rn,d,L rn,d,R

q1,d,1 . . . q1,d,n . . . qd,d,1 . . . qd,d,n

r1,d−1,L . . . rn,d−1,R q1,d−1,1 . . . qd−1,d−1,n

...

r1,1,L r1,1,R q1,1,1 . . . q1,1,n .

Corollary 4.6. The clauses Gen($p, $q)∪RCol($p, $r) exponentially separate tree-
like resolution from ordered resolution; therefore, they also separate exponentially tree-
like resolution from regular resolution.

5. Lower bound for ordered resolution. Goerdt [13] showed that ordered
resolution is strictly weaker than unrestricted resolution by giving a superpolynomial
lower bound (of the order Ω(nlog log n)) for ordered resolutions of a certain family
of clauses, which, on the other hand, has polynomial size unrestricted resolution
refutations. In this section we improve this separation to an exponential one; in fact,
we give an exponential separation of ordered resolution from negative resolution.

To simplify the exposition, we apply the method of [13] to a set of clauses SPn,m
expressing a combinatorial principle that we call the string-of-pearls principle. From
a bag of m pearls, which are colored red and blue, n pearls are chosen and placed on
a string. The string-of-pearls principle SPn,m says that if the first pearl is red and
the last one is blue, then there must be a blue pearl next to a red pearl somewhere
on the string.
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SPn,m is given by an unsatisfiable set of clauses in variables pi,j and qj for i ∈ [n]
and j ∈ [m], where pi,j is intended to say that pearl j is at position i on the string,
and qj means that pearl j is colored blue. The clauses forming SPn,m are

m∨
j=1

pi,j , i ∈ [n],(5.1)

p̄i,j ∨ p̄i,j′ , i ∈ [n], j, j′ ∈ [m], j �= j′,(5.2)

p̄i,j ∨ p̄i′,j , i, i′ ∈ [n], j ∈ [m], i �= i′.(5.3)

These first three sets of clauses express that there is a unique pearl at each position.

p̄1,j′ ∨ q̄j′ , j′ ∈ [m],(5.4)

p̄n,j ∨ qj , j ∈ [m],(5.5)

p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′ , 1 ≤ i < n, j, j′ ∈ [m], j �= j′.(5.6)

These last three sets of clauses express that the first pearl is red, the last one is blue,
and that a pearl sitting next to a red pearl is also colored red. The clauses SPn,m are
a modified and simplified version of the clauses related to the st-connectivity problem
that were introduced by Clote and Setzer [8].

Proposition 5.1. The clauses SPn,m have negative resolution refutations of size
O(nm2).

Proof. For every i ∈ [n], we will derive the clauses p̄i,j ∨ q̄j for j ∈ [m] from SPn,m
by a negative resolution derivation. For i = 1, these are the clauses (5.4) from SPn,m.
Inductively, assume we have derived p̄i,j′ ∨ q̄j′ for j′ ∈ [m], and we want to derive
p̄(i+1),j ∨ q̄j from these.

Consider the clauses (5.6) of the form p̄i,j′ ∨ p̄(i+1),j ∨ qj′ ∨ q̄j for j′ ∈ [m]. Using
the inductive assumption, we derive from these the clauses p̄i,j′ ∨ p̄(i+1),j ∨ q̄j for j′ ∈
[m]. Note that these are negative clauses.

By a derivation of length m, we obtain p̄(i+1),j ∨ q̄j from these and the clause∨
j′∈[m] pi,j′ from SPn,m. The whole derivation is of length O(m), and we need m of

them, giving a total length of O(m2) for the induction step.
We end up with a derivation of the clauses p̄n,j ∨ q̄j for j ∈ [m] of length O(nm2).

In another m steps we resolve these with the initial clauses (5.5), obtaining the sin-
gleton clauses p̄n,j for j ∈ [m]. Finally, we derive a contradiction from these and the
clauses

∨
j∈[m] pn,j .

The above refutation of SPn,m is not ordered, since it is not even regular: the
variables qj for every pearl j are eliminated at every stage of the induction. Neverthe-
less, we are unable to show that there are no short ordered refutations of SPn,m. In
order to obtain a lower bound for ordered resolution refutations, we shall modify the
clauses SPn,m. The lower bound is then proved by a bottleneck counting argument
similar to that used in [13], which is based on the original argument of Haken [16].
Note that the clauses (5.1)–(5.3) are similar to the clauses expressing the pigeonhole
principle, which makes the bottleneck counting technique applicable in our situation.

We call the pearls numbered 1 through n
4 (we assume n

4 to be an integer, for
simplicity) the special pearls. The positions 1 to n

2 on the string are called the left
half, and the positions n2 + 1 to n are called the right half of the string.

For each special pearl j placed on the string, an associated position ı̂ = ı̂(j) is
defined, depending on where on the string j is placed. If j is placed in the left half,
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then ı̂ is in the right half; say, ı̂ = n
2 +2j − 1 for definiteness, and if j is placed in the

right half, then ı̂ is in the left half, say, ı̂ = 2j.
The set SP ′

n,m is obtained from SPn,m by adding additional literals to those
clauses that restrict the coloring of the special pearls placed on the string. First, the
clauses (5.4) and (5.6) for 1 ≤ i < n

2 , where j
′ ≤ n

4 is special, are replaced by m
clauses each, namely,

p̄ı̂,$ ∨ p̄1,j′ ∨ q̄j′ ,(5.7)

p̄ı̂,$ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′(5.8)

for every 3 ∈ [m], where ı̂ := n
2 + 2j′ − 1, since j′ is placed in the left half. Similarly,

the clauses (5.5) and (5.6) for n2 < i < n and special j ≤ n
4 are replaced by

p̄ı̂,$ ∨ p̄n,j ∨ qj ,(5.9)

p̄ı̂,$ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′(5.10)

for every 3 ∈ [m], where now ı̂ := 2j, since j is placed in the right half. All other
clauses remain unchanged. The modified clauses SP ′

n,m do not have an intuitive
combinatorial interpretation different from the meaning of the original clauses SPn,m.
The added literals only serve to make the clauses hard for ordered refutations. The
idea is that for the clauses (5.7)–(5.10) to be used as one would use the original (5.4)–
(5.6) in the natural short, inductive proof above, the additional literals p̄ı̂,$ have to
be removed first. The positions ı̂ are chosen in such a way that this cannot be done
in a manner consistent with a global ordering of the variables.

Theorem 5.2. The clauses SP ′
n,m have negative resolution refutations of size

O(nm2).
Proof. We modify the refutation of SPn,m given above for the modified clauses

SP ′
n,m. First, note that the original clauses (5.4) can be obtained from (5.7) by a

negative derivation of length m.
Next, we modify those places in the inductive step where the clauses (5.6) are used

that have been modified. First, we resolve the modified clauses (5.8), respectively,
(5.10) with the inductive assumption, yielding the negative clauses

p̄ı̂,$ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ q̄j′

for 3 ∈ [m]. These are then resolved with the clause
∨m
j=1 pı̂,j , after which we can

continue as in the original refutation.
In the places where the clauses (5.5) are used in the original refutation, we first

resolve (5.9) with the clauses p̄n,j ∨ q̄j , yielding p̄ı̂,$ ∨ p̄n,j , which can be resolved with∨m
j=1 pı̂,j to get the singleton clauses p̄n,j as in the original refutation.
In particular, there are polynomial size unrestricted resolution refutations of the

clauses SP ′
n,m. The next theorem gives a lower bound for ordered resolution refuta-

tions of these clauses.
Theorem 5.3. For sufficiently large n and m ≥ 9

8n, every ordered resolution

refutation of the clauses SP ′
n,m contains at least 2k(log n−5) clauses.

For the sake of simplicity, let n be divisible by 8, say, n = 8k. Let N := nm+m
be the number of variables, and let an ordering x1, x2, . . . , xN of the variables be
given, i.e., each xν is one of the variables pi,j or qj . Let R be an ordered resolution
refutation of SP ′

n,m respecting this elimination ordering, i.e., on every path through
R the variables are eliminated in the prescribed order. We shall show that R contains
at least k! different clauses, which is at least 2

n
8 (log n−5) for large n.
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For a position i ∈ [n] and ν ≤ N , let S(i, ν) be the set of special pearls j ≤ 2k = n
4

such that pi,j is among the first ν eliminated variables, i.e.,

S(i, ν) := { j ≤ 2k : pi,j ∈ {x1, . . . , xν} } .

Let ν0 be the smallest index such that |S(i, ν0)| = k for some position i, and call this
position i0. It follows that for all i �= i0, |S(i, ν0)| < k. In other words, i0 is the first
position for which k of the variables pi0,j with j ≤ 2k special are eliminated.

Let the elements of S(i0, ν0) be denoted by j1, . . . , jk, enumerated in increasing
order for definiteness. For each 1 ≤ µ ≤ k, let iµ be the position ı̂(jµ) associated to
jµ when jµ is placed on the string at position i0, i.e.,

iµ :=

{
n
2 + 2jµ − 1 if i0 ≤ n

2 ,

2jµ if i0 >
n
2 .

Further, we define for the set Rµ := [2k]\S(iµ, ν0), i.e., Rµ is the set of special pearls j
with the property that on every path in the refutation, the variable piµ,j is eliminated
only after all the variables pi0,jκ for 1 ≤ κ ≤ k have been eliminated. Note that by
the definition of ν0, |S(iµ, ν0)| < k and therefore |Rµ| ≥ k for all 1 ≤ µ ≤ k.

Definition 5.4. A critical assignment is an assignment that satisfies all the
clauses of SP ′

n,m except for exactly one of the clauses (5.1). From a critical assignment
α, we define the following data.

• The unique position iα ∈ [n] such that no pearl is placed at position iα by α,
i.e., α(piα,j) = 0 for every j ∈ [m]. We call iα the gap of α.

• A 1-1 mapping mα : [n] \ {iα} → [m], where for every i �= iα, mα(i) is the
pearl placed at position i by α, i.e., the unique j ∈ [m] such that α(pi,j) = 1.

For every j ∈ [m], we refer to the value α(qj) as the color of j, where we identify the
value 0 with red and 1 with blue.

A critical assignment α is called 0-critical if the gap is iα = i0 and mα(iµ) ∈ Rµ
for each 1 ≤ µ ≤ k, and, moreover,

• if i0 is in the left half, then j1, . . . , jk are colored blue (i.e., α(qj1) = · · · =
α(qjk) = 1), and

• if i0 is in the right half, then j1, . . . , jk are colored red (i.e., α(qj1) = · · · =
α(qjk) = 0).

Note that the positions i0, i1, . . . , ik and the pearls j1, . . . , jk, and thus the no-
tion of 0-critical assignment, only depend on the elimination order and not on the
refutation R.

As in other bottleneck counting arguments, the lower bound will now be proved
in two steps. First, we show that there are many 0-critical assignments. Second, we
will map each 0-critical assignment α to a certain clause Cα in R, and then show that
not too many different assignments α can be mapped to the same clause Cα, and thus
that there must be many of the clauses Cα.

The first goal, showing there are many 0-critical assignments, is attained with the
following claim.

Claim 5.5. For every choice of pairwise distinct pearls b1, . . . , bk with bµ ∈ Rµ
for 1 ≤ µ ≤ k, there is a 0-critical assignment α with mα(iµ) = bµ for 1 ≤ µ ≤ k.
In particular, there are at least k! 0-critical assignments that disagree on the values
mα(iµ) for 1 ≤ µ ≤ k.

Proof (proof of Claim 5.5). For those positions i such that mα(i) is not defined
yet, i.e., i /∈ {i0, i1, . . . , ik}, assign pearls mα(i) ∈ [m] \ {j1, . . . , jk} arbitrarily but
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consistently, i.e., choose an arbitrary 1-1 mapping from [n] \ {i0, i1, . . . , ik} to [m] \
{b1, . . . bk, j1, . . . , jk}. This is always possible, since by assumption m ≥ 9k.

Finally, color those pearls that are assigned to positions to the left of the gap
red, and those that are assigned to positions to the right of the gap blue, i.e., set
α(qmα(i)) = 0 for i < i0 and α(qmα(i)) = 1 for i > i0. The pearls j1, . . . , jk are
colored according to the requirement in the definition of a 0-critical assignment.

This coloring of the pearls is well defined even if some of the pearls b1, . . . bk are
among the j1, . . . , jk, because the positions i1, . . . , ik and i0 are in opposing halves of
the string: if i0 is in the left half, then every iµ is in the right half, and, in particular,
iµ > i0. Similarly, if i0 is in the right half, then iµ < i0, so in both cases, the pearls
j1, . . . , jk get the same color as b1, . . . , bk. The remaining pearls can be colored
arbitrarily.

Now we map 0-critical assignments to certain clauses in R. For a 0-critical as-
signment α, let Cα be the first clause in R such that α does not satisfy Cα, and

{ j : pi0,j occurs in Cα } = [m] \ {j1, . . . , jk} .
This clause exists because α determines a path through R from the clause

∨
j∈[m] pi0,j

to the empty clause, such that α does not satisfy any clause on this path. The
variables pi0,j with j ≤ 2k are eliminated along that path, and pi0,j1 , . . . pi0,jk are the
first among them in the elimination order.

Claim 5.6. Let α be a 0-critical assignment. For every 1 ≤ µ ≤ k, the literal
p̄iµ,$µ , where 3µ := mα(iµ), occurs in Cα.

Proof (proof of Claim 5.6). Let α′ be the assignment defined by α′(pi0,jµ) := 1
and α′(x) := α(x) for all other variables x. As pi0,jµ does not occur in Cα, α

′ does
not satisfy Cα either.

There is exactly one clause in SP ′
n,m that is not satisfied by α′, depending on

where the gap i0 is; this clause is

i0 = 1 : p̄iµ,$µ ∨ p̄1,jµ ∨ q̄jµ ,

1 < i0 ≤ n
2

: p̄iµ,$µ ∨ p̄i0−1,h ∨ p̄i0,jµ ∨ qh ∨ q̄jµ , where h = mα(i0 − 1),

n

2
< i0 < n : p̄iµ,$µ ∨ p̄i0,jµ ∨ p̄i0+1,h ∨ qjµ ∨ q̄h, where h = mα(i0 + 1),

i0 = n : p̄iµ,$µ ∨ p̄n,jµ ∨ qjµ .

The requirement for the coloring of the jµ in the definition of a 0-critical assignment
entails that these clauses are not satisfied by α′ and that all other clauses are satisfied
by α′.

In any case, the literal p̄iµ,$µ occurs in this clause, and there is a path through R
leading from the clause in question to Cα, such that α′ does not satisfy any clause on
that path. The variable that is eliminated in the last inference on that path must be
one of the pi0,jκ for 1 ≤ κ ≤ k, by the definition of Cα. Since 3µ ∈ Rµ, the variable
piµ,$µ appears after pi0,jκ in the elimination order, by the definition of Rµ . Therefore,
piµ,$µ cannot have been eliminated on that path, so p̄iµ,$µ still occurs in Cα.

Finally, we are ready to finish the proof of the theorem. Let α, β be two 0-
critical assignments such that 3µ := mα(iµ) �= mβ(iµ) for some 1 ≤ µ ≤ k, so that
β(piµ,$µ) = 0. By Claim 5.6, the literal p̄iµ,$µ occurs in Cα; therefore, β satisfies Cα,
and hence Cβ �= Cα.

By Claim 5.5, there are at least k! 0-critical assignments α that disagree on at
least one of the values mα(iµ). Thus R contains at least k! distinct clauses of the
form Cα.
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The following corollary is a direct consequence of Theorems 5.3 and 5.2.

Corollary 5.7. The clauses SP ′
n,m for m ≥ 9

8n exponentially separate ordered
resolution from unrestricted resolution and negative resolution.

A modification similar to the one that transforms SPn,m into SP ′
n,m can also be

applied to the clauses Gen($p, $q), yielding a set DPGen($p, $q). Then for the clauses
DPGen($p, $q) ∪ Col($p, $r), an exponential lower bound for ordered resolutions can be
proved by the method of Theorem 5.3 (this was presented in the conference version
[5] of this paper). Also the negative resolution proofs of Theorem 4.2 can be modified
for these clauses. Thus the clauses DPGen($p, $q) ∪ Col($p, $r) exponentially separate
ordered from negative resolution as well.

6. Open problems. We would like to conclude by stating some open problems
related to the topics of this paper.

1. For boolean circuits (monotone as well as general), circuit depth and formula
size are essentially the same complexity measure, as they are exponentially
related by the well-known Brent–Spira theorem. Is there an analogous theo-
rem for monotone real circuits, i.e., is dR(f) = Θ(log sR(f)) for every mono-
tone function f? This would be implied by the converse to Lemma 2.1, i.e.,
dR(f) ≤ CCR(Rf ). Does this hold for every monotone function f?

2. The separation between tree-like and dag-like resolution was recently im-
proved to a strongly exponential one, with a lower bound of the form 2n/ logn

[3, 4, 24]. Can we prove the same strong separation between tree-like and
dag-like CP?

3. A solution for the previous problem would follow from a strongly exponential
separation of monotone real formula size from monotone circuit size. Such a
strong separation is not even known for monotone boolean circuits.

4. Can the superpolynomial separations of regular and negative resolution from
unrestricted resolution [14, 15] be improved to exponential as well? And is
there an exponential speed-up of regular over ordered resolution?
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