
TheSerial TransitiveClosureProblem forTrees

Maria Luisa Bonet∗

Department of Mathematics
University of California, San Diego

Samuel R. Buss∗

Department of Mathematics
University of California, San Diego

July 9, 2002

Abstract

The serial transitive closure problem is the problem of, given a
directed graph G and a list of edges, called closure edges, which are
in the transitive closure of the graph, to generate all the closure edges
from edges in G . We give a nearly linear upper bound on the number
of steps in optimal solutions to the serial transitive closure problem for
the case of graphs which are trees. “Nearly linear” means O(n · α(n))
where α is the inverse Ackermann function. This upper bound is
optimal to within a constant factor.
Keywords: transitive closure, graph algorithm, inverse Ackermann

function, weak superconcentrators.
Math. Subject Classification: 68R10, 05C12, 05C85.

1 Introduction

A directed graph is transitive if, whenever there is an edge from a node X to

a node Y and an edge from Y to Z , then there is an edge from X to Z . The

transitive closure of G is a smallest transitive, directed graph containing G .

∗Supported in part by NSF Grant DMS-8902480.

1

We write X → Y to indicate the presence of an edge from X to Y . It

is easy to see that any edge in the transitive closure of a graph G can be

obtained from the edges of G by a series of zero or more closure steps, which

are inferences of the form

A → B B → C

A → C

In other words, if A → B and B → C are edges in the transitive closure

of G , then A → C is too. This is because G plus the edges that can be

derived by closure steps from edges in G both must be in any transitive graph

containing G and also form a transitive graph on the nodes of G .

The serial transitive closure problem is the problem of deriving a given

subset of edges, which we call “closure edges”, in the transitive closure of

a directed graph. A solution to the serial transitive closure problem is a

sequence of closure steps which generates all of the given closure edges and

the size of a solution is the number of closure steps in the solution. In this

paper, we give upper and lower bounds on the size of optimal solutions to the

serial transitive closure problems for directed graphs which are trees. It should

be stressed that the set of closure edges can be any subset of the edges in the

transitive closure of the graph (but not in the graph). The degenerate case

of deriving a single closure edge A → B is quite simple, since the minimum

number of closure steps required will be one less than the length of a shortest

path from A to B . The general question of determining the optimal size of a

solution is made difficult by the fact that, when a set of closure edges is being

derived, it may be possible for individual closure steps to aid in the generation

of multiple closure edges. In other words, it is not necessary to generate each

closure edge independently. It is also important that the set of closure edges

will, in general, not be all the edges in the transitive closure of the graph;

the problem of deriving all the edges in the transitive closure of the graph

is uninteresting because, in this case, exactly one closure step is needed per

closure edge.

The authors’ interest in the serial transitive closure problem arose in the

study of the lengths of propositional proofs with and without the deduction

rule. The serial transitive closure problem is directly related to the question of

how efficiently Frege proof systems can simulate nested deduction Frege proof

2

systems. More information on these proof systems and the application of the

serial transitive closure problem to proof lengths can be found in [2, 3, 4]. The

present paper is an expansion of portions of [2, 3].

The serial transitive closure problem is potentially applicable to problems

in networks. As an example, suppose a communication network is given

where the nodes are, say, computers and an edge from X to Y indicates that

X is capable of sending messages to Y . Correspondingly, a set of closure

edges is a set of edges of desired connections. If the closure edges are in the

transitive closure of the network, then it is possible to establish the desired

connections by having nodes relay messages (much like real-world nets such

as Usenet). A closure step would correspond to determining that, since X

can (indirectly) transmit to Y and Y can (indirectly) transmit to Z , X can

indirectly transmit to Z . The size of a solution to the serial transitive closure

problem would correspond to the number of indirect communication links

that must be established to set up the desired connections. (It should be

mentioned that this example completely glosses over important issues such as

the bandwidth of the connections.)

The serial transitive closure problem is formally defined as follows:

Serial Transitive Closure Problem:

An instance consists of

• A directed graph G with m edges and

• A list of n closure edges Xi → Yi (i = 1, . . . , n) which are in the

transitive closure of G but not in G .

A solution is a sequence of edges Ui → Vi (i = 1, . . . , s) containing all

n closure edges such that each Ui → Vi is inferred by a single closure

step from earlier edges in the solution and/or edges in G . We call s the

number of steps of the solution.

Note that the number of steps in a solution counts only closure steps and

does not count edges that are already in G . A directed graph is a tree if it

is a tree in the usual sense, with root at the top and with all edges directed

downwards or with all edges directed upwards.

3

The outline of this paper is as follows. In section 2, we state and prove

the main results which give near-linear upper bounds on size of solutions to

the serial transitive closure problem for trees. Our near-linear upper bounds

are of the form O(n ·α(n)) where α(n) is the extremely slow-growing inverse

Ackermann function. In section 3 we show that the upper bound is optimal for

trees, using a theorem used by Tarjan [13] for an algorithm for the Union-Find

problem. It is not known whether our upper bound is optimal for the case

where the directed graph G is linear, i.e., G is a tree with each nonleaf node

having only one child. However, we argue at the end of section 3 that our

construction can not be easily improved for the linear case, since our approach

gives an explicit construction for weak superconcentrators and there is a lower

bound on the size of constant depth superconcentrators [10] which prevents

the possibility that a simple modification can lead to an improvement of our

construction.

The methods of our paper do not apply to graphs which are not trees, and

we do not know any non-trivial upper or lower bounds on the size of solutions

of serial transitive closure problems for general graphs.

Our proof methods for our upper bounds (Theorem 3 through Corollary 8)

are related to the constructions of weak superconcentrators by [6, 7], and are

also similar to prior methods for creating algorithms for range queries on

linear lists [15] and on free trees [8]. In fact, as one of the referees pointed out,

it is possible to derive Corollary 8 below, as a corollary to the proofs (but not

the theorems) contained in [15, 8]. Similar constructions have also been used

for adding edges to trees to reduce their diameter [1]. However, it is useful to

give direct proofs in this paper since the Serial Transitive Closure Problem is

of independent interest (e.g., as applied in [3, 4]).

2 Upper Bounds for Trees

The “near-linear” upper bounds given below are stated in terms of extremely

slow growing functions such as log∗ and the inverse Ackermann function.

The function log x is the real-valued base two logarithm function. The

log∗ function is defined so that log∗ n is equal to the least number of iterations

of the logarithm base 2 which applied to n yield a value < 2. In other words,

4

log∗ n is equal to the least value of k such that n < 22·
··2

where there are

k 2’s in the stack. To get even slower growing functions, we define the log(∗i)

functions for each i ≥ 0. The log(∗0) function is just the base 2 logarithm

function rounded down to an integer and the log(∗1) is just the log∗ function.

For i > 1, log(∗i)(n) is defined to be equal to the least number of iterations of

the log(∗i−1) function which applied to n yields a value < 2. The Ackermann

function can be defined by the equations:

A(0,m) = 2m

A(n + 1, 0) = 1

A(n + 1,m + 1) = A(n,A(n + 1,m))

It is well-known that the Ackermann function is recursive but dominates

eventually every primitive recursive function (see [9] for a proof). We next

develop the basic properties of the Ackermann function and the log∗ functions;

see La Poutré [12] for a similar development (his function α(i,m) is equal to

our log(∗i−1)(m)).

It is is easy to see, by induction on n , that A(n, 1) = 2 for all n ; because

A(n + 1, 1) = A(n,A(n + 1, 0)) = A(n, 1)

Also, by induction on m , we have A(1,m) = 2m ; since,

A(1,m + 1) = A(0, A(1,m)) = 2 · A(1,m).

Likewise, A(2,m) = 22·
··2

where there are m 2’s in the stack, since

A(2,m + 1) = A(1, A(2,m)) = 2A(2,m).

Proposition 1 For n > 1, A(n,m) is the equal to the least i such that

log(∗n−1)(i) = m. Hence, log(∗n−1) A(n,m) = m.

Proof The proof is by induction on n . By the above definitions and

comments, the lemma holds for n = 1, 2. Fix n and assume, as the induction

hypothesis for n , that for all i,m , if A(n,m) ≤ i < A(n,m + 1), then

log(∗n−1)(i) = m . To prove the corresponding fact for n + 1, we use induction

5

on m . It is obvious for m = 0 since A(n, 0) = 0 and A(n, 1) = 2. For m > 0,

we have that

log(∗n−1) A(n + 1,m) = log(∗n−1) A(n,A(n + 1,m − 1))

= A(n + 1,m − 1)

and, in addition, that

log(∗n−1)
(
A(n + 1,m + 1) − 1

)
= log(∗n−1)

(
A(n,A(n + 1,m)) − 1

)
= A(n + 1,m) − 1.

The last equality is justified by the induction hypothesis that A(n,A(n+1,m))

is the least value i such that log(∗n−1)(i) = A(n + 1,m). Thus we have

shown that, if A(n + 1,m) ≤ k < A(n + 1,m + 1), then A(n + 1,m −
1) ≤ log(∗n−1)(k) < A(n + 1,m). If follows that, if A(n + 1,m) ≤ k <

A(n + 1,m + 1) , then log(∗n−1) must be applied exactly m times to k to

yield a value < 2 = A(n + 1, 1); i.e., that log(∗n)(k) = m . 2

Proposition 2 For i ≥ 1, log(∗i−1)(i) ≤ 3.

Proof First observe that for all i ≥ 0 and x ≥ 1, we have log(∗i)(x) < x .

And for i ≥ 0, log(∗i)(3) < 2. We now prove the proposition by induction

on i . The base case, i = 1, is obvious. For the induction step, we have

that log(∗i−1)(i + 1) ≤ i by the first observation,and log(∗i−1)(i) ≤ 3 by the

induction hypothesis. Thus three applications of log(∗i−1) suffice to take i + 1

to a value less than 2. Hence log(∗i)(i + 1) ≤ 3. 2

Definition The inverse Ackermann function α is defined so that α(n) is

equal to the least value of i such that A(i, i) > n . Equivalently, α(n) is equal

to the least i such that log(∗i−1) n < i .

Main Theorem 3 Let i ≥ 0. If the directed graph G is a tree then the serial

transitive closure problem has a solution with O(n + m log(∗i) m) steps.

Main Theorem 4 If the directed graph G is a tree then the serial transitive

closure problem has a solution with O((n + m) · α(m)) steps.

6

Another definition of the inverse Ackermann function has been given by

Tarjan [13] who defines

α(m,n) = least i ≥ 1 s.t. A(i, 4dm/ne) > log n.

We shall also prove below that for G a tree, the Serial Transitive Closure has

a solution with O((n + m)α(n + m,m)) steps.

Theorem 7 below is a restatement of Theorem 3 with explicit constants.

The rest of our upper bounds will be corollaries of Theorem 7.

For the proofs of our main theorems we may assume without loss of

generality that G is a rooted tree with edges pointing away from the root.

We always picture trees with the root at the top, except in the special case

of one-trees, which have fanout 1, the root is to the left and edges point to

the right. The concepts of child, father, ancestor and descendent are defined

as usual. The size of a tree is defined to be the number of edges in the tree

(not the number of nodes). If a tree has e edges, then it has exactly e + 1

nodes. We define a subtree of a tree T to be any connected subset of the edges

of T and their endpoints so that, such that, for all nodes X and Y in T ,

if X and Y have the same father, then X is in the subtree iff Y is in the

subtree. A subtree is unscarred if it consists of all the edges below a given

node in the tree. A subtree S may also be obtained by first removing some

set of unscarred subtrees and then letting S consist of all the remaining edges

below some given remaining node: S is said to have a scar at any of its leaf

nodes which are roots of earlier removed (nontrivial) subtrees. Two subtrees

are said to be disjoint if they have no edges in common; disjoint subtrees may

share a single node since the root of one may be a scar of the other. If X is

a node in T , then TX denotes the subtree of T rooted at X . The immediate

subtrees of a tree T are the maximal proper subtrees of T , i.e., the trees TX

for X a child of the root of T . The following lemma is well-known: see, e.g.,

Brent [5].

Lemma 5 Let N ≥ 0 and T be a tree with ≥ N edges. Then there is

an unscarred subtree of T which has size ≥ N edges such that each of its

immediate subtrees has < N edges.

Lemma 5 is easily proved by taking a minimal subtree with ≥ N edges. The

next theorem restates and strengthens the case i = 0 of Theorem 3 with fairly

tight bounds on the constants. The log function is base two.

7

& %½ ¼ 66½ ¼& %6& %½ ¼ 66& %½ ¼6
?

' $
?

' $
?

' $
?

Ã
?

' $' $' $# Ã
? sssssssss --------

X8X7X6X5X4X3X2X1X0

Figure 1

Theorem 6 If the directed graph G is a tree then the serial transitive closure

problem has a solution with n + m · blog mc closure steps.

Proof We will first derive ≤ mblog mc edges, called auxiliary edges; each

auxiliary edge will be obtained with a single closure step. The choice of

auxiliary edges is independent of the closure edges; however, from the edges

in G and the auxiliary edges each closure edge can be obtained with (at most)

one additional closure step.

For illustration purposes, we first prove the theorem for G a one-tree and

then do the general case. Although the general case includes the linear case,

the proof of the linear case presents the main ideas more clearly.

Linear Case: Assume G is a one-tree; that is, each node except the leaf

has a single child. In this case we may assume the nodes of G are named

X0 ,. . . , Xm and that the edges of G are just Xi → Xi+1 for 0 ≤ i < m .

The auxiliary edges will be derived in rounds, the first round will in essence

split G into two subtrees of m/2 edges, the second round splits G into four

subtrees of m/4 edges, etc., for a total of dlog me − 1 rounds. The process

is illustrated for the case m = 8 in Figure 1; the upper edges of Figure 1 are

derived in the first round and the lower edges in the second round.

Round 1: Xbm/2c is the midpoint of the one-tree G . The auxiliary

edges added in round 1 are the edges of the form Xj → Xbm/2c
for 0 ≤ j < bm/2c and the edges of the form Xbm/2c → Xk for

m/2 < k ≤ m . There are exactly m such edges and they can derived

8

with m closure steps if we derive them in the right order; namely, letting

j range from bm/2c − 1 down to 0 and letting k range from bm/2c+ 1

up to m . (Actually only m − 2 closure steps are needed since two of

the auxiliary edges are already in G .)

Round 2: Round 1 split G into two halves; the midpoints of these two halves

are Xbm/4c and Xb3m/4c . In round two, auxiliary edges to and from

these midpoints are derived. Namely, (1) the edges Xj → Xbm/4c with

j < bm/4c , and (2) the edges Xbm/4c → Xj with bm/4c < j ≤ bm/2c ,
and (3) the edges Xj → Xb3m/4c with bm/2c ≤ j < b3m/4c , and (4) the

edges Xb3m/4c → Xj with b3m/4c < j ≤ m . There are m such edges

and by deriving them in the right order each can be obtained with a

single closure step. (Again, taking into account duplicate edges, fewer

than m closure steps are needed for round 2.)

Round `: For round number ` we add auxiliary edges incident on the nodes

Xbk·m/2`c for odd values of k . Specifically, for each odd value k < 2`

the following auxiliary edges are derived: (1) the edges Xj → Xbk·m/2`c
for

⌊
(k − 1)m/2`

⌋ ≤ j <
⌊
k · m/2`

⌋
and (2) the edges Xbk·m/2`c → Xj

for
⌊
k · m/2`

⌋
< j ≤ ⌊

(k + 1)m/2`
⌋
. Again, there are exactly m such

edges (some of them duplicates of edges from G and edges from earlier

rounds); this is seen by using the obvious one-to-one correspondence

with the edges of G . And by deriving them in the right order, each

auxiliary edge is obtained with a single closure step.

Since there are exactly dlog me−1 rounds and fewer than m closure steps

are needed in each round, it is clear that there are ≤ mblog mc auxiliary

edges and that the number of closure steps so far is bounded by mblog mc .
Now we claim that each of the n closure edges can be obtained with at

most a single closure step from the mblog mc auxiliary edges (of course some

of the closure edges may also be auxiliary edges). To prove this, suppose

Xi → Xj is a closure edge; of course, i + 1 < j . Find the least value of `

such that for some odd k , i ≤ ⌊
k · m/2`

⌋ ≤ j . If either of the inequalities

are actually equalities, then Xi → Xj is an auxiliary edge added in round `

and no additional closure step is needed. If both inequalities are strict, then

9

Xi → Xbk·m/2`c and Xbk·m/2`c → Xj are both auxiliary edges and from these

the closure edge Xi → Xj can be derived with one closure step.

It follows that all the closure and auxiliary edges are derived with fewer

than n + mblog mc closure steps and Theorem 6 is proved for G a one-tree.

General Case: The proof of Theorem 6 for G a tree uses a construction

similar to the proof of the linear case. For the general case, we shall use

Lemma 5 to split G into multiple subtrees of size less than half the size of G

(one of these is scarred); then we similarily split these subtrees into subtrees

of size less than one quarter the size of G , etc. As in the linear case, we derive

auxiliary edges of G as we split G into subtrees; this process will be done in

≤ log m rounds.

Round 1: By Lemma 5 there is a node X in G such that GX has ≥ m/2

edges, but the immediate subtrees of GX have size < m/2 edges. Let

G1, . . . , Gk be the immediate subtrees of GX . Let G0 be the tree

obtained by removing GX from G ; i.e., G0 is the scarred subtree with

root at the root of G and with a single scar at X .

During round 1, the following auxiliary edges are derived: (1) for each

ancestor Y of X the edge Y → X is an auxiliary edge, and (2) for each

descendent Y of X the edge X → Y is an auxiliary edge. By deriving

auxiliary edges in the correct order (namely, shorter edges first), only

one closure step is needed for each auxiliary edge. There are at most

m auxiliary edges and thus fewer than m closure steps are needed in

round 1.

The subtrees G0, . . . , Gk are disjoint and partition the nodes of G .

They will be treated in the next round.

The total number of closure steps used to derive auxiliary edges in

round 2 is less than
∑

mi < m .

Round `: The previous round ` − 1 resulted in G being split into multiple,

disjoint subtrees of size ≤ m/2`−1 . In round ` , we separately consider

each such subtree H which is of size mH ≥ 2 and process it in the

manner of round 1. Since the subtree H is of size mH ≥ 2, Lemma 5

gives a node X in H such that HX has size ≥ mH/2 and each of

10

HX ’s immediate subtrees have size < mH/2. Now auxiliary edges are

added from each ancestor of X in H to X and from X to each of its

descendents in H ; there are ≤ mH such auxiliary edges and each can

be added with at most one closure step. The immediate subtrees of HX

and the subtree H with HX removed have size ≤ mH/2 and will be

treated in next round.

Since the total size of all the disjoint subtrees is no more than m edges,

fewer than m closure steps are used in this round.

The process of adding auxiliary edges ends when all the subtrees being

considered have size < 2; namely after no more than blog mc rounds. Thus

at most mblog mc closure steps are needed for deriving auxiliary edges.

As in the linear case, each of the n closure edges can be obtained with at

most a single closure step from the mblog mc auxiliary edges. To prove this,

suppose Y and Z are nodes in G and Y → Z is a closure edge; of course, Y

is an ancestor of Z . Find the greatest value of ` , such that Y and Z are in

the same subtree H considered during round ` . Of course, the nodes Y and

Z are in different subtrees in the next round. Hence the node X chosen to

split subtree H in round ` has Y as an ancestor and Z as a descendent (or

possibly, X = Y and Z is a descendent of X). Thus the edges Y → X and

X → Z are auxiliary edges derived during round ` and the closure edge can

be added with a single further closure step.

Thus the total number of inference steps needed for a solution of the serial

transitive closure problem is less than n+mblog mc and Theorem 6 is proved.

2

The rest of proof of Theorem 3 proceeds by proving the following theorem

by induction on i :

Theorem 7 Let i ≥ 0. If the directed graph G is a tree then the serial

transitive closure problem has a solution with (1 + 2i)(n + m log(∗i) m) steps.

Proof When i = 0, the theorem is just a restatement of Theorem 6. So fix

i ≥ 1 and assume the theorem holds for i− 1. We shall prove the theorem by

splitting G into subtrees of size log(∗i−1) m , adding auxiliary edges and using

the auxiliary edges to derive some of the closure edges; we shall iterate this

11

X




T1


T2

Figure 2

Node X is the root of T2 and a scar of T1 . Dotted edges are the auxiliary
edges derived in Step 1. The edges of the second kind are the two dotted
edges with head X; one of these is also of the first kind.

process log(∗i) m many times after which the subtrees all have size ≤ 1. The

derivation of the closure edges from the auxiliary edges will depend on the

induction hypothesis.

Let us begin by describing the reduction process which will be used

iteratively. The input to the reduction process is a subtree T of G ; we

assume T has M > 1 edges. The output of the reduction process will consist

of a set of node-disjoint subtrees of T and the derivation of the closure edges

whose endpoints are in T but are in different subtrees output by T . The

reduction process has three steps:

Step 1: In the first step, T is partitioned into subtrees and auxiliary

edges are derived:

By iteratively applying Lemma 5, T can be split into a finite set of

subtrees T0, . . . , Tk so that (1) the edges of the Tj ’s partition the edges of T ,

and (2) for each j > 0, Tj has size ≥ log(∗i−1) M edges and (3) for all j ≥ 0,

each immediate subtree of Tj has < log(∗i−1) M edges, and (4) T0 has root at

at the root of T and the rest of the Tj ’s have a root which is a scar of another

12

subtree in the partition. Clearly there will be at most
⌈
M/ log(∗i−1) M

⌉
many

subtrees in the partition.

The following auxiliary edges are derived in Step 1: (1) for each Tj with

root X , the edges X → Z for all other nodes Z of Tj are auxiliary edges of

the first kind; and (2) for each j and p such that the root Y of Tp is a scar

of Tj , the edges X → Y for all ancestors X of Y in Tj are auxiliary edges of

the second kind. Figure 2 illustrates the choice of auxiliary edges. It is easy to

see that by deriving shorter edges first, each auxiliary edge can be derived by

single closure step. Further, we claim that there are ≤ 2M auxiliary edges.

It is easy to see that there ≤ M auxiliary edges of the first kind, since each

node in T is at the head of at most one such auxiliary edge. To bound the

edges of the second kind, note that if Tj has the root Y of Tp as a scar then

the ancestors of Y in Tj consist of the root of Tj and some of the nodes in

one of the immediate subtrees of Tj . The edge from the root of Tj to Y is

also an edge of the first kind and has already been derived. Hence there are

< log(∗i−1) M auxiliary edges from nodes inside Tj to Y . Also, the root of Tp

can not be the root of T (i.e., p 6= 0) so there are at most M/ log(∗i−1) M

different trees Tp to consider. Taking the product of the number of subtrees

and the number of edges, we have that there are less than M auxiliary edges

of the second kind.

Step 2: In this step we merely describe the output of the reduction

process. The output trees are precisely the set of immediate subtrees

of T0, . . . , Tk . Note that the output trees are disjoint and partition the

nodes of T other than the root node of T , but do not contain all the edges

of T . Each output tree has < log(∗i−1) M edges.

Step 3: In the third step we derive every closure edge X → Y with X

and Y in T but in different output trees. Let N be the number of such

closure edges. We derive these closure edges by setting up a new instance of

the serial transitive closure problem and applying the induction hypothesis.

The new instance will consist of a directed graph G′ which has as nodes the

roots of the trees T0, . . . , Tk and has as edges the auxiliary edges from Step 1

which connect these roots. The closure edges of the new instance are the edges

X ′ → Y ′ which are obtained by the following method: for each closure edge

X → Y (of the original problem) such that X is a node in Tj and Y is a node

in Tp with j 6= p , let Y ′ be the root of Tp and let X ′ be the (scarred) leaf

13

of Tj such that Y is a descendent of X ′ . It will be important that X → X ′

and Y ′ → Y are auxiliary edges (of the second and first kind respectively).

Clearly the new instance of the serial transitive closure problem has

< M/ log(∗i−1) M edges in G′ and ≤ N closure edges. By the induction

hypothesis, it has a solution of size less than or equal to

(1 + 2(i − 1))

[
N+

M

log(∗i−1) M
log(∗i−1)

(
M

log(∗i−1) M

)]
which is trivially bounded by

(1 + 2(i − 1)) · [N + M] .

Given a solution to the new serial transitive closure problem, for all X , X ′ ,
Y and Y ′ as above, we can derive the closure edge X → Y in two closure

steps from the auxiliary edges X → X ′ and Y ′ → Y and the closure edge

X ′ → Y ′ of the new problem.

To conclude the description of the reduction process, we note that the

total number of closure steps needed in the reduction process is bounded by

2M + (1 + 2(i − 1))(N + M) + 2N,

which is more suggestively written as

(1 + 2i)(N + M).

The overall procedure for proving Theorem 7 can now be very simply

explained in terms of iterating the above reduction process:

Round 1: Apply the reduction process to the whole tree G . This derives

n1 closure edges (n1 is the value of N from the reduction process) and outputs

a set of subtrees of G which partition the non-root nodes of G and are each

of size < log(∗i−1) m edges. The total number of closure steps in round 1 is

bounded by

(1 + 2i)(n1 + m).

Round `: The previous round generated a set of node-disjoint subtrees

each of size less than

log(∗i−1)(log(∗i−1)(· · · (log(∗i−1)︸ ︷︷ ︸
`−1 times

(m)) · · ·)).

14

Apply the reduction process (steps 1-3) to all of these subtrees which contain

more than one edge; the overall result is that some number n` of closure edges

are derived and that a set of node-disjoint output trees each of size less than

log(∗i−1)(log(∗i−1)(· · · (log(∗i−1)︸ ︷︷ ︸
` times

(m)) · · ·))

is generated. The total number of closure steps in round ` is less than

(1 + 2i)(n` + m).

The rounds are iterated until all the subtrees have size ≤ 1; namely, in no

more than log(∗i) m rounds. At the end every closure edge has been derived.

The total number of closure steps used is bounded by

log(∗i) m∑
`=1

(1 + 2i)(n` + m)

and since
∑

n` = n , the total number of closure steps is bounded by

(1 + 2i)(n + m log(∗i) m).

That completes the proofs of Theorems 7 and 3. 2

We are now ready to prove Main Theorem 4:

Proof By Theorem 7, the serial transitive closure problem for the graph G

has a solution with O((1 + 2i)(n + m log(∗i) m) steps, for any value of i . Let

i = α(m): by the definition of the function α , we have log(∗i−1) m < i . By

Proposition 2, it follows that log(∗i) m ≤ 4. Hence the serial transitive closure

problem of G has a solution of size bounded by

(1 + 2α(m))(n + 4m) = O((n + m)α(m)).

Q.E.D. Theorem 4.

We next give a bound on the number of steps in terms of Tarjan’s inverse

Ackermann function:

15

Corollary 8 If the directed graph G is a tree then the serial transitive closure

problem has a solution with O((n + m)α(n + m,m)).

Proof We argue similarly to the above proof, but now let i equal

max{1, α(n + m,m)} . Thus, by the definition of α(,), we have

A(i, 4dn+m
m

e) > log m . By Proposition 1, log(∗i−1)(log m) < 4dn+m
m

e , and

hence log(∗i)(log m) < 4dn+m
m

e . Since i ≥ 1, log(∗i)(m) ≤ 4dn+m
m

e . Thus,

by Theorem 7, the serial transitive closure problem has a solution with size

bounded by

(1 + 2α(n + m,m))

(
n + m

(
4

⌈
n + m

m

⌉))
= O((n + m)(α(n + m,m)))

whenever α(n + m,m) > 0. 2

3 Lower Bounds

3.1 The Lower Bound for Trees

In this section we prove that our method of solving the Serial Transitive

Closure problem for trees is optimal to within a constant factor; in particular,

linear size solutions are not always possible. Our proof is based on a theorem

of Tarjan [13] giving a lower bound on the worst case runtime of an algorithm

for the union-find problem. Tarjan’s lower bound applied only to a particular

type of algorithm for the union-find problem (Tarjan [14], Fredman-Saks [11]

and La Poutré [12] have since given lower bounds for a much wider class

of algorithms). Essentially, Tarjan gave a lower bound for algorithms that

rely exclusively on manipulating pointers (with certain constraints). Since

the Serial Transitive Closure problem is framed so as to deal only with edges

and closure steps, it is not so surprising that we are able to modify Tarjan’s

original construction so as to give a lower bound for the Serial Transitive

Closure problem.

Our lower bound is obtained by constructing instances of the Serial

Transitive Closure problem which require at least 1
25

(n + m) · α(n + m)

closure steps in any solution. The construction is based on Tarjan’s lower

bound; we shall review the relevant definitions and constructions but do not

repeat Tarjan’s proof.

16

Following Tarjan, define S1 be the tree with two nodes: the root and one

leaf. Define Si+1 to be the tree constructed by making two copies of Si and

making the root of one copy a child of the root of the other copy; pictorially,

Si+1 is:

r
r

­
­

­­ ­
­

­­

J
J

JJ

J
J

JJ

»»»»»»»

Si

Si

For example, S2 and S3 are the trees

S2 :

r
r r

r
´

´
´́

S3 :

r
r r

r
´

´
´́

r
r r

r
´

´
´́

³³³³³³³

Clearly Si has 2i nodes of which 2i−1 are leaves. Let T be a tree. A g-find

is a pair of nodes (a, b) in T such that b is a leaf and a is an ancestor of b .

A (permissible) sequence of g-finds is a sequence (ai, bi) of g-finds such that

the bi ’s are distinct and such that, for all i < j , aj is not a descendent of ai .

G is a shortcut graph of T if G is a directed graph on the nodes of T with

each edge of T contained as a directed edge in T such that, if T is viewed as

a directed graph with edges directed downward, the graph G is a subgraph of

the transitive closure of T . If (ai, bi), i = 1, . . . , N , is a sequence of g-finds,

then the associated shortcut graphs G0, . . . , GN are defined by letting G0

have the edges from T (directed downwards), and letting Gi be Gi−1 plus all

edges (c, d) such that c and d are on the path in T from ai to bi and such that

d is a descendent of c . The cost of a particular g-find (ai, bi) in the sequence

is defined to be the distance from ai to bi in the shortcut graph Gi−1 .

Tarjan defines a version of the Ackermann function which is slightly

different from ours; however, it is easy to see that Tarjan’s Ackerman function

equals ours, except for the values of A(i, 0).

The next theorem of Tarjan will lead to our lower bounds:

17

Theorem 9 For all k ≥ 1 and i > A(4k, 4), there is a sequence of 2i−2

g-finds in Si such that each g-find has cost ≥ k .

For a proof of Theorem 9, apply Theorem 15 of [13] with s = 1. We can now

prove our lower bound:

Theorem 10 Let k ≥ 1. There is an instance of the Serial Transitive Closure

problem in which the graph G has m = 2A(4k,4)+1 nodes and for which there are

n = 2A(4k,4)−1 closure edges such that any solution of of the Serial Transitive

Closure problem requires at least (k − 1) · 2A(4k,4)−1 closure steps.

Proof Let the directed graph G be the tree Si (with edges directed

downwards), where i = A(4k, 4) + 1. Clearly G has m = 2A(4k,4)+1 nodes.

The instance of the Serial Transitive Closure problem is obtained by taking as

closure edges, the n = 2A(4k,4)−1 g-finds given by Theorem 9. Let G0, . . . , Gn

be the associated shortcut graphs.

We now must show that, because each g-find has cost k , any solution to

this Serial Transitive Closure problem requires at least k−1 steps per closure

edge. To prove this, let e1, . . . , es be a sequence of edges which comprise a

solution to the Serial Transitive Closure problem. For each i ≤ s , define the

rank of ei to be the least value ri such that ei is an edge in Gri
; let ri = n+1

if ei is not in Gn . Now reorder the edges e1, . . . , es according to their rank,

keeping edges of the same rank in the same relative order. We claim that the

reordered edges are also a solution to the Serial Transitive Closure problem.

This claim is easily proved by noting that if an edge ei = (c1, c2) is inferred

from edges (c1, c3) and (c3, c2) and if ei is in Gri
then the other two edges

must also be in Gri
(by the definition of the shortcut graphs) and thus have

ranks ≤ ri . Finally, we claim that that for all r ≤ n there are at least k − 1

edges with rank r . To prove this, consider the edges of rank r ; these edges

are inferred by closure steps from the edges of rank < r and one of the edges

is the r -th closure edge. But because the cost of the r -th g-find is ≥ k , at

least k − 1 closure steps are required to derive the r -th closure edge from the

edges of rank < r .

Q.E.D. Theorem 10

Let f(m,n) be the maximum number of edges required to solve Serial

Transitive Closure problems for trees with m edges and n closure edges.

18

Lemma 11 For infinitely many values of n, f(4n − 1, n) ≥ n

5
α(5n).

Proof Let k ≥ 5 and n = 2A(4k,4)−1 and i = A(4k, 4) + 1. Since Si has 4n

nodes, it has m = 4n − 1 edges. By Theorem 10, f(m,n) ≥ (k − 1)n . It will

suffice to show α(5n) ≤ 5k − 5. Now,

A(5k − 5, 5k − 5) > A(5k − 5, 5)

= A(5k − 6, A(5k − 5, 4))

≥ A(5k − 6, A(4k, 4))

> 2A(4k,4)+2 since 5k − 6 > 2

> 5n

from whence, by the definition of α , α(5n) ≤ 5k − 5. 2

Since m = 4n−1 and hence 5n > m+n , the proof of Lemma 11 immediately

implies:

Theorem 12 f(m,n) ≥ 1
25

(n+m) ·α(n+m) for infinitely many values of n

with m = 4n − 1.

3.2 Relations to Weak Superconcentrators

The above lower bound for the serial transitive closure problem applies to the

case where G is a general tree. Essentially the same lower bound applies to

binary trees, since any tree can be converted into a binary tree by expanding

any node that has more than two children into multiple nodes with two

children each. This expansion will at most double the number of edges in the

tree and will not make the solutions to the serial transitive closure problem

smaller.

However, we know no way to extend the above argument to give a nonlinear

lower bound for the size of solutions to the serial transitive closure problem

for the case where the directed graph is linear, i.e., the case where each node

in G has at most one incoming edge and at most one outgoing edge (this

was the simple case considered in the preliminary portion of the proof of

theorem 6). On the other hand, there is a connection between constant depth

weak superconcentrators and our proof of the main theorems, that suggests

19

that our upper bound of n ·α(n) is the best that can be obtained for the linear

case with our techniques. Namely, our proof of Theorem 7, for the case where

G is linear, implicitly contains a construction of weak superconcentrators of

optimal size (to within a constant factor). We shall outline this construction

below; a similar construction has already been given by [6, 7].

It is also possible to use Yao’s lower bound on the size of (t,m)-

structures [15] to get a nonlinear lower bound on the number of auxiliary

edges needed for our construction. However, the lower bounded obtained

in this way is not as good as the lower bound we obtain below via weak

superconcentrators.

We recall the definition of a weak superconcentrator. A network is a

directed graph with nodes a0, . . . , am designated as inputs and with nodes

b0, . . . , bm designated as outputs. The inputs have no incoming edges and the

outputs have no outgoing edges. A network is synchronous if it is possible

to associate with each node a depth, such that each input has depth 0 and

each edge in the network goes from a depth d node to a depth d + 1 node,

and such that the output nodes have a common depth. The depth of a

synchronous circuit is defined to be the depth of the output nodes. The

network is said to be a weak (m+1)-superconcentrator if the following property

holds: if 0 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . ik ≤ jk ≤ m are integers, then

the network contains k many node-disjoint paths from air to bjr , for r =

1, . . . , k . It is a theorem of Dolev, Dwork, Pippenger and Widgerson [10] that

depth 2i+2 synchronous weak (m+1)-superconcentrators must have at least

Ω(m log(∗i)(m)) many nodes.† (Some related, but weaker, lower bounds are

given by Bodlaender-Tel-Santoro [1]).

Recall that in the proof of Theorem 7, we added auxiliary edges indepen-

dently of the choice of closure edges and then derived the closure edges with

the aid of the auxiliary edges. The net effect is, after the proof by induction

has been unwound, that there were a total of (1 + 2i)m log(∗i)(m) auxiliary

edges added such that, for any two nodes A and B with A an ancestor of B ,

there exists a path from A to B of length at most (2i+2).‡ This path consists

†The Ackermann function A(i, x) used in [10] is the same as Tarjan’s Ackermann
function, and hence is the same as our A(i, x) for x ≥ 1. The function λ(i, x) used in [10]
satisfies log(∗i)(x) = λ(i + 1, x) for all i ≥ 0 and x > 0.

‡To justify the length (2i + 2) recall that at most (2i + 1) closure steps were needed

20

entirely of auxiliary edges and edges in G , of course. We claim that these

auxiliary edges can be made into a weak supercentrator of depth (2i + 2).

To do this we make (2i + 3) disjoint copies of G , called G0, . . . , G2i+2 and

construct a network on the nodes in the union of these graphs.

To construct the weak (m+1)-superconcentrator of depth 2i+2, let G be

a linear tree with nodes X0, . . . , Xm and edges Xj → Xj+1 , for 0 ≤ j ≤ m .

Form (2i + 3) disjoint copies of G denoted G0, . . . , G2i+2 and let Xk
j be the

copy of Xj in Gk . The weak superconcentrator will be a directed graph on

the nodes Xk
j ; the X0

j ’s are the input nodes, the X2i+2
j ’s are the output

nodes and each Xk
j will be of depth k . First, the weak superconcentrator will

have the edges Xk
j → Xk+1

j for all j, k . There are obviously 2(i + 1)(m + 1)

edges of this first kind. Second, the weak superconcentrator will have edges

corresponding to the auxiliary edges from the proofs of Theorems 6 and 7.

Recall that Theorem 7 was proved by induction on i ; by considering the

auxiliary edges added to G in the proof of Theorem 6 and in all the induction

steps of the proof of Theorem 7, it is easy to see that there are, in total,

≤ (1 + 2i)m log(∗i) m auxiliary edges added to G . We must explain how the

auxiliary edges are translated into edges in the weak superconcentrator — the

essential idea is that each induction step of the proof of Theorem 7 adds two

more layers of connections in the weak superconcentrator. To make this more

precise, recall that in proving Theorem 7 for i we added 2m log(∗i)(m) many

auxiliary edges and invoked Theorem 7 for i−1 multiple times. If this proof by

induction is ‘unwound’, then each of these invocations of Theorem 7 for i− 1

adds many auxiliary edges and further invokes Theorem 7 for i − 2 multiple

times, etc. The proof of Theorem 7 for i = 0 was just the proof of Theorem 6

(especially, the linear case); this of course also added auxilliary edges. Now

consider all the auxiliary edges that are added during the unwinding of the

proof of Theorem 7 for i ; each auxiliary edge is associated with a value i′ ≤ i

by considering which case of Theorem 7 introduced the auxiliary edge (edges

can be associated with more that one value of i′ and in this case we count

the edge multiple times). The weak superconcentrator contains all edges

X i−i′
j → X i−i′+1

s and X i+i′+1
j → X i+i′+2

s where Xj → Xs is an auxiliary

edge associated with i′ . Since each auxiliary edge is put twice into the weak

to derive any possible closure edge from the auxiliary edges — this corresponds to a path
of length (2i + 2).

21

superconcentrator§, there are 2(1 + 2i)m log(∗i)(m) such edges put into the

network.

Thus, in total, there are only O(i · m · log(∗i) m) edges in the weak (m+1)-

superconcentrator of depth 2i + 2. Hence our method of proof for the upper

bound of Theorem 7 constructs optimal size weak superconcentrators and it

seems, therefore, that no simple modification of the proof method can give a

better upper bound for the linear case. Nonetheless, it is open whether our

upper bound for the linear case of the Serial Transitive Closure problem is

optimal — for instance, it might be possible to give an improved construction

by not choosing the auxiliary edges independently of the closure edges. The

point is that it is not a priori necessary to construct a weak superconcentrator

in order to get a solution to a particular instance of the Serial Transitive

Closure problem. The lower bound methods of [13] and [10] do not appear to

give a definitive lower bound for the linear case.

Acknowledgements

We wish to thank P. Pudlák for suggesting the connection to weak supercon-

centrators. We also thank one of the referees for bringing the works of Yao,

Chazelle, and Bodlaender-Tel-Santoro to our attention and suggesting some

improvements to the paper, including Theorem 8.

References

[1] H. L. Bodlaender, G. Tel, and N. Santoro, Trade-offs in

non-reversing diameter, Tech. Rep. RUU-CS-89-22, Dept. of Computer

Science, Utrecht Univ., 1989.

[2] M. L. Bonet, The Lengths of Propositional Proofs and the Deduction

Rule, PhD thesis, U.C. Berkeley, 1991.

[3] M. L. Bonet and S. R. Buss, On the deduction rule and the number

of proof lines, in Proceedings Sixth Annual IEEE Symposium on Logic

in Computer Science, 1991, pp. 286–297.

§It is possible to improve the construction to put each auxiliary edge only once in the
weak superconcentrator.

22

[4] , The deduction rule and linear and near-linear proof simulations,

Journal of Symbolic Logic, 58 (1993), pp. 688–709.

[5] R. P. Brent, The parallel evaluation of general arithmetic expressions,

J. Assoc. Comput. Mach., 21 (1974), pp. 201–206.

[6] A. K. Chandra, S. Fortune, and R. Lipton, Lower bounds for

constant depth circuits for prefix problems, in 10th International Col-

loquium on Automata, Languages and Progamming, Springer-Verlag

Lecture Notes in Computer Science #154, 1983, pp. 109–117.

[7] , Unbounded fan-in circuits and associative functions, in Proceedings

of the 15th Annual ACM Symposium on Theory of Computing, 1983,

pp. 52–60.

[8] B. Chazelle, Computing on a free tree via complexity-preserving map-

pings, Algorithmica, (1987), pp. 337–361.

[9] M. D. Davis and E. J. Weyuker, Computability, Complexity, and

Languages, Academic Press, 1983.

[10] D. Dolev, C. Dwork, N. Pippenger, and A. Widgerson, Super-

concentrators, generalizers and generalized connectors with limited depth,

in Proceedings 15-th Annual ACM Symposium on Theory of Computing,

1983, pp. 42–51.

[11] M. L. Fredman and M. E. Saks, The cell probe complexity of dynamic

data structures, in Proceedings 21-st Annual ACM Symposium on Theory

of Computing, 1989, pp. 345–354.

[12] J. L. Poutré, Lower bounds for the union-find and the split-find problem

on pointer machines, in Proceedings of the 22th Annual ACM Symposium

on Theory of Computing, 1990, pp. 34–44.

[13] R. E. Tarjan, Efficiency of a good but not linear set union algorithm,

J. Assoc. Comput. Mach., 22 (1975), pp. 215–225.

[14] , A class of algorithms which require nonlinear time to maintain

disjoint sets, J. Comput. System Sci., (1979), pp. 110–127.

23

[15] A. C. Yao, Space-time tradeoffs for answering range queries (extended

abstract), in Proceedings of the 14th Annual ACM Symposium on Theory

of Computing, 1982, pp. 128–136.

24

