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CONSTRUCTING EVOLUTIONARY TREES IN THE PRESENCE OF
POLYMORPHIC CHARACTERS*

MARIA BONET?, CYNTHIA PHILLIPSf, TANDY WARNOW¢$, AND SHIBU YOOSEPHY

Abstract. Most phylogenetics literature and construction methods based upon characters pre-
sume monomorphism (one state per character per species), yet polymorphism (multiple states per
character per species) is well documented in both biology and historical linguistics. In this paper we
consider the problem of inferring evolutionary trees for polymorphic characters. We show efficient
algorithms for the construction of perfect phylogenies from polymorphic data. These methods have
been used to help construct the evolutionary tree proposed by Warnow, Ringe, and Taylor for the
Indo-European family of languages and presented by invitation at the National Academy of Sciences
in November 1995.
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1. Introduction. Determining the evolutionary history of a set S of objects
(taxa or species) is a problem with applications in a number of domains such as biol-
ogy, comparative linguistics, and literature. Primary data used to compare different
taxa (whether biological species, populations, or languages) can be described using
characters, where a character is a function o : S — Z, where Z denotes the integers
and thus represents the set of possible states of . In this paper we consider tree
construction when characters are permitted to have more than one state on a given
object. We call this the polymorphism problem. A character that is permitted to have
more than one state on a given object will be called a polymorphic character, and
one that can have only one state for every object is referred to as a monomorphic
character.

Polymorphism is well documented in both the molecular genetics and comparative
linguistics domains [8, 33]. For example, the population geneticist Masatoshi Nei
writes: “The study of protein polymorphism has indicated that the extent of genetic
variation in natural populations is enormous. However, the total amount of genetic
variation cannot be known unless it is studied at the DNA level. The study of DNA
polymorphism is still in its infancy, but the results so far obtained indicate that
the extent of DNA polymorphism is far greater than that of protein polymorphism”
[28, p. 254]. Polymorphism also arises in the comparison of languages. The Indo-
FEuropeanist Donald Ringe writes: “In choosing lexical characters we try to work with
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basic meanings (semantic slots), choosing from each language the word that most
usually expresses each basic meaning. Languages typically have one word for each
basic semantic slot, but instances of two (or even more) words apparently filling the
same basic slot are not rare” [30].

Thus polymorphic data is a reality when working with evolutionary tree construc-
tion for both linguistic analysis and biological taxa, and methods appropriate for such
construction must be devised. In the phylogenetics literature and programs (such as
Phylip, PAUP, and MacClade), algorithms and software to evaluate fixed leaf-labeled
tree topologies for polymorphic data have explicitly required that the number of states
be kept quite small because the evaluation requires time exponential in the number of
states. This is the first algorithmic study of this problem to go beyond fixed topology
problems for bounded number of states.

The concept of an idealized evolutionary tree was introduced by LeQuesne in a
series of articles (see, for example, [24, 25]), and later termed “Perfect Phylogenies”
by Gusfield in [18], and studied in several papers (see, for example, [13, 14]). The
major contribution of this paper is a methodology for inferring perfect phylogenies
from monomorphic and polymorphic characters. Recent work in historical linguistics
[39] has shown that perfect phylogenies should be obtainable from properly selected
and encoded linguistic characters. Algorithms for constructing perfect phylogenies
from monomorphic characters were used in [39] to analyze the Indo-European family
of languages, whose first-order subgrouping had been argued for decades without
resolution. The methodology we propose here significantly extends the range of the
data that can be analyzed in historical linguistics. We have applied this methodology
to the data set studied by Warnow, Ringe, and Taylor. Detection and resolution
of polymorphism led to a modification of their initially proposed phylogeny, which
was based only on monomorphic characters. Our methodology and its results were
presented at the Symposium on the Frontiers of Science at the National Academy of
Sciences in November 1995 [38].

The structure of the rest of the paper is as follows. In section 2 we discuss the
causes of polymorphism in linguistics and biology and define the problem of inferring
trees from polymorphic characters in these two domains. We show that a perfect
phylogeny is an appropriate objective when working with linguistic data as well as
some biological data. In section 3 we present two algorithms, one graph theoretic and
one combinatorial, for the problem of inferring perfect phylogenies from polymorphic
data. In section 4.3 we present a methodology for inferring perfect phylogenies from
data which combine monomorphic and polymorphic data. In section 5 we present our
analysis of the Indo-European data studied by Warnow, Ringe, and Taylor [39]. In
section 6 we consider the problem of inferring evolutionary trees from polymorphic
data when a perfect phylogeny is an unlikely outcome. We conclude in section 7.

2. Foundations. The causes of polymorphism in biology and linguistics differ,
and within biology, polymorphism has more than one cause as well. In linguistics,
convergence of meanings over time, borrowing of synonyms from other languages, and
the inability of modern-day linguists to detect subtle differences of meaning in words
from ancient languages can all produce polymorphic characters. Some such cases, like
English little and small, arise by the convergence of meanings over time; others, like
American English stone and rock (to describe a small chunk of the substance that
can be thrown), are instances of replacement in progress (rock is replacing stone in
that basic meaning in America). It can be shown that the different manifestations of
polymorphism in linguistics each can be described by the conflation of two or more
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distinct linguistic characters. Often we are able to determine the precise number
of monomorphic characters that have merged into the polymorphic character. In
linguistics it has been observed that monomorphic characters are conver, by which
we mean that the nodes sharing any state of any character form a connected set in
the tree.

DEFINITION 2.1. Given a set S of taza defined by a set C of characters (|C| = k),
where each oj € C is a function o S — (22 — {0}), let T be a tree that is leaf-
labeled by the taxa in S and with each internal node v labeled with a wvector from
(2Z — {0})* such that the value of a;(v) is given by the jth component of this vector.
A character (polymorphic or monomorphic) a; € C' is convex on T if for all i € Z
the set X0, = {v € V(T) :i € aj(v)} is connected. T is a perfect phylogeny if every
character is conver.

For polymorphism caused by convergence of convex monomorphic characters,
polymorphism can be considered a separation problem.

DEFINITION 2.2. Let a be a character defined on a species set S and let i be a
character state of a. Then we define a=1(i) = {s € S :i € a(s)}.

DEFINITION 2.3. Let 8 be a polymorphic character with character states0,...,r—
1, and for each s € S suppose |B(s)| < 1'. Then (3 is separated into | monomorphic
characters oz, . .., qp, wherel > 1, if there is a function f : {0,...,r—1} — {1,...,1},

such that if f(i) = j then i is a character state of a; and in addition, for every
s€ ozj_l(i), we have i € ((s).

Ezample. Let S = {A, B,C, D} and let 5(A4) = {0,1},8(B) = {2,1}, 6(C) = {0},
and B(D) = {2}. Then [ is separated into two monomorphic characters a; and as
by setting f(0) = 1, f(1) = 2, f(2) = 1. Thus ay(4) = {0},a1(B) = {2}, 04(C) =
{0}, 04(D) = {2}, a2(A) = {1}, and ay(B) = {1}. In addition, we set ay(C) = {4}
and as(D) = {5}.

In the example note that as(C) and as(D) are set to previously unused values.
Thus if for some j' € {1,2,...,1} a;j/(s) is undetermined, then o (s) can be set to a
previously unused state.

Problem 1 (separation into ! convex characters).

Input. Set S of taxa (defined by set C' of characters) and an integer .

Question. Can we separate each character into at most [ monomorphic characters,
so that a perfect phylogeny exists for the derived set of monomorphic characters?

Due to inadequate historical evidence, input data may not reflect the actual de-
gree of polymorphism. Separation may be necessary to obtain convexity even if all
input characters appear monomorphic. For example, consider four languages with
three characters: A = (1,2,1),B = (1,2,2),C = (1,2,1),D = (1,2,2). Suppose
the first two characters convolve (meanings merge) and linguists detect only one of
these characters for each language. This polymorphic character appears monomor-
phic: A= (1,1),B =(1,2),C = (2,1),D = (2,2). There is no perfect phylogeny for
this set, but we can separate the first character into two such that there is a perfect
phylogeny: A= (1,a,1),B =(1,b,2),C = (¢,2,1), and D = (d,2,2). Because of lost
information, we cannot completely determine the inferred characters «; (hence the
use of singletons or previously unused states).

We note that an r-state character can always be separated into r monomorphic
single state characters which are each convex on all phylogenies. Thus [ = r is an
easy instance of Problem 1.

In biology, polymorphic characters can arise when dealing with allozyme data [26]
and morphological data [40]. In coding allozyme data, each locus is assumed to be a
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character (as opposed to a character being defined as the presence or absence of indi-
vidual alleles) and the set of character states can then be defined by the combination
of alleles present at the locus. When dealing with sequence data, alternative encod-
ings of the same amino acid sequence can also lead to the presence of polymorphic
characters. In each of these cases, the number of different forms that the character
can take on a given taxon may be bounded, in which case we may reasonably seek a
tree in which every node has no more than some prespecified bound of states for each
character. This bound may be character dependent.

DEFINITION 2.4. Let T be a phylogeny. A character « is said to have load [ if,
for every v € V(T), |a(v)| < 1. The load of T is defined to be the maximum load on
any character.

Problem 2 (I-load perfect phylogeny).

Input. Set S of taxa (defined by set C' of polymorphic characters) and an integer .

Question. Does an [-load perfect phylogeny exist?

For many morphological characters in biology, convexity is a reasonable assump-
tion (e.g., consider vertebrate-invertebrate). Although the causes of polymorphism in
biology and linguistics differ, when convexity can be assumed the different problem
formulations are equivalent.

THEOREM 2.5. Given a set of taxa defined by a set C' of polymorphic characters,
T is an l-load perfect phylogeny for C' iff we can separate each polymorphic character
into at most I monomorphic characters such that T is also a perfect phylogeny for the
derived set C".

Proof. One direction is easy. For the converse, let T be a perfect phylogeny
with load [, let a € C be given, and assume « has r states present on S. Let T;
be the subgraph of T induced by the vertices labeled i by «. Since T is a perfect
phylogeny, each T; is a subtree. Define G, to be the graph whose vertices are in one-
to-one correspondence with the subtrees T;,4 = 1,2,...,r, and where (T;,T}) € E iff
T; NTj # 0. Note that since T has load [, G, has max clique size at most [. G, is
triangulated since it is the intersection graph of subtrees of a tree [7], and hence G, is
perfect [17]. Since G, is perfect, the chromatic number of G, equals the max clique
size and hence is bounded by [. Hence we can partition the nodes of G, into at most [
independent sets, V1, Vs, ..., V. Each V; thus defines a monomorphic character (filled
in with singletons), and hence T is a perfect phylogeny for each of these monomorphic
characters. O

Polymorphism in characters that are based upon columns of molecular sequences
behaves differently than polymorphism in morphological characters; for these charac-
ters, variations on the parsimony criterion are more appropriate optimization criteria.
We discuss the computational complexity of these problems in section 6.

3. Inferring perfect phylogenies from polymorphic characters. When
the maximum permissible load for each character is not given, the problem of inferring
perfect phylogenies is best stated as a minimum load problem. This is addressed in
section 3.1. When the maximum permissible load for each character is given, we have
two algorithms which can construct perfect phylogenies; both are efficient when the
number of characters is small. These algorithms are presented in section 4. When the
character set includes a sufficient number of monomorphic characters, we have a third
algorithm which combines techniques for monomorphic and polymorphic characters.
This algorithm is presented in section 4.3.

The various parameters to the problem are n (the number of species), &k (the num-
ber of characters), r (the maximum number of states per character), and ! (maximum
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load for each character).

3.1. Minimum load problems. When convexity of the monomorphic con-
stituents of the polymorphic characters is a reasonable request, we may seek a tree
with a prespecified load bound, or else we may seek a tree with a minimum possible
load bound. We call the latter problem the minimum (or min) load problem.

We note that the min load problem is NP-hard since the question of whether a
1-load perfect phylogeny exists is NP-complete [4, 36]. However, although the 1-load
perfect phylogony problem is NP-complete, the natural fixed parameter versions of
the problem are solvable in polynomial time; see [1, 2, 5, 12, 19, 21, 22, 23, 37]. The
2-load perfect phylogeny problem is the next question to consider.

THEOREM 3.1.

(i) The min load problem can be solved in polynomial time for all fized n.

) The min load problem can be solved in polynomial time when r = 2.
(iii) The min load problem is NP-hard for all fized k.
(iv) The min load problem is NP-hard for all fized r > 3.
) Determining whether a 2-load perfect phylogeny exists is solvable in
polynomial time for all fized n.
(vi) Determining whether a 2-load perfect phylogeny exists is solvable in
polynomial time for r = 2.
(vil) Determining whether a 2-load perfect phylogeny exists is solvable in
polynomial time for all fized k.
(vili) Determining whether a 2-load perfect phylogeny exists is NP-complete
for all fixed r > 3.

Proof. Parts (i) and (v): When n is fixed, the number of possible leaf-labeled
topologies is bounded, so we need only consider the min load problem on a fixed
topology. Determining the minimum load on a fixed leaf-labeled topology is trivial,
since for each internal node v € V(T) and each character & € C we simply set
a(v) = {i : Jz,y leaves of T with v on the path from z to y, and i € a(z) Na(y)}.
This determines the minimum load for the topology. The same argument can be used
to show that 2-load perfect phylogeny is solvable in polynomial time when n is fixed.

Parts (ii) and (vi): If » = 2, then clearly the min load problem and thus the 2-load
perfect phylogeny problem can be solved in polynomial time by observing that 1-load
perfect phylogeny on binary characters is solvable in polynomial time [18] and that
there is always an r-load perfect phylogeny on any input set containing characters
with at most r states.

Part (iii): We now show that the min load problem is NP-hard for all fixed k& by
showing that the [-load perfect phylogeny problem with fixed number of characters
k > 1, where each character has input load 2 (i.e., two states for every species),
is NP-complete. The reduction is from the following problem involving partial ¢-
tree recognition. See section 4.2.3 for definitions of ¢-trees and partition intersection
graphs.

Problem 3 (partial t-tree recognition).

Input. A graph G = (V, E) and an integer ¢t < (n — 1), where |V| = n.

Question. Is G a partial t-tree, i.e., does there exist G’ = (V, E’) such that E C E’
and G’ is a t-tree?

The above problem was shown to be NP-complete by Arnborg, Corneil, and
Proskurowski [3].

The reduction is as follows. Let (G = (V, E),t) be an instance of the partial ¢-tree
problem. The corresponding instance of the load problem consists of the species set
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S = {sc|e € E} and one character «, with a(s.) = {i,j}, where e = (i,7). Also, set
l =t+ 1. We claim that the instance to the partial ¢-tree problem has a solution
iff the corresponding instance to the load problem has a solution. This can be seen
by observing that G is the partition intersection graph of the instance of the load
problem and thus we can use Theorems 4.8 and 4.9.

Parts (iv) and (viii): Next we show that the 2-load perfect phylogeny problem,
where each of the input characters is monomorphic, is NP-complete for fixed r > 3.
This will also imply that the min load problem is NP-hard for fixed r > 3. The
reduction is from the partial binary characters problem (PBCP), which is defined as
follows.

Problem 4 (partial binary character perfect phylogeny).

Input. An n x k matrix M, of n species and k characters, in which each entry of
M is an element of the set {0, 1, *}.

Question. Can each x entry be set to 0 or 1 so that there exists a 1-load perfect
phylogeny with the new matrix ?

The above problem is just a reformulation of the quartet consistency problem,
which was shown to be NP-complete by [36].

Given an instance I of PBCP, the instance of the 2-load problem is constructed
as follows. Replace each * entry in the matrix defined by I with a 2. Let C' be the
set of k characters and let S be the set of n species defined by this new matrix. We
will add 2k new characters and 9k new species as follows (s?, = (x, v, 2) indicates that
alsy) = z,0t(sy) = y,a”(sp,) = 2):

1. Initialize S’ = S and C" = C.
2. For each a € C, do the following;:
a. Define two new characters o' and o? and nine new species sl,...,s2 as
follows:
i. For each 8 € C’ (where 3 # «) set (3(s’,
ii. ForeachseS'seta (s )—Zanda s) =
iii. Set s}, = (0,0,2), s2 (0,1,2) = (0,2 2) st =1(2,0,0), 82 =
(2,1,1), 832(27272)7 56 = (1,2, 0) a =(1,2,1), SZ:(
b. Update S’ = S"U{sk,...,s2} and C' = C' U {a?, a?}.

I' = (8, ") is the instance of the load problem. We claim that I has a solution
iff I’ has a perfect phylogeny with load 2. The proof follows. Let T be a perfect
phylogeny which is a solution to instance I of PBCP. Each vertex in T is a k-tuple
binary vector. We will first construct the solution for the load problem when restricted
to the initial species set S. Identify the species which initially had a * entry for that
character and replace the state for that character by a 2. It can be verified that by
doing this for every character in C' and then relabeling the internal vertices so that
the convexity property still holds, we get a solution to the load problem for the initial
species S and character set C. Extend the character set C' to C’ by adding the new
characters, which consist entirely of character state 2. This is still a solution to the
load problem for S with C’. Let T be the tree obtained as a result of the above
modifications. We will now show how to add the additional 9% species. We define
a (i) = {s : a(s) = i}. For each a € C note that there is some edge in T’ which
separates a~1(0) from a~!(1). For each character a € C, identify an edge e which
separates a~1(0) from a~1(1). Attach the 9 new species, associated with «, as shown
in Figure 3.1. We note that «=1(0) C A and a~'(1) C B.

Let T be the tree finally obtained after the addition of the 9% new species as
described above. It can be easily verified that T" is a solution to instance I’ of the

):2 where 1 <7 <9.
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2 1 4 3 a 7 5 8 9
Sa Su Su Sa Sor Sor Su Sq
Fic. 3.1. Adding the 9 new species associated with c.

2-load problem.

For the other direction of the proof, let T' be a solution to instance I’ of the
load problem. We first observe that in any solution to an instance of the 2-load
problem involving 3-state monomorphic characters in the input, every character «
has associated with it an edge, which splits a=*(0) from a~1(1), or a=1(0) from
a=1(2), or a7 1(1) from a~1(2). Observe that in I’, for each o € C, the only partition
possible is a71(0) from a~*(1). This follows as a result of the constraints imposed by
a' and o2. Thus, to get a solution to the PBCP for instance I, we restrict T' to the
original set of species S and characters C, and then for each character in C we replace
the 2’s that appear on the 0’s side of the partition by 0’s and the 2’s that appear on
the 1’s side of the partition by 1’s.

This completes the proof.

Part (vii): If k is fixed, then the 2-load perfect phylogeny problem can be solved
in polynomial time using the algorithms from section 4. 1]

This theorem shows that any polynomial time algorithm requires both k and [
bounded (under P # N P assumption).

4. Algorithms for perfect phylogenies from polymorphic characters. In
this section we present the two algorithms for inferring perfect phylogenies from poly-
morphic data when we know the load bound. Although the algorithms we will present
assume a universal load bound, these algorithms can be easily modified to allow in-
dividual load bounds for each character and will achieve comparable running times.
For the sake of clarity, we will present these algorithms as though the load bound is
the same for each character; the run times of these algorithms when implemented to
handle variable constraints are given within their respective sections.

4.1. A combinatorial algorithm for fixed k and l. The algorithm we present
is an extension and simplification of the algorithm of Agarwala and Ferndndez-Baca
[2]. For the remainder of this section the term perfect phylogeny refers to an I-load
perfect phylogeny.

Because each character has only r states and each node can choose at most [ of
these in an [-load perfect phylogeny, the number of possible labels for nodes in the
tree is O(r'*). Let us call this set S* and note that S C S* (since otherwise some
node in S has load greater than !). In contrast to the algorithm in [2], we do not
require that the internal nodes be labeled distinctly from the species in S, and instead
we will permit species in S to be internal nodes because we can transform any perfect
phylogeny in which some species in S label internal nodes into a perfect phylogeny in
which all species label leaves by attaching a leaf for s to the internal node labeled by
s.

We need some preliminary definitions and facts.
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DEFINITION 4.1. > o la(z)Aa(y)| is the extended Hamming distance of e =
(z,y), where A denotes the symmetric difference. However, we will call this the
Hamming distance, understanding this to refer to the extended Hamming distance.

We note that if a perfect phylogeny exists for S, then one exists where the Ham-
ming distance on any edge is exactly one. We will seek a perfect phylogeny with this
property. Working with such perfect phylogenies allows us to quickly solve subprob-
lems because it limits the number of ways a (maximally refined) perfect phylogeny
can be constructed.

DEFINITION 4.2 (see [23]). Given x € S*, the equivalence relation E, is the
transitive closure of the following relation E., on S—{x}: aE.b if there exists character
a such that (a(a) N a(b)) — a(z) # 0. We denote this set of equivalence classes by
(S — {a})/z.

An observation that follows immediately from this definition is that if T" is a
perfect phylogeny on S and x an internal node in 7', then two species in S which
are in the same equivalence class of (S — {z})/2 must be in the same component of
T — {x}. We also make the following observation.

LEMMA 4.3. Let T be a perfect phylogeny on S and x be an internal node in
T. Consider T as rooted at x. Let G be an equivalence class of (S — {x})/x and let
y = lcap(G). Let v be a node of T on the path from x and y (thusv =z orv =y is
also possible). Then there exist Hy, ..., Hy in (S—{v})/v such that HU---UH; = G.

Proof. Let T be a perfect phylogeny for S, and =, G, y, and v are as stated. Let
Hy,...,H; be equivalence classes of (S — {v})/v containing species from G. Clearly,
to prove the lemma it will suffice to prove that all H; are either disjoint from G or
contained in G.

Suppose, by way of contradiction, that for some 7,1 < ¢ < t, H; contains species
from G and from S — G. We will show that this implies the existence of a character
a € C and a state a of « such that a € a(v), yet a € a(z) N a(z) for some leaf 2
below v; such a character is not convex on 7', contradicting our assumption that 7 is
a perfect phylogeny. This will show that all equivalence classes H; are either disjoint
from or contained in G and will establish our claim.

Since H; contains species in G and in S — G, and is an equivalence class of
(S —{v})/v, there are species z; € H; NG and z2 € H; — G and character « such that
(a(z1) Na(z2)) — a(v) # O (this follows from (S — {v})/v being the transitive closure
of E,). Let a € a(z1) Na(ze) — a(v). Since z; and 2z are in different equivalence
classes of (S — {z})/z, a € a(z). Now let z = lcar(z1,22). This node z is in the
subtree rooted at v and satisfies a € a(z) because T is a perfect phylogeny and z is on
the path between z; and z5. This is the character o and state a we stated we would
demonstrate, proving our claim. O

We now present a dynamic programming algorithm for constructing perfect phy-
logenies from polymorphic data. We define the search graph SG = (V, E) as follows.
Each vertex in V is associated with a pair [G, z], where G = S or G € (S — {z})/=,
and represents the question, Does GU{x} have a perfect phylogeny? The edges of the
search graph are of the form ([G, z|[S, z]), and all pairs of the form ([G1, z1], |Gz, z2])
where G1 C G3 and x1 and x5 satisfy Y., .o |o(z1)Aa(z2)| = 1. There are O(r')
nodes of type [S,z], and O(nr'¥) of type [G,x] (because there are at most n equiva-
lence classes in (S — {z})/z). Also, there are O(nr'*) edges of type (|G, z][S, z]) and
O(nlkr'* 1) of type ([G1,z1], [G2,x2]), since the outdegree of every node is at most
lkr.

DEFINITION 4.4. Given a node [G,z], a set of nodes [H1,y],[H2,9],- -, [Hp, Y]
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such that (a) Hamming(z,y)=1 and (b) U;H; = G is called a bundle.

There can be multiple bundles going into [G, z], corresponding to the maximally
refined perfect phylogenies of G U {x}. If [H1,y|,[H2,y],...,[Hp,y] is a bundle for
[G,z], and all the subproblems have perfect phylogenies, then there is a perfect phy-
logeny for G U {z} with subtrees T; labeled by H;. We can also have a bundle of
just one edge (i.e., ([G,y],[G,x])); such a bundle indicates the existence of a perfect
phylogeny T for G U {y} in which the node corresponding to y has only one child.
This is necessary if we require all edges to have Hamming distance 1.

AvcoriTHM PHYLOGENY(S). First create the search graph Gs. For each node
[G, x], determine its bundles. Note that some incoming edges ([G1,x1], [G, x]) may not
correspond to any bundle because (S — {x1})/x1 does not have the proper form (i.e.,
G may not be the union of a subset of the components of (S — {x1})/x1). Remove
such edges. Now for each bundle compute the size of the bundle (number of edges)
b; and set a counter count; equal to b;. Each node [G1,x1] that is a predecessor of
node [Ga, x3] is given a pointer to the counter for its bundle. We initialize a queue of
“true” nodes as empty.

We locate each node [G, x] with |G| = 1, mark it as true, and place it in the queue.
We then pull a node [G1, z1] out of the queue and process it as follows. For each edge
in the search graph (|G1,x1],[Ga,x2]) we decrement the counter for the appropriate
bundle into [Ga,x2). If the counter is decremented to 0, then all edges of the bundle
have been set to true and node [Ga, 2] is added to the queue. When we have processed
all edges out of node [G1,x1] we choose another node from the queue and continue.
If we ever try to enqueue a node of the form [S,x], then the instance has a perfect
phylogeny. If the queue is emptied without ever labeling a node of this form as true,
then there is no perfect phylogeny.

As we enqueue true nodes, we build a topology for a perfect phylogeny for the
subproblem represented by that node, ultimately building one for the whole problem if
it exists. We denote the topology of the perfect phylogeny for [G,x] by T|G,x]. We
enqueue [G, x| when a bundle [Hq,y|, [H2,y|, ..., [Hp,y| is found such that each [H;, y]
has been determined to be true, and hence a topology T[H;,y| for each subproblem has
already been determined. We create a new node v. If x € S, then we label the node x.
Otherwise it remains unlabeled for now. A method for labeling these nodes is given in
the proof of Theorem 4.6. We take each of the trees T[H1,y], T[H2,y],...,T[Hp,yl,
merge the roots into a single node, and make this node a child of node v. Once |G, x]
has been enqueued, we construct the tree T|G,z] and we do not consider any more
edges entering [G,x]. Thus we compute only one topology per true subproblem.

LEMMA 4.5. If there exists a perfect phylogeny for S U {x}, then the algorithm
PHYLOGENY(S) assigns true to [G,x], for each G € (S — {x})/z.

Proof. The proof is by induction on |G|. The base case is trivial. Suppose that
the claim holds for all nodes [G’,z] where |G'| < k. Consider now the node [G, z]
where |G| = k. Let T be a perfect phylogeny for S U {z}. Assume that T is a perfect
phylogeny where the Hamming distance between every pair of adjacent nodes in the
tree is one. Consider T as rooted at x, and let y = lcar(G). From Lemma 4.3, for each
node v in the path between = and y, there is a set of equivalence classes of (S —{v})/v
whose union equals G. Because y = lcar(G), y is the first node below x for which
there are classes Hy, Ha,...,H,, p > 1, of (S — {y})/y such that UH; = G. For all ,
H; U {y} has a perfect phylogeny. Since |H;| < |G| it follows that the algorithm has
already determined (correctly) that [H;,y] is true for each i = 1,2,...,p.

We now need to show that for every node z on the path from y to z, [G, 2] is set
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to true. This will prove that [G, z] is true.

Consider the node z = parent(y). We have two cases to consider, depending
upon whether z and z are distinct. We consider the first case, where z = z. The
edges ([Hj,yl,[G,z]),j = 1,2,...,p constitute a bundle for [G,z] = [G,z] so that
[G,z] =[G, 2] is also set to true. We now consider the second case, where z # z. In
this case, G is an equivalence class of (S — {z})/z, so that [G, 2] is also a subproblem,
and ([G,y], [G,z]) is an edge in the search graph. Since [G,y] is set to true (by the
above analysis) the algorithm also sets [G,w] to true for all w such that [G,w] is a
vertex in the search graph. Thus, for each node w on the path from y to z, [G,w] is
set to true; setting w = x yields the result. 0

THEOREM 4.6. The algorithm PHYLOGENY(S) runs in time O(r'**1lkn) and
returns “yes” iff S has a perfect phylogeny.

Proof. 1f S has a perfect phylogeny, then there is some species x that can be an
internal node of the tree. By Lemma 4.5 the algorithm will return “yes.” Suppose
now that the algorithm returns the answer yes, and suppose the leaf-labeled tree
produced is D. We now show that the internal nodes of this tree can be labeled so
as to create a perfect phylogeny T with load [. Given a character o and an unlabeled
node v, we assign a(v) to be the states ¢ such that for some pair of leaves x and
y in different subtrees of D — {v}, i € a(x) N a(y). This clearly creates a perfect
phylogeny, and we now need to show that the load is bounded by I. Suppose for some
node v the load exceeds I, so that (without loss of generality) for each of the first
I+ 1 states, 1,2,...,1+ 1, of a, there are at least two subtrees of v with that state.
The node v represents a node [G,y] in the search graph, and since it appears in D
there is a bundle [G1, 2], [Ge, 7], ..., |G, 2] such that all nodes in the bundle are set
to true and z and y have distance one. By the construction of D, the subtrees of v
have leaf sets G1,Ga,...,Gi, S — G, where G; € (S — {z})/z for i =1,2,...,t (from
which it also follows that S — G is the union of the remaining equivalence classes of
(S —{z})/z). Also by construction, z had load at most [, so that z is labeled with
at most [ a-states. Thus at least one of the states 1,2,3,...,1 4 1 is missing from z;
without loss of generality let it be [+ 1. It is easy to see that if G; and G (for ¢ # j)
both have leaves with state [ + 1, then they would not be separate equivalence classes
in (S —{z})/z, and similarly if some G; and S — G both have leaves with state [ + 1.
Hence, this labeling has load bounded by .

The search graph can be constructed in time O(nlkr'**1) by noting that there
are O(r*) nodes in the graph, and for each node the maximum number of incoming
edges is O(nrlk) and the maximum number of outgoing edges is O(rlk). The rest of
the algorithm can be made to run in (O(nlkr’**1)) time, which is linear in the size
of the graph. This can be done by sorting the nodes [G, 2] according to the size of G
and then processing the nodes [G, z] in terms of increasing |G| values. d

Comment. When individual load bounds [, are given, the algorithm can be
modified to run in O(r**'Ln), where L =% ¢ la-

4.2. A graph-theoretic algorithm for fixed k and [. In this section we give
a graph-theoretic algorithm for the [-load perfect phylogeny problem. The algorithm
we present is based upon a characterization of intersection graphs derived from [-load
perfect phylogenies as a particular kind of vertex-colored triangulated (i.e., chordal)
graphs. On the basis of this characterization we will derive an efficient algorithm for
the [-load perfect phylogeny problem when we can fix both [ and k.

4.2.1. Preliminary definitions. Let G = (V, E) be a graph. A wvertez coloring
of GG is a function color: V' — Z. We do not require that color be a proper coloring
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(a coloring function is proper iff V(v,u) € E, color(v) # color(u)).

The neighbor set T'(v) of a vertex v is the set of all vertices in the graph adjacent
to v. A vertex v is simplicial if I'(v) is a clique.

Given a graph G = (V, E) and a vertex coloring ¢ : V' — Z, a monochromatic
cliqgue in G is a clique with vertex set Vj C V such that color(v)=color(w) for all
v,w € V. A graph G = (V, E) is triangulated if it has no induced cycles of size four
or greater. Given a vertex-colored graph G = (V, E), we say that G is l-triangulated
if G is both triangulated and has no monochromatic cliques of size greater than [. We
say that G has an [-triangulation G' = (V, E') if E C E’ and G’ is [-triangulated.

Let I = (S,C) be an input to the phylogeny problem. For o € C we define
a; = {s € S :i € a(s)}. The partition intersection graph of I is the vertex-colored
graph (G = (V, E), color) defined by V ={a; : a € C},E = {(, 55) : o N G5 # 0,
where i # j if o = 8} and for a # 3, color(a;) = color(a;) # color(fs). Note that
because the input I can have load greater than one, the coloring function color may
not be proper.

The main results leading to the algorithm can be paraphrased as follows:

e Let I be an input to the [-load perfect phylogeny problem. Then there is an
l-load perfect phylogeny for I iff the partition intersection graph G; has an
[-triangulation.

e Given a graph G which is vertex-colored using k colors (not necessarily prop-
erly colored) we can determine in time polynomial in fixed k£ and | whether
G has an [-triangulation and construct the [-triangulation when it does.

e Given an [-triangulation G’ of G we can construct an [-load perfect phylogeny
in polynomial time.
As a consequence, we will provide an algorithm for determining if an [-load perfect
phylogeny exists for k& polymorphic characters defined on n species in O((rk31?)F+1 4
n(kl)?) time.

4.2.2. Characterization of l-triangulated graphs. There is a well-known
characterization of triangulated graphs as intersection graphs of subtrees of a tree
[7]. In this section we will look at an extension of this particular characterization for
[-triangulated graphs.

The following lemma will be useful in the proof of the characterization and also in
later theorems. It describes the number of simplicial vertices in a triangulated graph.
The proof is simple and is discussed in [17].

LEMMA 4.7. Let G be a triangulated graph which is not a clique. Then G has at
least two monadjacent simplicial vertices.

We can make a similar statement about [-triangulated graphs since these graphs
are, by definition, also triangulated.

We now present the characterization of [-triangulated graphs.

THEOREM 4.8. Let G = (V(G), E(G)) be a vertex-colored graph. Then G is
I-triangulated iff 3 a tree T = (V(T), E(T)) together with functions ¢ : V(G) —

bijection

{subtrees of T} and ¢ : V(T) "= {mazimal cliques of G} such that
1. (v,0) € E(G) iff p(v) N p(w) £,
2. p(v) ={ue V(T):v e du)},
3. Yo e V(T),p(v) has at most I vertices of the same color.
Proof. Suppose a tree T exists together with the functions ¢ and ¢. We will first
show that this, together with conditions 1 and 2, implies that G is triangulated. Let
A = ajas---aja1,i > 4, be a simple cycle in G. We will show that A has a chord.
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Working in mod i arithmetic, it can be seen that ¢(a;) N e(aji1) # 0 V1 < j <.
Let ¢(aj) = Tj;. Thus V(T;) N V(Tj41) # 0 V1 < j < i. It can be seen that
35 such that V(T;_1) N V(T;) N V(Tj41) # 0, as otherwise T will contain a cycle.
Let v € V(Tj_1) N V(T;) N V(Tj41). Thus ¢(u) contains a;_1,a; and a;i; and so
(aj—1,a;41) € E(G). Hence A contains a chord and so G is triangulated.

From condition 3, G can have maximum monochromatic clique size . Thus G is
[-triangulated.

We now prove the converse by induction on |V(G)|. Suppose the statement is true
for all graphs having less than n vertices. Let G be a connected graph with n vertices
and suppose G is [-triangulated. Now if G is complete, then T is a single vertex
and the result is trivial. Assume that G is connected but not complete. Since G is
[-triangulated, from Lemma 4.7, it contains a simplicial vertex v. Let A = {v}UT'(v).
Note that A is a maximal clique of G and contains monochromatic cliques of size at
mostl. Let B={u€ A:T'(u) C A} andlet X = A—B. Note that B, X, and V(G)—A
are nonempty since G is connected but not complete. Observe that G’ = G|(V(G)—B)
is [-triangulated and has fewer vertices than G. Applying the induction hypothesis,
let 77 be the tree and ¢’ and ¢’ be the functions satisfying the conditions of the
theorem for G’. There are two cases to handle here. Case 1 is when X is a maximal
clique in G" and Case 2 is when it is not (note that X is a clique in both G and G’):

Case 1. We can obtain T, ¢, and ¢ from T’, ¢’, and ¢’ as follows: Identify that
vertex v’ € V(T") such that ¢'(v') = X. Define ¢(w) = ¢'(w) Yw # v" and ¢(v') = A.
Define p(y) = ¢'(y) Yy ¢ B and ¢(y) = {v'} Yy € B.

Case 2. Identify that vertex v’ € V(T”) such that ¢'(v') D X. Create a new
vertex v and connect it to v'. Define ¢(w) = ¢'(w) Yw # v and ¢(v) = A. Define
p(y) ={v}U¢'(y) Yy € X and p(y) = {v} Vy € B.

Note that in both cases A contains at most [ vertices from the same color class
and that T, ¢, and ¢ satisfy the stated conditions. ]

THEOREM 4.9. Given an instance I of the l-load perfect phylogeny problem, let
Gy be the corresponding partition intersection graph. Then I has a solution iff Gy has
an l-triangulation.

Proof. Let T be the solution to the instance I of the l-load perfect phylogeny
problem. By Theorem 4.8 there is a graph G which is [-triangulated and is related to
T as mentioned in that theorem. It can be seen that G is a supergraph of G;. Thus
(1 can be [-triangulated.

Suppose G can be [-triangulated. Let G be the [-triangulation of G;. Then there
is a tree T associated with G satisfying the conditions of Theorem 4.8. It can be seen
that in T all the character states are convex and each vertex in 7" has a label set
containing at most [ vertices of the same color. Thus T is a solution to the instance
I of the l-load perfect phylogeny problem. 0

4.2.3. l-triangulating a vertex-colored graph. In this section we turn to
the problem of [-triangulating a vertex-colored graph. The solution to this problem
makes use of several properties of triangulated graphs and also of a particular class
of triangulated graphs called k-trees.

Further definitions. Triangulated graphs admit orderings vi,vs,...,v, on the
vertex set such that for each 4, N; = T'(v;) N {vi41, Vit2, ..., 0n} is a clique [17]. These
orderings are called perfect elimination schemes.

Consider a graph G = (V, E) with |V| = n > k that contains at least one k-clique.
Such a graph G is a k-tree if the nodes of G can be ordered vy, vs,...,v,, whereby
Lo (vi) N{vig1, Vit ..., vn} is a k-clique for all ¢ with 1 <i <n —k. A k-tree also
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has the following recursive definition: The complete graph on k vertices is a k-tree; if
G = (V,E) is a k-tree, and S C V is a k-clique, then the graph formed by adding a
new vertex v and attaching it to each vertex in S is also a k-tree. Each k-tree may
be constructed using several different sequences of these operations. The initial set
S C V is called a basis for the k-tree.

For a graph G = (V, E) and vertex-separator S C V with C a component of
G — S, we define C U cl(S) to be the graph formed by adding to the subgraph of
G induced by C U S sufficient edges to make S into a clique. Let G = (V| E) be
a k-colored graph. We say that G is a (k,)-partition intersection graph if (a) the
maximum monochromatic clique size is I, and (b) G is edge covered by ki-cliques.
Note that the maximum clique size in a (k,[)-partition intersection graph is kl.

The algorithm we present for I-triangulating a vertex-colored graph is based on
dynamic programming. We will need the following lemmas in our algorithm.

LEMMA 4.10. Let G = (V, E) be a connected graph which is vertex-colored (not
necessarily properly colored) using k colors with |V| > ki, where 1 is the mazimum
monochromatic clique size in G. Let the maximum clique size in G be kl. Then G
has an l-triangulation iff it has an l-triangulation that is a (kl — 1)-tree.

Proof. Clearly, if G has an [-triangulation that is a (kl — 1)-tree, then G has an
[-triangulation.

Now suppose that G has an [-triangulation. We will use induction to show that
G has an [-triangulation that is a (kl — 1)-tree. Base case is when |V(G)| = ki, i.e.,
G is a clique. This is already a (kl — 1)-tree and it is I-triangulated.

Suppose the statement is true for all graphs with less than n vertices (n > kl)
and containing maximum monochromatic clique size [ and maximum clique size kl.

Let G be a graph with |V(G)| = n. Since G can be I-triangulated, let G’ be the
[-triangulation of G. From Lemma 4.7 there are at least two nonadjacent simplicial
vertices in G’. Pick that simplicial vertex v € V(G’) such that G’ — {v} still has
maximum clique size kl. Let I'c/(v) denote the neighbor set of v in G’. Observe that
G’ —{v} is an [-triangulation of G — {v}. Thus, by the induction hypothesis, G’ — {v}
can be I-triangulated into a (kl—1)-tree. Let G be the (kl—1)-tree. Let o be a perfect
elimination scheme for G”. Look at  which is the first vertex in T'g/(v) to appear in
0. There are two cases to handle here. Case 1 is when z is within the sequence of
last kl vertices appearing in ¢. In this case make v adjacent to all vertices in the last
kl positions of o, except with some vertex u ¢ I'g/(v) and color(u) = color(v). The
resulting graph is an [-triangulated (kI — 1)-tree. Case 2 is when x is not within the
sequence of the last kl vertices appearing in o. Let A be the set of vertices following
x which are neighbors of z. Clearly, (I'¢s(v) —x) C A. Make v adjacent to all vertices
in T'gr(v) and also to all except the one vertex u appearing in A — I'g/(v) such that
color(v) = color(u). The resulting graph is an [-triangulated (kl — 1)-tree.

Thus we have that if G has an [-triangulation then it has an [-triangulation which
is a (kI — 1)-tree. 0

LEMMA 4.11. Let G be a (k,l)-partition intersection graph. Then G can be I-
triangulated iff there exists a set K C V of size (kl — 1) which is a separator for G
such that for all components C of G — K, CUcl(K) can be l-triangulated.

Proof. In Lemma 4.10 it was shown that G has an [-triangulation iff it has an
I-triangulation G’ which is a (kl — 1)-tree. If such a G’ exists, then G’ has a separator
of size kI — 1 which is a clique by [31]. The converse is straightforward. a

We are thus motivated to make the following definition.

DEFINITION 4.12. Let G = (V, E) be a vertez-colored graph with k colors and with
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mazimum monochromatic clique size . A potential basis for G', the l-triangulation of
G, is a subset Vo CV such that (a) |Vo| = kl — 1 and (b) Vo is a vertex separator for
G. If Vo C V satisfies both these conditions then we say that Vi is a potential basis
for G, and call Vi a pb-set.

Our dynamic programming algorithm will solve the [-load problem when the
input is a (k,l)-partition intersection graph. Because our input graphs may not be
(k, 1)-partition intersection graphs, we need the following result.

LEMMA 4.13. Let G = (V, E) be vertex-colored with a coloring function color
(using k colors) and assume that the mazimum monochromatic clique size is . Then
there exists a (k,l)-partition intersection graph G' = (V' E") such that the following
18 true:

o For every pb-set S C V' containing (k — 1) colors and every component C' of
G' — S, CUS has all k colors present.

e G can be I-triangulated iff G' can be l-triangulated.

e The number of vertices in G' is |V|+ |E|(kl — 2).

Proof. For each edge e = (v,w) in E, add kl — 2 vertices and sufficient edges
so that the kl vertices together form a clique with k color classes of size [. Call the
resultant graph G'.

Clearly, |V(G')| = |V| + |E|(kl — 2). Also, since G’ is now a (k,!)-partition
intersection graph, every edge in G’ is part of some kl-clique. Thus, for every pb-set
S of G’ containing (k — 1) colors and for every component C' of G’ — S, C U S will
have all k£ colors present.

Finally, suppose G’ has an [-triangulation G’. Then the subgraph of G/ induced
by the vertex set V(G) is also I-triangulated [17]. Thus G can be [-triangulated.
For the other direction, suppose G has an [-triangulation G;. Identify the edges in
G1 which were present in G and make each of the edges a part of a new ki-clique.
This defines a graph G which can be verified to be a supergraph of G* and is also
I-triangulated. Thus G can be [-triangulated iff G’ can be [-triangulated. a

We now have the basis for an algorithm for computing I-triangulations of vertex-
colored graphs:

ALGORITHM B (I-triangulating k-colored graphs).

Step 1. Embed G in a (k,[)-partition intersection graph, G'.

Step 2. Compute all pb-sets Vo C V(G’) and all components C of G’ — V. The

subproblems C' U ¢l(Vp) are then bucket sorted by size.

Step 3. Use dynamic programming to determine the answers for each subprob-

lem in turn.

Step 4. If there is a pb-set V{ such that for all components C of G'—Vp, CUcl(V})

is has an [-triangulation, then return (Yes), else return (No).

It is clear that we need to indicate how we implement Step 3.

Solving subproblems using dynamic programming. We have thus reduced
the problem of determining whether the graph G can be [-triangulated to looking at
graphs of the form C'Ucl(S), where S is a pb-set, C'is one of the components of G' — S,
and we presume G’ to be a (k,l)-partition intersection graph.

Rose, Tarjan, and Lueker [32] proved the following lemma about triangulated
graphs.

LEMMA 4.14. Let G be a triangulated graph, o a perfect elimination scheme for
G, and a,b vertices in G. If there is a path P from a to b in G such that every vertex
in P —{a,b} comes before a and b in the ordering o, then (a,b) is an edge in G.

We also observe the following lemma about (kI — 1)-trees.
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LEMMA 4.15. If G can be l-triangulated into a (kI —1)-tree G’, then any (k1 —1)-
clique in G’ can be a basis for G'.

We now prove the following theorem. The proof for this theorem is along the
same lines as the proof for Theorem 1 appearing in [27].

THEOREM 4.16. Let G = (V, E) be a (k,1)-partition intersection graph containing
at least kl+1 wvertices, Sy pb-set of G, and C a component of G— Sy. Then CUcl(Sy)
can be l-triangulated iff there exists a family F of l-triangulated (kl — 1)-trees and a
vertex v € C' such that

1. For every F € F there exists a vertex x € Sy such that V(F) = C' U cl(S),
where S = Sop U {v} — {a} and C’ is a component of both G — S and C' U
c(Sy) — S.

2. |[V(F)| < |[V(CUd(Sy))|, for every F € F.

3. Every two graphs in F intersect only on So U {v}.

4. G|(C'USy) is contained in |Jper F.

Proof. 1t is easy to see that if these conditions hold we can combine the [-
triangulated (kl—1)-trees in F into one [-triangulated (kl—1)-tree covering C'Ucl(Sp)
since they intersect only on Sy U {v}.

For the converse, suppose that G; = C' U cl(Sp) can be [-triangulated. Let G’
be an I-triangulation of C' U ¢l(Sy). By Lemma 4.15 the (kI — 1)-clique Sy can be a
basis for G’. Let v be the vertex added to the basis Sy in the construction of G’ and
let S = Sp U {v}. Thus there is a perfect elimination scheme for G’ in which the
vertices of S” occur at the end. We will show that we can decompose C' U ¢l(Sy) into
the union of [-triangulated (k! — 1)-trees, Tk, each of which is based upon a (ki —1)-
clique subset K C §’. We will then show that each such K forming the basis of one
of these [-triangulated (kI — 1)-trees will be a separator for G, so that Tx — K has
components C1,...,C,. We can then in turn write each Tk as the union of possibly
smaller (kl — 1)-trees, T} = Tk|(C; U K). These [-triangulated (kl — 1)-trees are the
ones of interest.

G’ is built by adding vertices, one at a time, and making each new vertex adjacent
to every vertex in some (kI — 1)-clique. We will define G; to be the subgraph of G’
induced by the vertex set {v;, vit1,...,vy|}. Thus Gv|—gi42 is a (kl —1)-clique, and
to form G; we make vertex v; adjacent to every vertex in some (kI — 1)-clique in G;41.
We will show that we can assign to each added vertex v; (with ¢ < (|JV]| —kl+1)) a
label L(v;) the name of a (kI —1)-clique K C 5, so that for each K C S’ the subgraph
Tk = G|Vk, where Vg = {v: L(v) = K or v € K}, is an I-triangulated (kl — 1)-tree.
We will also show that every edge e in G|(C' — {v}) is in one of these (kI —1)-trees and
that the (kl —1)-cliques K forming the basis of the (kI — 1)-trees T are separators of
G. We will also need to show that the component C’ of C'U cl(Sy) — L(v) containing
v is a component of G — L(v). This will prove our assertions.

We first need to show how we assign vertices to (kI — 1)-clique subsets of S’. Let
L be the assignment function we wish to define for every vertex not in S’. Suppose
we have constructed the graph G;; and are now adding v; to the graph and making
it adjacent to every vertex in some (ki — 1)-clique, R. If R C S’, then we set L(v;) =
R. Otherwise, the vertices in R will consist of (perhaps) some unlabeled vertices
(these will be in S’) and at least one labeled vertex. If all of the labels in R agree,
then this is the label that we will assign to v;. On the other hand, suppose for our
construction that when we make v; adjacent to every vertex in the (kI — 1)-clique R
not all the labels are the same and that this is the first vertex in this construction
for which this happens. In this case, for some vertices v; and vy in R, L(v;) = X
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and L(vg) =Y, for distinct subsets X, Y C S’. Without loss of generality we can
assume that ¢ < j < k. In constructing G; we made v; adjacent to every vertex in
some (kl — 1)-clique C' C Gj41. Note that v, € C since v; and vy, are adjacent and
k > j. Since we were able to set L(v;) = X unambiguously, this means that either
every vertex in C' was unlabeled, and thus X = C, or that the labeled vertices were
all labeled X. Since we have assumed vy, was labeled, we can infer that L(vy) = X
and hence X =Y. Thus this assignment of vertices to (kI — 1)-clique bases is well
defined, and each label denotes a subset K of S’. It is easy to see that the subgraph

x = G|V (for Vg = {v: L(v) = K or v € K}) is an I-triangulated (kl — 1)-tree
and that Tk is based upon the set K.

By our construction of the labeling function, it is also clear that no edge in G has
different labels at its endpoints, so that every edge in G|(C — {v}) is in exactly one
l-triangulated (kI — 1)-tree, Tk .

We now show that each (kI — 1)-clique K C S’ forming the basis of an I-
triangulated (kl — 1)-tree in F is a separator for C' U cl(Sp) and for G. We first
show that K is a separator for C'U cl(Sp). Suppose to the contrary, so that for some
set K C S forming the basis of an [-triangulated (kI — 1)-tree T, C' U cl(Sp) — K is
connected. Let K = S — {x}. We will show that there is no path from z to any vertex
in CUcl(Sy) — K. Let ¢’ be a perfect elimination scheme for Tx U {z}. Clearly, we
can assume that x is the last vertex in ¢’ to occur before the vertices of K. Let a be
the vertex immediately preceding x. If there is a path from z to a in C' U cl(S) — K,
then the edge (a,x) is in G by Lemma 4.14. But then S U {a} is a (kI + 1)-clique,
contradicting that G has a supergraph which is a (kl — 1)-tree. The proof can be
modified to show that K is a separator for G as well. Hence the (kl — 1)-trees T%
each contain fewer vertices than G.

We now complete our proof by showing that the components of C U ¢l(Sy) — K
are also components of G — K, where K is the basis of a (kl — 1)-tree F' € F. Recall
that by our construction each such basis K is a set L(a) for some a € V(F) — K. So
let C’ be a component of C U cl(Sy) — L(a), for some a € C. It is easy to see that
L(a) = So U{v} — {z} is a separator for C' U cl(Sp) and that every component X of
C Ucl(Sy) — L(a), such that ¢ X, is also a component of G — L(a). Thus we will
show that = ¢ C’, so that C’ is a component of G — L(a).

Suppose x € C’. Then z is adjacent to at least one vertex z of C’ — {z}. When
we labeled the vertex z we labeled it with L(a) implying that « € L(a), and yet, by
our construction, x ¢ L(a). Hence the component C’ of C'U cl(Sy) — L(a) containing
a is a component of G — L(a). This completes our proof. 0

We can now state the following theorem.

THEOREM 4.17. Let G = (V,E) be a (k,l)-partition intersection graph with
|[V| > kl+1. Let Sp be a pb-set and let C' be a component of G — Sy. Then C'Ucl(Sy)
can be l-triangulated iff there exists some vertex v in C and a family of pb-sets M
such that the following is true:

1. For each M € M, M C SoU{v} and M is a separator for CUcl(Sy) and for
G.

2. For each vertex x € Sy there is an M, € M and a component C, of G — M,
and of C U cl(So) — M, such that |Cy| < |C| and Cy U cl(My) can be I-
triangulated.

3. Every edge in C is in exactly one C, given above.

Proof. Suppose that CUcl(Sp) can be I-triangulated and let G’ be a I-triangulation
of CUcl(Sp). From Theorem 4.16 we infer that there is a vertex v € C such that the
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subgraph of G’ induced by the vertices of C'U ¢l(Sp) can be written as the union of
the [-triangulated (kl — 1)-trees Tk based upon pb-sets K C S’ = Sy U {v}. We will
let M consist of these subsets K, which form the bases of the (k! —1)-trees Tx. From
Theorem 4.16 it can be seen that M satisfies the conditions above.

For the converse, if such a family M = {M, : i € I} of pb-sets exists, then there
exists v € C such that the graph CUcl(Sy) is contained in the union of [-triangulatable
graphs of the form C, Ucl(M), where each M € M is a pb-set and a subset of SoU{v}
and C, is a component of G— M and a proper subset of C'. Since G is a (k, [)-partition
intersection graph, these graphs each have all k£ colors and have monochromatic
cliques of maximum size [ and also have cliques of maximum size kl. Hence they can
be completed to I-triangulated (ki — 1)-trees T, where V(T,,) = V(C, U M). This
family of (kl — 1)-trees F = {T, : © € C — {v}} shows that C U cl(Sy) can be
[-triangulated. 0

THEOREM 4.18. Let G = (V, E) be a (k,l)-partition intersection graph, S C V be
a pb-set, and C be a component of G — S. Then we can determine whether C U cl(S)
can be l-triangulated simply by knowing the “answer” for each smaller graph of the
form C" U cl(S"), where S’ is a pb-set and C' is a component of G — S’.

Implementation details of the dynamic programming algorithm (Step 3
of Algorithm B). Data structure: A family X = {M;} of pb-sets. For each set M; in
X, and for each of the r; components C; of G — M;, we denote by M, j =1,2,...,1,
the subgraph of G induced by C; U M; with the addition of edges required to make
M; into a clique. Each such MZJ either can be [-triangulated or cannot be. This will
be determined during the algorithm, in order of increasing size of the sz ’s, and an
appropriate answer (yes or no) will be stored for each.

Recall that Step 2 of Algorithm B sorts the subproblems C; U M; using bucket
sort.

ALGORITHM. (the statements in italics denote comments).

(* Examine the Mf in turn by order of number of vertices,
and determine whether each can be l-triangulated.
Any graph containing all k colors with
1 vertices per color class can be l-triangulated *)
IF MZJ has kl vertices with [ vertices per color
class, THEN set its answer to Yes.
IF MZJ has kl vertices such that there is one color
class with more than [ vertices, THEN set its answer to No.
(* We will now apply Theorem 4.17 to each graph Mlj
and search for a vertex v € M) — M,
and family M satisfying the conditions of Theorem 4.17
to determine whether M7 can be I-triangulated *)
FOR EACH graph Mf in order of size h > kIl DO
FOR EACH v € M/ — M; such that
M; U{v} has no color class containing more than
[ vertices, DO
(* We now check whether for vertex v there is a
family M satisfying the conditions of Theorem 4.17%*)
Examine all sets M, of vertices in M; U {v} which are pb-sets for G
FOR EACH such M,,, let L,, be the
union of the M7, which can be
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l[-triangulated

IF the union of the L,, (for each

M, above) contains MZ — M; — {v}
THEN set the answer of M/ to
Yes and EXIT-DO

END-DO

IF no answer was set for MZJ
THEN set the answer for MZJ to No

(*Applying Lemma 4.11 now*)

IF G has a vertex-separator M; such that
all Mf graphs have the answer Yes,
THEN (G can be [-triangulated)

RETURN (Yes)
ELSE RETURN (No)

END-DO
end of algorithm.

The above algorithm can be modified easily to give back an [-triangulation, if it
exists.

Run time analysis of Algorithm B. Let G = (V, E) be the (k,)-partition
intersection graph which is given as input to Step 2 of Algorithm B. Then, in Step
2, in the worst case the algorithm checks all subsets of size kIl — 1 of which there are
O(|V|¥=1). Each of these is checked for being a pb-set, which involves checking the
set to see if it is a vertex separator. This takes O(|V|?) for each subset. Bucket sorting
the subproblems takes a total of O(|V'|¥!). Step 3, which involves checking to see if a
subgraph satisfies the conditions of Theorem 4.17, takes time linear in the number of
vertices in the subgraph. Thus the overall complexity is O(|V [F+1).

We summarize with the following.

THEOREM 4.19. Let G = (V,E) be a (k,l)-partition intersection graph. We
can in O(|V|F+Y) time determine whether G can be l-triangulated and produce the
l-triangulation when it exists.

4.2.4. Summary of the algorithm to solve the l-load perfect phylogeny
problem. Given I, compute the partition intersection graph, Gy, and embed Gy in
a (k,l)-partition intersection graph G%. Use Algorithm B to determine if G can be
I-triangulated, and compute the triangulation G = (V, E) if it exists. If there is no
l-triangulation, return No. Else, use G to compute the [-load perfect phylogeny 7.

We now briefly discuss how 7" can be constructed from the [-triangulated graph
G = (V,E). Recall that T is related to G by Theorem 4.8.

Let 0 = viva... vy be a perfect elimination scheme for GG. We will construct

the tree inductively where Tj is the tree corresponding to G|{v;, viy1, ..., vy (}. Thus
Ty = T is the tree we seek.
Let Ay = I'(vp) N {vps1,Vpt2,- .., vy }. Inductively, assume we are at vertex v,

in 0 and assume we have the tree Tj;1. Let v; be the first vertex following v; (i.e.,
Jj <) in o which is in I'(v;). Note that (4;U{v;}) D A;. Since v; and v; are simplicial
in G{vj,vj41,vj42,..., vy} and G{v;, viy1,Vigo, ..., vy}, respectively, it follows
that [{v;} U A;| > |A4;] iff, in G[{vj,vj11,vj12,...,vv|}, the subgraph induced by
{v;} U 4; is a maximal clique.

Case 1. If the subgraph induced by {v;} U A; is a maximal clique then it follows
that {v;} U A; also induces a maximal clique in G[{v;,vj41,vj42,...,vv|}. Thus
from Theorem 4.8 in T there will be a vertex which corresponds to {v;} U A;. To
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get T; from Tj41, we add a new vertex u to V(Tj41) and add an edge from u to the
vertex u' € V(Tj41) which corresponds to the maximal clique {v;} U A4;.

Case 2. If |[{v;} U A;|] = |A,], then the subgraph induced by {v;} U A; in
GH{vj,vj41,vj42, ..., vy} is not a maximal clique. Let v, (j < q) be the first vertex
to the left of v; in o such that v; € T'(v,) and |{v;} U A;| = |4,4|. If ¢ = j, then to get
T; we relabel the vertex u € V(Tj41) corresponding to the maximal clique {v;} U 4;
to now correspond to {v;} U A;. If ¢ # 7, then to get T; from T, we create a new
vertex corresponding to {v;} U A; and connect it to the vertex v’ € V(Tj41) which
corresponds to {v,} U A,.

It can be seen that the above operations of obtaining 7} from 7)1 can be imple-
mented in O(deg(v,)), where deg(v) is the degree of vertex v. This can be achieved
by associating two variables with every vertex v, € ¢ (j < r), one that corresponds
to the vertex u € V(T,) such that u represents the maximal clique {v,.} U A, in
G{vr,vr41,...,vy|} and one that corresponds to a vertex v, in o such that v, is the
first vertex to the left of v, for which v, € T'(v,) and [{v,} U A, | = |As].

The time taken for producing a perfect elimination scheme for G is O(|V| + |E|)
[17]. From the discussion above, it can be seen that T' can then be constructed in
O(|V] + |E|). Hence we have the following theorem.

THEOREM 4.20. Let G = (V, E) be a vertex-colored graph which is l-triangulated.
Then the tree T which satisfies the conditions in Theorem 4.8 can be constructed in
(V| + |El).

THEOREM 4.21. The l-load perfect phylogeny problem for n species and k poly-
morphic characters can be solved and the l-load perfect phylogeny constructed (when
it exists) in O(nk21% + (rk312)M+1) time.

Proof. Let I be the input to the [-load perfect phylogeny problem and G; =
(V,E) be the partition intersection graph. Then |V| = rk, and it can be shown
that if |E| > Kl|V| then there is no [-triangulation [27]. Hence |E| < k2Ir. Let
G} = (V' E') be the (k,l)-partition intersection graph embedding of Gy, and note
that |V'| = |V| + |E|(kl — 2) < rk + k31?r. The rest follows. d

Comment. In the case where individual load bounds I, are given, the algorithm
can be modified to run in O(nL? + (rkL?)X™1), where L =3 la.

4.3. Inferring perfect phylogenies from mixed data. In the previous sec-
tion we presented two algorithms for inferring perfect phylogenies from polymorphic
character data; these algorithms had running times which were exponential in L,
where L = ZaEC lo, and [, is the load bound for the character . We can use these
algorithms directly for sets of characters when some of the characters are monomor-
phic and some are polymorphic, but the expense would be too large. This follows
since in typical data sets the number of characters k is the largest parameter, often
in the hundreds or thousands; since L > k, algorithms that are exponential in L are
prohibitively costly. Instead, we propose a method that should be efficient when the
number of monomorphic characters is sufficient to reduce the number of minimal per-
fect phylogenies to a small number. In practice, as the majority of the characters will
be monomorphic, this is likely to be very efficient. The method we propose involves
two steps and is efficient when the number of minimal perfect phylogenies generated
from the monomorphic characters is small.

ALGORITHM C.

Step 1. Infer all minimal perfect phylogenies from the monomorphic characters,
using [23].
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Step 2. Determine whether any of the minimal perfect phylogenies obtained in
Step 1 can be refined so that each polymorphic character is convex on it within the
specified load bound.

Discussion of Step 1. The algorithm by Kannan and Warnow [23] has running
time of O(22"+7" k7 +34 Mk,,n), where M is the number of minimal perfect phylogenies
and k,, is the number of monomorphic characters. This is theoretically expensive if
r, the number of states, is too large; however, in practice the algorithm works quickly
as long as not too many of the characters have a large number of states. Also, in
practice, as long as the monomorphic characters are independent of each other and
comprise a suitably large set, there will be very few perfect phylogenies. Thus we
expect Step 1 to be very fast and to produce very few minimal perfect phylogenies.

Discussion of Step 2. We consider the following problem.

Problem. Refining a tree.

Input. Leaf-labeled tree T and set C' of polymorphic characters, each with an
individual load bound.

Question. Does a perfect phylogeny T’ exist for the polymorphic characters,
subject to the constraint that 7" is a refinement of T'7

ALGORITHM D.

For each internal v € T' which has degree greater than 3, do

1. Let T'(v) = T'y(v) U T'2(v), where T';(v) consists of all the neighbors of v
which are leaves and I's(v) consists of all the nonleaf neighbors of v. For each
u; € I'2(v) add a new node w; on the edge (v,u;). Compute the labeling of
w; so as to make every character convex (each character must contain every
state that appears on both sides of wj).

2. If some new node has a load for a character that exceeds the stated load
bound for that character, RETURN(NO). Let S,, = I'1(v) U {w;|w, is a new
node and w; is a neighbor of v}. Use any of the algorithms from section 3
to determine if there is a perfect phylogeny for (S,,C) satisfying the load
bounds. If any (S,,C) fails to have a perfect phylogeny meeting the load
bounds then RETURN(NO), else RETURN(YES).

Ezample. Consider S = {a,b,¢,d,e, f,g9} and C = {a, f}. Let o be a monomor-
phic character and (3 be a polymorphic character with load bounded by three. Also, let
a(a) = {0},a(b) = {0}, a(e) = {1}, a(d) = {1},a(e) = {1},a(f) = {1}, and a(g) =
{1}. In addition, let B(a) = {0},8(b) = {3},8(c) = {2,4},8(d) = {2,3},8(e) =
{1,4},6(f) = {1,3}, and B(g) = {0,4}. Figure 4.1(i) shows the phylogeny T ob-
tained by applying the perfect phylogeny algorithm to the monomorphic character «.
Let S ={h,c,d,e, f,g} be the species set obtained at the end of step 1 of Algorithm
D. Then §(h) = {0,3}. The instance (S’,{8}) has a perfect phylogeny with load
bounded by three. This is shown in Figure 4.1. From this phylogeny it is possible to
obtain the solution to the instance (S, C'), and this is shown in Figure 4.1(iii).

THEOREM 4.22. Algorithm D correctly determines whether a perfect phylogeny
T exists refining T within the stated load bounds, and it can be modified to produce
the perfect phylogeny T' in time min{O(r*+*1Ln?), O(n?2L? + n(rkL?)L*1)}.

Proof. If the algorithm returns NO, it is clear that no perfect phylogeny within
the constraints of the problem exists. If it returns YES, then the perfect phylogenies
refining each of the stars can be hooked up via the new nodes. The refinement can be
done by using the algorithms in section 4. It can be shown that the algorithm takes
min{O(r¥*1Ln?), O(n2L? + n(rkL?)LT1)}. d

In Algorithm D, if |S,| is small then it may be cheaper in practice to look at all
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Fi1c. 4.1. Ezample for Algorithm D.

possible leaf-labeled topologies on S, rather than use the algorithms of section 4 to
determine the existence of perfect phylogenies on S,.

5. Polymorphism in linguistics. Properly chosen and encoded characters in
linguistics have been shown to be convex on the true tree, so that with proper schol-
arship we should be able to infer a perfect phylogeny. In recent work on an Indo-
European data set, Warnow, Ringe, and Taylor [39] found that there was extensive
presence of polymorphic characters. The degree of polymorphism for each polymor-
phic character could be determined from the data with high confidence, so that the
question of inferring the correct tree amounted to determining if a perfect phylogeny
existed in which each character was permitted a maximum degree of polymorphism
(i.e., load) on the tree. Figure 5.1 shows the tree that they now posit. This was
obtained using Algorithm D. This tree is in fact different from their earlier hypothesis
and from the tree that was presented in [6]. This tree has been obtained as a result of
using more data. This tree shows a limited support for Indo-Hittite, moderate sup-
port for the Italo-Celtic hypothesis, and significant support for a subgroup of Greek
and Armenian.

6. Polymorphism in biology. The evolution of biological polymorphic char-
acters can be modeled using the following operations [28]. A mutation changes one
state into another. A loss drops a state from a polymorphic character from parent
to child. A duplication replicates a state which subsequently mutates. This allows
children to have higher load on a polymorphic character than their parents. We con-
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SLAVIC

F1c. 5.1. The tree on the Indo-European data set. Albanian can be on any of the thick edges.
The tree indicates only a rooted topology without any edge lengths.

sider two types of costs: (a) state-independent costs, in which any loss costs costy,
any mutation costs cost,,, any duplication costs costy, and any match costs 0; and
(b) state-dependent costs, in which the costs are dependent on the states involved.

Parsimony is a popular criterion for evaluating evolutionary trees from biomolec-
ular data. A most parsimonious tree 7' minimizes }_ ¢ p(p) cost(e). Traditionally,
for monomorphic characters cost(e) is the Hamming distance of the labels at the two
endpoints of e. For unknown topology, the traditional parsimony problem is NP-hard
[9, 10], but for fixed topology it is in P [16].

Consider the case where costs costy, cost,,, and costy are not state-dependent.
Let (u,v) be an edge in T with u above v. We define the cost cost(a, (u,v)) of a € C
on (u,v) as follows: Let X = a(u) — a(v),Y = a(v) — a(u), and Z = a(u) N a(v).

e If | X| = |Y| then cost(a, (u,v)) = cost,,|X| (all events are mutations, but
shared states do not change).
o If | X| > |Y| then cost(a, (u,v)) = coste[| X| — |Y|] + costm|Y].
o If | X| < |Y| then cost(a, (u,v)) = costq[|Y| — | X|] + cost,,| X|.
The cost of the edge (u,v) is then ) .. cost(a, (u,v)). For state-dependent costs
we must also match states in the parents to states in the child for mutation and
duplication events.
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We consider the following problem: Given a fixed leaf-labeled topology and a
maximum load [, what is the most parsimonious labeling of the internal nodes?

The problem is NP-complete for arbitrary loss, mutation, and duplication cost
functions. If cost; = 0, such as when we wish to maximize convexity, the problem
becomes even harder.

THEOREM 6.1. The following problems are NP-complete:

e Given a tree with leaves labeled by species each with load at most | and a value
P, determine if the internal nodes can be labeled to create a phylogeny with
load at most I and parsimony cost at most P for arbitrary costy < cost,, <
costy.

o If costy = 0 and cost,, < costq are arbitrary then given a tree with leaves
labeled by species and values | and P, determine if the internal nodes can be
labeled to create a phylogeny with load at most I and parsimony cost at most
P. This problem remains NP-complete even if the tree is binary, no edges of
weight 0 are allowed, and the input load is 1 < [; < 1.

Proof. In the fixed-topology setting, characters are independent. Therefore we
consider only the case of a single character with r states.

Clearly the problem is in NP. We now show it is NP-hard. Our reduction is
from the three-dimensional matching problem (3DM), known to be NP-complete [20],
which is defined as follows. We are given three disjoint sets, A, B, and C, each with
n elements, and a set X of m triples, X = {(a;,b;,cx) : a; € A,b; € B,and ¢, € C}.
We say that triple (a;,b;,cx) covers a;,bj, and ¢,. We wish to find a set of n triples
that covers every element of A, B, and C exactly once. This set of n triples is called
a perfect matching.

Given an instance of 3DM, we construct a tree T" with leaves labeled by species
each with load at most m —n. The internal nodes of T can be labeled with load m —n
and parsimony (3mn — 3n?)cost,, iff the instance of 3DM has a perfect matching.

We construct the tree T' as follows. We begin by creating an internal root node.

This root has 3n children, a4, ...,a,, b1,...,b,, and ¢y, ..., c,, which are all internal
nodes. Let n(a;) for 1 < i < n be the number of triples that contain a;. We have
the following states for our character: m states x1,zo,...,z,, corresponding to the

m triples z; € X, and d(a;) = m —n — n(a;) + 1 dummy states associated with
each a; (similarly we have d(b;) = m —n — n(b;) + 1 dummy states for each b; and
d(ci) =m—n—n(cg)+ 1 dummy states for each ¢i). Let D(a;) be the set of dummy
states associated with a; (|D(a;)| = d(a;)). Let X (a;) be the set of triples that contain
a; (| X (a;)| = n(a;)). For the remainder of this discussion we will concentrate on nodes
a;. The nodes b; and c;, are treated symmetrically.

Node a; has n(a;) leaf children. Let x1,%2,...,%,,) be the states associated
with the triples that contain a;. The ith leaf under node a; has all the dummy states
D(a;) associated with a; and all of x1,,..., 2y, (,,) except for state x;. Each child
thus has load m — n.

It can be shown that we can label the internal nodes of this tree with load at
most m — n and cost at most (3mn — 3n?)cost,, iff the instance of 3DM has a perfect
matching.

First suppose that X, C X is a set of n triples that forms a perfect matching.
Label the root with states from the set X — X, and label a; with all the leaves below
it except x4, where z, € X and a; € z,. Each internal node has load m — n as
required. The edge from the root to node a; has cost d(a;)cost,, since none of the
dummy states in D(a;) are in the root, all of the remaining states in a;’s label are



126 BONET, PHILLIPS, WARNOW, AND YOOSEPH

in the root and the root has the same load as a; (thus we have mutation rather than
duplication or loss). Since Y., d(a;) = mn —n? +n — m, we have (since the edges
from the root to the b; and ¢ nodes are of similar cost) that the total cost of the
edges from the root to its 3n children is 3mn — 3n? 4+ 3n — 3m. Now consider the cost
of the edges from node a; to its n(a;) children. If z, is the triple in X, that contains
a;, then the edge to the child missing z, will have cost 0. All other edges have cost
costy,. Summing over all edges from a;, bj, or ¢, nodes to their children, we have a
cost of (3m — 3n)cost,,. Thus the total cost is (3mn — 3n?) and the parsimony bound
is met.

Suppose instead that there is a labeling of the internal nodes of T so that the
maximum load is m — n and the total cost is at most 3mn — 3n?.

We need the following lemma.

LEMMA 6.2. If cost,, < costq, then in any optimal solution an internal node will
always have load at least as high as the minimum load of any of its children.

Proof. Consider a node p that is the parent of k children. Suppose there is a
labeling of the nodes such that node p has a load smaller than all of its children.
Thus in the cost of the tree there are at least k£ duplications associated with edges
from p to its children. If we add to the label of p another state found in at least one of
its children (such a state always exists since all children have more labels than p), then
regardless of the labeling of p’s parent we will decrease the cost of the tree. Adding
the label costs at most costy along the edge from node p to its parent. However, it
saves at least costy + (k — 1)(costy — costy,). Since costy > cost,,, adding the label
always results in a net savings. Therefore we can assume that in the labeling we are
given all internal nodes have load m — n, or we can add labels to these internal nodes
and only reduce the cost. 1]

Thus from Lemma 6.2 all internal nodes of the input tree will have load m — n.
Looking at the root, each state z; is contained in the leaves of exactly three children.
Each dummy state is contained in the leaves of only one child. Therefore a lowest-cost
labeling of the root will have m — n states x;. If all the a;, b;, and ¢, are also labeled
by the states chosen by the root, then the minimum possible cost of the edges from
the root to its children is 3mn — 3n2 — 3m + 3n. This is because each child a; must
mismatch on at least m — n — n(a;) labels. Summing over all children of the root,
this give 3mn — 3n2 — 3m, but since n triples could not be in the label of the root,
there is an additional cost of 3n. Looking at the parsimony bound, even if the cost
of the edges from the root to its children is minimum, the total cost of the a;, b;,
and ¢, nodes to their children can be at most 3m — 3n. Consider a node a; and its
children. The minimum possible cost of the edges between these nodes is n(a;) — 1,
which comes from labeling a; with all its dummy states and all but one of the triple
states associated with it. If a; is instead labeled with all of its triple states and all
but one of its dummy states, the cost is n(a;). To achieve a total remaining cost
of 3m — 3n, however, the cost of each a; to its children must be the minimum and
therefore one of the triple states is missing from each a;, b;, and c;. These must be
the n triple states missing in the root or there will be higher cost associated with the
edges from the root to its children and the parsimony bound will be exceeded. Thus
the n triple states missing from the label of the root cover each of the a;, b;, and ¢,
and correspond to a perfect matching for the 3DM instance.

We now prove the second part of Theorem 6.1. Clearly the problem is in NP.
We now show it is NP-hard. We again use a reduction from 3DM as in the proof
of the first part of Theorem 6.1. We construct the tree as above with the following
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modifications. Each node a; now has two children. For the case of load-1 input, each
child is the root of a binary tree. Each of these trees has all the dummies in D(a;)
represented in the leaf set and the states of X (a;) are arbitrarily divided among the
children, appearing as a leaf just once in the subtree rooted at a;. For other input
loads, the labels of the leaves vary. For instance, for load L there are only two leaf
children of a;, one labeled with all the dummies in D(a;) and all but one state in
X(a;), the other labeled with all the dummy states and the single state z, € X(a;)
missing in the label of its sibling. For other loads, the children of a; can also be made
into binary trees where the input load is met by at least one leaf, all dummy states
are represented in each child of a;, and each state in X(a;) is represented exactly
once. To make the whole tree binary, we form an arbitrary binary tree with the a;
as “leaves.” (The two children of a; will be attached.) We call this tree (without the
children of a;) the A tree. We make the root of the A tree a child of the global root.
Similarly we form a B tree and a C' tree and make them children of the global root.

Again, it can be shown that we can find labels for the internal nodes of this tree
with load at most m —n and cost at most (3mmn+6n —3n? —3m)cost,, iff the instance
of 3DM has a perfect matching.

First suppose that Xy C X is a set of n triples that forms a perfect matching.
Label the root with states from the set X — X, and label a; with all the leaves below
it except x4 where z, € X, and a; € 4. Each internal node in the A tree is labeled
with all of the z, states appearing in the labels of its two children. It then picks an
arbitrary set of the dummy states appearing in its two children so that its final load
is m — n. Thus each internal node has load at most m — n. We now calculate the
cost of this labeling. Each dummy state associated with a; arises once in the A tree
by mutation since all internal nodes in the A tree have load m — n, as does the global
root, and the global root is not labeled with any dummy states. The total cost of all
dummies is (3mn + 3n — 3n% — 3m)cost,,. In addition each of the n triple states not
represented in the root arise three times in the tree by mutation for a total cost of
3ncost,,. Thus the tree costs (3mn + 6n — 3n% — 3m)cost,, and the parsimony bound
is met.

Suppose instead that there is a labeling of the internal nodes of the tree so that
the maximum load is m—n and the total cost is at most (3mn—+6n—3n%—3m)cost,,.

We need the following lemma.

LEMMA 6.3. If costy = 0, then there exists an optimal solution where each
internal node contains all the states in the subtree rooted at it or has mazimum load.

Proof. Suppose we are given a labeling where a node p has load [, which is not
the maximum load but its label does not contain a state r represented in the label
of one of its children. Let P be the set of all nodes on the path from p to its first
ancestor with load at least I, + 1 or up to the root if no such ancestor exists. Add
state r to the label of p. Choose some state that is in node p that is not in its parent
(one always exists if the parent has load at most [,) and add it to the label of its
parent, and so on so that each node in set P has its load increased by 1. This increase
in labeling costs at most cost,, on the label from the highest node in P to its parent
(nothing if the highest node in P is the root), and it saves cost,, on the edge (p, c).
Thus we have not increased the cost of the tree. Starting this process with internal
nodes lowest in the tree gives us the above claim. 1]

Therefore we can assume that every internal node is labeled with all states in
its subtree or has maximum load. In particular, we can assume that the root has
maximum load m — n. Since each triple state z, is represented in the leaves of
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all three children and the dummy states in only one child each, then the minimum
possible cost associated with dropping states at the root is (3mn-+6n—3n%—3m)cost,,
(all the dummy states must arise somewhere in the tree and the n triple states not
present in the root label must arise three times in the tree). Therefore, to meet the
parsimony bounds, there can be no additional cost throughout the remainder of the
tree. Considering a single node a;, there are m — n + 1 states in the subtree rooted
at a;. Since it can have load at most m —n, one of these states must be missing from
the label at a;. If one of the dummy states is dropped, then there will be an extra
cost of cost,, beyond what is forced by the root (the root allowed each dummy state
to arise once and each dummy state appears in the subtrees rooted in both children
of node a;). Therefore node a; must be labeled with all its dummy states and all
but one of the x, € X (a;). These triple states must be passed up the A tree to the
root, but there is sufficient capacity to do so (the states that are dropped at internal
nodes of the A tree of dummy states, which ultimately had to be dropped anyway).
To achieve the parsimony bound, this x, missing from the label of node a; must be
one of the triples not represented at the root. Therefore the n triple states missing
from the root label correspond to the perfect matching in the 3DM instance. a

We now consider algorithms for fixed load [. Since the topology is given, characters
can be solved independently. We first give the algorithm for the most general possible
cost function and then consider special cases which can be solved more efficiently. All
the algorithms are standard bottom-up dynamic programming. A final pass downward
from the root produces an optimal labeling of the tree in time O(nlk).

THEOREM 6.4. Given a tree on n species with k characters where r is the mazi-
mum number of states for any character,

1. there exists an O(nkr®)-time algorithm to compute the most parsimonious
load-l labeling for the tree for arbitrary state-dependent costs;

2. there exists an O(nkl(2r)!)-time algorithm to compute the most parsimonious
load-l labeling for the tree for arbitrary fized costs costy; < cost,, < costqy;

3. there exists an O(nk(2r)!)-time algorithm to compute the most parsimonious
load-l labeling for the given tree when costy = 0.

Proof. When the cost function is state-dependent, we convert our input to a
weighted monomorphic parsimony problem. We define a new set of O(r!) states, one
for each possible label of a node. Given two labels [, and I, we can determine the cost
of a parent-child edge with labels I, and [.. We must match states for mutations and
duplications. We thus compute a matrix of edge costs. Because loss and duplication
costs are not the same, this matrix is not symmetric in general. We then use the
algorithm of Sankoff and Cedergren [34] for weighted parsimony which runs in time
O(nkj?) for n species, k characters, and j states/characters. In our case we have r!
states, where r was the original number of states in the polymorphic character. Thus
this algorithm has time O(nkr?").

The bottom-up dynamic programming algorithm for weighted parsimony proceeds
as follows. For an internal node v, let ¢(v,l,) be cost of the best labeling of the
subtree rooted at v provided that node v is labeled [,. Then we have c(v,l,) =
Y wrehild of o(Ming ,c(v’, 1) +w(ly, L)), where w(ly, 1) is the cost of the edge with
parent label [,, and child label [,,. Thus we consider every possible label for an internal
node and compare it against every possible label for its children. For arbitrary weight
function w, this will cost 72! for each parent-child interaction.

For the case of arbitrary cost; < cost,, < costy (not state-dependent), we can
reduce the overall time to O(nkl(2r)!). Again, we wish to consider every possible label
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for node v but we need not consider every possible label for its children. Suppose that
for each child we know the best choice of label for each of load 1,2,...,[, where some
specific subset (possibly empty) of the label is specified. For example, we know the
best load-3 labeling of the child where a and b are two of the three states. This is
O(Ir') information. To find the best labeling of the subtree rooted at v provided v is
labeled by [,, the only labels we need to consider for the children of v are the best
ones for each possible subset of [, and each possible load. For example, if I, = {a, b},
I = 3, and * can be any state, then the only labels that must be considered for a child
are * (best tree with load-1 label), xx, %% %, a, ax, a**, b, b*, b *, ab, and ab*. More
formally, let ¢(v, L, z) be the cost of the best subtree rooted at v where the label of v
contains state set L and x other states. Then the cost of label [, and node v is

_ . . / / !
c(v,l,) = hmz min_min | (e(v), L)+ wly, L 1)),

where

(o, L.1) = Ucosty, + (|l,] — |L| — U")costy if |L|4+1 <|l,]
W S8 ) = (1] = L)costy + (|L| + 1/ — |ly|)costq  otherwise.

Thus to compute the cost of a label, each parent must check O(I2!) labels in each
child. Once the label [, is computed, it contributes to O(2') minimizations used by
its parent (each subset of I, with load |l,|). Since each of the O(n) edges is checked
O(12Y) times for each of the 7! possible parent labels, the overall cost is O(nkl(2r)!).

To prove the final part of the theorem, when costy = 0 (for example when we
wish to maximize convexity), we note that whenever we have cost; = 0 there exists
an optimal solution where each internal node contains all the states in the subtree
rooted at it or has maximum load. We begin by locating the highest internal nodes v
with at most [ states in the subtree rooted at them. We label node v by these states
and make it a leaf by removing all its children. Now we can assume all internal nodes
have load [. This saves a factor of [ using the preceding algorithm since there is now
only one value of I’. 0

7. Discussion. In this paper we introduced an algorithmic study of the problem
of inferring the evolutionary tree in the presence of polymorphic data. We considered
parsimony analysis for polymorphic data on fixed topologies and presented algorithms
as well as hardness results. We also presented algorithms for inferring perfect phylo-
genies from such data, and we note that it is reasonable to seek perfect phylogenies for
certain types of data. The results of our analysis of the an expanded Indo-European
data set studied by Warnow, Ringe, and Taylor has led to a new hypothesis for the
evolution of Indo-European languages.
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