
comput. complex. 13 (2004), 47 – 68

1016-3328/04/010047–22

DOI 10.1007/s00037-004-0183-5

c© Birkhäuser Verlag, Basel 2004

computational complexity

NON-AUTOMATIZABILITY OF

BOUNDED-DEPTH FREGE PROOFS

Maria Luisa Bonet, Carlos Domingo,

Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi

Abstract. In this paper, we show how to extend the argument due to
Bonet, Pitassi and Raz to show that bounded-depth Frege proofs do not
have feasible interpolation, assuming that factoring of Blum integers or
computing the Diffie–Hellman function is sufficiently hard. It follows
as a corollary that bounded-depth Frege is not automatizable; in other
words, there is no deterministic polynomial-time algorithm that will
output a short proof if one exists. A notable feature of our argument is
its simplicity.

Keywords. Proof complexity, Frege proof systems, interpolation, au-
tomatizability of proof systems.

Subject classification. 03F20, 68T15, 68Q17.

1. Introduction

1.1. Feasible interpolation and automatizability. In recent years there
has been a lot of interest in studying the complexity of propositional proof
systems. The motivation is twofold. First, Cook & Reckhow (1979) showed
that the existence of a propositional proof system admitting polynomial-size
proofs of all tautologies is equivalent to NP = Co-NP. This observation started
a program of trying to prove superpolynomial lower bounds for increasingly
more powerful proof systems. A second motivation for studying the complexity
of proof systems comes from issues related to automated theorem proving. The
question is: given a particular propositional proof system, are there efficient
algorithms for finding the shortest proofs of a tautology in that system? Our
results have to do with both motivations, and in what follows we will explain
these relationships in more detail.
Consider first the issue of proving superpolynomial lower bounds for propo-

sitional proof systems. The interpolation method has been one of the most used
and promising approaches. It is inspired by Craig’s interpolation theorem for
propositional logic which states that if A(~x, ~z) → B(~y, ~z) is a tautology where ~z
is a vector of shared variables, and ~x and ~y are vectors of separate variables for

48 Bonet et al. cc 13 (2004)

A and B respectively, then there is a formula C(~z) such that A(~x, ~z) → C(~z)
and C(~z) → B(~y, ~z) are tautologies. There is a different formulation of this
theorem in order to use it to prove lower bounds for unsatisfiable formulas
as follows. Consider an unsatisfiable formula A0(~x, ~z) ∧ A1(~y, ~z), where ~z is
a vector of shared variables, and ~x and ~y are vectors of separate variables
for A0 and A1 respectively. Since the formula is unsatisfiable, it follows that
for any truth assignment ~α to ~z, either A0(~x, ~α) is unsatisfiable or A1(~y, ~α)
is unsatisfiable. An interpolation function associated with the formula is a
Boolean function that takes such an assignment ~α as input, and outputs 0 only
if A0(~x, ~α) is unsatisfiable, and outputs 1 only if A1(~y, ~α) is unsatisfiable. We
say that a proof system S has the feasible interpolation property if whenever
an unsatisfiable formula of the form A0(~x, ~z) ∧ A1(~y, ~z) has a polynomial-size
refutation in S, then that formula has an interpolation function that can be
computed by a polynomial-size Boolean circuit. Therefore, in a proof system
with the feasible interpolation property, superpolynomial lower bounds on refu-
tation size can be obtained by constructing an unsatisfiable formula of the form
A0(~x, ~z)∧A1(~y, ~z) with interpolation function F and proving that F cannot be
computed by polynomial-size circuits.
Unconditional lower bounds for proof systems have been obtained by consid-

ering a monotone variant of the feasible interpolation property. In the mono-
tone case, one considers statements A0(~x, ~z) ∧ A1(~y, ~z) where ~z occurs only
positively in A0. In this case, the interpolation function will be monotone,
and we are interested in whether or not it can be computed by monotone
polynomial-size circuits. For example, we can define A0(x, z) to say “the graph
z has a clique x of size k” and A1(y, z) to say “the graph z has a k − 1-
coloring y”. It is easily seen that the associated monotone interpolation func-
tion must distinguish between graphs containing a k-clique and no other edges,
and graphs with k − 1-cocliques. For appropriately chosen k, this is known
to require exponential-size monotone circuits (Alon & Boppana 1987; Andreev
1985; Razborov 1985). Thus, one can obtain superpolynomial lower bounds
for any proof system satisfying: (i) the above statement can be expressed by
a polynomial-size formula, and (ii) the proof system has the feasible monotone
interpolation property.
In the last few years, the interpolation method has been used to prove

many lower bounds. In particular, lower bounds have been shown for each of
the following systems: Resolution, Cutting Planes and generalizations of Cut-
ting Planes (Bonet et al. 1997a; Cook & Haken 1995; Impagliazzo et al. 1994;
Kraj́ıček 1997, 1998; Pudlák 1997), relativized bounded arithmetic (Razborov
1995), Hilbert’s Nullstellensatz (Pudlák & Sgall 1998), the polynomial calculus
(Pudlák & Sgall 1998), and the Lovász–Schriver proof system (Pudlák 1999).

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 49

On the other hand, in a separate sequence of papers beginning with a key
idea due to Kraj́ıček and Pudlák (Kraj́ıček & Pudlák 1995; Bonet et al. 1997b),
it has been shown that under sufficiently strong cryptographic assumptions,
many stronger proof systems do not have feasible interpolation. The main ideas
are as follows. Suppose that H is a permutation that is generally believed to be
one-way. Formulate A0(~x, ~z) as saying “H(x) = z and the last bit of x is 0” and
A1(y, z) as saying “H(y) = z and the last bit of y is 1”. Since H is injective,
A0 ∧ A1 is a contradiction. If the proof system can have a short refutation of
A0 ∧ A1, then it does not have the feasible interpolation property, unless H is
not a one-way permutation. Using a more general reformulation of the ideas
just sketched, it has been proved that the following proof systems do not have
feasible interpolation, under commonly accepted cryptographic assumptions:
Extended Frege (Kraj́ıček & Pudlák 1995), Frege and even TC0-Frege systems
(Bonet et al. 1997b). These negative results are important not only as a guide
for searching for lower bound techniques, but also because they imply that
the proof systems in question cannot be automatized. This connection was
first made explicit by Bonet et al. (1997b) and takes us back to the second
motivation for studying propositional proof systems.

A proof system S is automatizable if there exists a deterministic proce-
dure D that takes as input a formula f and returns an S-refutation of f (if
one exists) in time polynomial in the size of the shortest S-refutation of f .
Automatizability is a crucial concept for automated theorem proving: in proof
complexity we are mostly interested in the length of the shortest proof, whereas
in theorem proving it is also essential to be able to find the proof. Bonet et al.
(1997b) show that if S does not have feasible interpolation, then S is not au-
tomatizable. Thus, feasible interpolation is a simple measure that formalizes
the complexity/search tradeoff: the existence of feasible interpolation implies
superpolynomial lower bounds (sometimes modulo complexity assumptions),
whereas the non-existence of feasible interpolation implies that the proof sys-
tem cannot be automatized.

1.2. Our results. Our paper nearly completes the picture of which proof
systems do and do not have the feasible interpolation property. Resolution
is the simplest and most studied propositional proof system. In a Resolution
proof, one begins with an unsatisfiable formula in conjunctive normal form
and allowable lines in the refutation are disjunctions of literals. Resolution
is known to have feasible interpolation (Bonet et al. 1997a; Kraj́ıček 1998;
Razborov 1995). Bounded-depth Frege systems, a subsystem of Frege systems,
is a more powerful proof system than Resolution, where one can manipulate for-

50 Bonet et al. cc 13 (2004)

mulas of bounded depth. In a bounded-depth Frege system, one can prove the
weak pigeonhole principle in quasipolynomial size (Paris et al. 1988), whereas
Resolution proofs have exponential size (Buss & Turan 1988). In this paper,
we show that bounded-depth Frege systems, as well as any proof system that
can polynomially simulate bounded-depth Frege systems (for example, Frege
systems, Extended Frege systems, Substitution Frege), do not have feasible
interpolation (under cryptographic assumptions).

Our results use and extend the ideas in Bonet et al. (1997b). More precisely,
we show that bounded-depth Frege systems do not have feasible interpolation
unless the Diffie–Hellman function can be computed by circuits of size 2n

ε
for

arbitrarily small ε > 0. Note that our assumption is stronger than that of Bonet
et al. (1997b) who only needed to assume that the Diffie–Hellman function
cannot be computed by polynomial-size circuits. Also note that computing the
Diffie–Hellman function is at least as hard as factoring Blum integers (Biham
et al. 1999). (See also McCurley 1988; Shmuely 1985.)

The basic idea behind the result of Bonet et al. (1997b) is as follows. They
construct a TC0-Frege formula DHn based on the Diffie–Hellman function. The
size of the formula is polynomial in n, the length of the numbers involved. The
bulk of the argument is to show that there exists a polynomial-size TC0-Frege
refutation of DHn. On the other hand, an interpolation function for DHn

computes one bit of the secret key exchanged by the Diffie–Hellman procedure.
Thus, if TC0-Frege admits feasible interpolation, then the secret key exchanged
by the Diffie–Hellman procedure can be broken using polynomial-size circuits
and hence the Diffie–Hellman cryptographic scheme is not secure.

In the present paper, we will scale down the above idea from n to polylog n.
Consider DHm where m = polylog n. By directly applying the main theorem of
Bonet et al. (1997b), DHm has a TC

0-Frege refutation of size polynomial in m.
We will show how to simulate this refutation with an AC0-Frege refutation of
size polynomial in n. More generally, we will show that any TC0-Frege proof
of size polynomial in n in which all the threshold and parity connectives have
fan-in polylog n can be simulated by an AC0-Frege proof of size polynomial
in n. Consequently, if AC0-Frege admits feasible interpolation, then the secret
key exchanged by the Diffie–Hellman procedure can be broken using circuits
of size 2m

ε
for every ε > 0. This contradicts the widely believed conjecture

that factoring Blum integers is exponentially hard, in the sense that it requires
circuits of size 2m

δ
for some δ > 0.

The idea of scaling the input from n to polylog n in order to be able to
represent a cryptosystem in AC0 instead of TC0 to obtain certain results is not
new. Kharitonov (1993) improved previously known negative results for the

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 51

learnability of Boolean circuit classes from TC0 to AC0 in a very similar way.
However, it is important to note that, although there is a parallel between the
negative results for learning and the negative results for feasible interpolation,
the proofs in the latter case are more involved.
Finally, note that we defined feasible interpolation, as usual, in terms of

polynomial-size circuits. While our results show that bounded-depth Frege
systems do not have feasible interpolation, they leave open the question of a
quasipolynomial-size version of this property.
The paper is organized as follows. In Section 2, we provide a more detailed

overview of the non-interpolation result for TC0-Frege (Bonet et al. 1997b).
In Section 3, we define the AC0 and TC0-Frege systems. In Section 4, we
define some AC0 formulas used in the simulation. In Section 5, we prove some
preliminary lemmas. In Section 6, we show how to simulate the restricted
TC0-Frege proofs mentioned earlier. In Section 7, we prove our main result.

2. Overview of the TC0-Frege non-interpolation result

We briefly outline here the proof that TC0-Frege does not have feasible inter-
polation, and therefore is not automatizable (Bonet et al. 1997b).
The formulas A0 andA1 are based on the Diffie–Hellman secret key exchange

scheme (Diffie & Hellman 1976). The propositional statement DH is defined as

DHn = A0(P, g,X, Y, a, b) ∧ A1(P, g,X, Y, c, d).

The common variables are the integers X, Y , P , and g. P represents a number
(not necessarily a prime) of length n, and g an element of the group Z∗

P . The
private variables for A0 are the integers a and b, and the private variables for
A1 are the integers c and d.
Informally, A0(P, g,X, Y, a, b) says that g

a mod P = X, gb mod P = Y , and
that gab mod P is even. Similarly, A1(P, g,X, Y, c, d) says that g

c mod P = X,
gd mod P = Y , and gcd mod P is odd. The statement A0 ∧ A1 is unsatisfiable
since (informally) if A0 and A1 are both true we have

gab mod P = (ga mod P)b mod P = Xb mod P

= (gc mod P)b mod P = gbc mod P

= (gb mod P)c mod P = Y c mod P

= (gd mod P)c mod P = gcd mod P.

An interpolant function for DHn computes the least significant bit of the
secret key exchanged by the Diffie–Hellman procedure. Since the argument also

52 Bonet et al. cc 13 (2004)

works for any bit, if TC0-Frege admits feasible interpolation, then all bits of
the secret key exchanged by the Diffie–Hellman procedure can be broken using
polynomial-size circuits, and hence the Diffie–Hellman cryptographic scheme is
not secure.
It has been proven that for P = p1p2, where p1, p2 are both primes such

that p1 mod 4 = p2 mod 4 = 3 (i.e., P is a Blum integer), breaking the Diffie–
Hellman cryptographic scheme is harder than factoring P (Biham et al. 1999)
(see also McCurley 1988; Shmuely 1985). Therefore, if TC0-Frege admits fea-
sible interpolation, then there exist polynomial-size circuits for factoring Blum
integers.
The formal statement of DHn as a TC

0-Frege formula relies on the fact
that the following arithmetic functions can be computed by polynomial-size
TC0 circuits:

◦ addition and subtraction,

◦ iterated addition and product,

◦ modular arithmetic,

◦ iterated product of n numbers each of length n.

In fact, the bulk of the work in Bonet et al. (1997b) consists in describing TC0-
Frege formulas defining these arithmetic functions, and then showing that many
basic properties of these functions have polynomial-size TC0-Frege proofs.

3. AC0 and TC0-Frege systems

We will work with the specific bounded-depth threshold logic system TC0-Frege
defined in Maciel & Pitassi (1998) and also used in Bonet et al. (1997b). This
system is a sequent-calculus logical system where formulas are built up using
the connectives ∨, ∧, Tht, ¬, and ⊕b. Tht(x) is true if and only if the number
of 1’s in x is at least t, and ⊕b(x) is true if and only if the number of 1’s in x
is equal to b mod 2.

Definition 3.1. Formulas are built up using the connectives ∧, ∨, Tht, ⊕1,
⊕0, ¬. All connectives are assumed to have unbounded fan-in. Tht(A1, . . . , An)
is interpreted to be true if and only if the number of true Ai’s is at least t;
⊕b(A1, . . . , An) is interpreted to be true if and only if the number of true Ai’s
is equal to b mod 2.

The formula ∧(A1, . . . , An) denotes the logical AND of the multi-set con-
sisting of A1, . . . An, and similarly for ∨, ⊕b and Tht. Thus commutativity of

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 53

the connectives is implicit. Our proof system operates on sequents which are
sets of formulas of the form A1, . . . , Ap → B1, . . . , Bq. The intended meaning is
that the conjunction of the Ai’s implies the disjunction of the Bj’s. A proof of
a sequent S in our logic system is a sequence of sequents, S1, . . . , Sr, such that
each sequent Si is either an initial sequent, or follows from previous sequents
by one of the rules of inference, and the final sequent, Sr, is S.
The initial sequents are of the form: (1) A → A where A is any for-

mula; (2) → ∧(); ∨() →; (3) ⊕1() →; → ⊕0(); and (4) Tht() → for t ≥ 1;
→ Th0(A1, . . . , An) for n ≥ 0. The rules of inference are as follows. Note that
the logical rules are defined for n ≥ 1 and t ≥ 1. First we have simple structural
rules such as weakening (formulas can always be added to the left or to the
right), contraction (two copies of the same formula can be replaced by one),
and permutation (formulas in a sequent can be reordered). The remaining rules
are the cut rule, and logical rules which allow us to introduce each connective
on both the left side and the right side. The cut rule allows the derivation of
Γ,Γ′ → ∆,∆′ from Γ, A → ∆ and Γ′ → A,∆′.
The logical rules are as follows.

1. (Negation-left) From Γ → A,∆, derive ¬A,Γ → ∆.

2. (Negation-right) From A,Γ → ∆, derive Γ → ¬A,∆.

3. (And-left) From A1,∧(A2, . . . , An),Γ → ∆ derive ∧(A1, . . . , An),Γ → ∆.

4. (And-right) From Γ → A1,∆ and Γ → ∧(A2, . . . , An),∆ derive
Γ → ∧(A1, . . . , An),∆.

5. (Or-left) From A1,Γ → ∆ and ∨(A2, . . . , An),Γ → ∆ derive
∨(A1, . . . , An),Γ → ∆.

6. (Or-right) From Γ → A1,∨(A2, . . . , An),∆ derive Γ → ∨(A1, . . . , An),∆.

7. (Mod-left) From A1,⊕b−1(A2, . . . , An),Γ → ∆ and
⊕b(A2, . . . , An),Γ → A1,∆ derive ⊕b(A1, . . . , An), Γ → ∆.

8. (Mod-right) From A1,Γ → ⊕b−1(A2, . . . , An),∆ and
Γ → A1,⊕b(A2, . . . , An),∆ derive Γ → ⊕b(A1, . . . , An),∆.

9. (Threshold-left) From Tht(A2, . . . , An),Γ → ∆ and
A1,Tht−1(A2, . . . , An),Γ → ∆ derive Tht(A1, . . . , An),Γ → ∆.

10. (Threshold-right) From Γ → A1,Tht(A2, . . . , An), ∆ and
Γ → Tht−1(A2, . . . , An),∆ derive Γ → Tht(A1, . . . , An),∆.

54 Bonet et al. cc 13 (2004)

Note that in the mod rules, the subscript of the ⊕ connective should be
taken modulo 2. As written, these rules can also be used to introduce mod
connectives for other moduli.
The size of a proof is the total size of all the formulas that occur in the

proof. The depth of a proof is the maximum depth of all the formulas that
occur in the proof.
A family of sequents (Γ1 → ∆1), (Γ2 → ∆2), (Γ3 → ∆3), . . . has TC

0-Frege
proofs if each sequent has a bounded-depth proof of size polynomial in the size
of the sequent. More precisely,

Definition 3.2. Let F = {(Γn → ∆n) : n ∈ N} be a family of sequents. Then
{Rn : n ∈ N} is a family of TC0-Frege proofs for F if there exist constants c
and d such that the following conditions hold: (1) each Rn is a valid proof of
(Γn → ∆n) in our system; (2) for all i, the depth of Rn is at most d; and (3) for
all n, the size of Rn is at most (size(Γn → ∆n))

c.

Definition 3.3. The AC0-Frege system is a restriction of the TC0-Frege sys-
tem, where we omit the parity and threshold connectives and the associated
rules.

Note that even though the proof systems AC0-Frege and TC0-Frege are
defined in terms of families of sequents, we will sometimes talk of AC0-Frege
or TC0-Frege in the context of a single sequent or formula. In that case, the
bounds on depth and size are not meaningful and the terminology is used simply
to restrict the type of connectives that can appear in the formulas or in the
proofs.
In the following sections, we will use the symbols 0 and 1 in our formulas.

These will simply stand for the formulas x∧ ¬x and x∨ ¬x, respectively. Thus
the sequents 0 → and → 1 have easy AC0-Frege proofs.

4. AC0 counting formulas

In this section we will describe some of the AC0 formulas that we will be using.
Recall that our goal is to show that TC0-Frege proofs of size polynomial in n
in which all the threshold and parity connectives have fan-in polylog n can be
simulated by AC0-Frege proofs of size polynomial in n. To this end, we will
define AC0 circuits of size polynomial in n that can simulate threshold and
parity gates of fan-in polylog n.
We will first show how to add polylog n many bits using AC0 circuits of

size polynomial in n. The general idea is as follows. Suppose that the original

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 55

input bits are x1, . . . , xm, where m = (logn)k for some k. We will sum these
numbers in a divide and conquer fashion, by dividing these inputs into (logn)1/2

consecutive groups, where each group will have size (log n)k−1/2. After adding
the numbers in each group (recursively), we will have (log n)1/2 numbers, each
of length (k−1/2) log log n. For the final step, we notice that the total number
of bits is less than logn, and thus these (log n)1/2 numbers can be added using
a DNF formula of size at most n. To summarize, the AC0 circuit to add
(log n)k 1-bit numbers will be composed of 2k levels. The input level (level 2k)
will consist of (log n)k−1/2 “truth table” subcircuits, TT1, where each truth-
table subcircuit will take (logn)1/2 numbers, each of length 1, and output their
sum. Finally, the output level (level one) will consist of a single truth-table
subcircuit, TT(k−1/2) log log n, which will again take (log n)1/2 numbers, each of
length (k − 1/2) log log n, and output their sum.

We proceed more carefully below. We define five types of AC0 circuits as
follows.

1. TTj: this will be a depth 2 circuit that takes as input (log n)1/2 num-
bers, each of length j, and outputs their sum. We will only use TTj for
j = O(log log n), thus these circuits take less than logn inputs, and can
therefore be defined by the obvious DNF formulas. (TT thus stands for
truth-table definition.) Note that if j = k log logn, then the number of
output bits of TTj will be (k+1/2) log log n. The formula TTj

l represents
the lth output bit of TTj.

2. +j: This circuit takes two numbers, each j bits long, and outputs their
sum. Since we will use this circuit only for j = O(log log n), again the
total number of bits is much less than log n, so we will use the obvious
depth-2 truth-table circuit. Note that the number of output bits of +j

will be j + 1.

3. GEj: This is a depth-2 formula that takes two j-bit numbers x and y as
input and outputs 1 if and only if x is greater than or equal to y. We will
be using GEj only for j = O(log log n), so again this circuit will be the
obvious depth-2 truth-table formula.

4. EQUIVj: This is a depth-2 formula that takes two j-bit numbers x and
y as input and outputs 1 if and only if x is congruent to y modulo 2. A
parity test of the low order bits of x and y gives a constant-size, depth-2
formula.

56 Bonet et al. cc 13 (2004)

5. SUMj,i: This circuit takes as input i numbers, each j bits long, and
outputs their sum. The circuit will be defined inductively using the TT
subcircuits repeatedly. First, SUMj,0() = 0 and SUMj,1(x1) = x1. Next,
consider SUMj,i(x1, . . . , xi) for i > 1. There are two cases, depending
on whether or not i is a power of (logn)1/2. First, if i is not a power of
(logn)1/2, then SUMj,i(x1, . . . , xi) is equal to SUM

j,i(x1, . . . , xi, 0, . . . , 0),
where we pad with the minimum number of zeroes such that the total
number of inputs is a power of (log n)1/2. In the second case, assume that
i is a power of (logn)1/2, and specifically let i = (log n)k/2. The idea is
that SUMj,i(x1, . . . , xi) will be a full tree consisting of k levels of TT’s.
We define SUMj,i as follows:

SUMj,(logn)k/2(x1, . . . , x(log n)k/2) = TT
j+(k/2−1/2) log log n(A1, . . . , A(log n)1/2)

where Ar = SUM
j,(logn)k/2−1/2(xmr−1+1, . . . , xmr) and mt = t(logn)k/2−1/2.

6. THi
t(x1, . . . , xi): This is a constant-depth formula that takes i one-bit

inputs, and outputs 1 if and only if the number of 1’s is t or greater.
It is defined to be equal to GElog i(SUM1,i(x1, . . . , xi), t). It is important
to note that in simulating the original threshold gate, Tht, we are going
from an unordered list of the variables to an ordered list of the variables.
That is, in our formula for THi

t, the order of the variables matters. Even
though commutativity of the underlying variables was implicit in Tht,
we will need to show that permutation of THt can be simulated by our
formulas.

7. PARITYi
b(x1, . . . , xi): This is a constant-depth formula that takes i one-

bit inputs, and outputs 1 if and only if the number of 1’s is congruent to
b modulo 2. It is defined to be equal to EQUIVlog i(SUM1,i(x1, . . . , xi), b).
Again, we will need to show that permutation of PARITYb can be simu-
lated by our formulas.

To simplify notation, we will usually omit the superscripts on the above AC0

formulas. (They can be figured out from context.) It will be helpful to keep in
mind that the length of all intermediate numbers will be at most O(log log n)
(i.e., j = O(log log n).)
Also, sometimes we will write f = g, where f and g are circuits, each

with j outputs. For example, SUM(A1, A2, . . . , Am) = SUM(A2, A1, . . . , Am).
This notation is shorthand for the sequent →

∧j
i=1((¬fi ∨ gi) ∧ (¬gi ∨ fi)).

However, when f = g occurs in a sequent, then it represents the formula

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 57

∧j
i=1((¬fi∨gi)∧(¬gi∨fi)). Lastly, in general, we will write the above formulas

in prefix notation (i.e., GE(x, y)), but for the + formulas we will usually use
infix notation (i.e., x+ y).

5. Preliminaries

The lemmas of this section will greatly simplify the arguments in the rest of
the article. Let F (x) be a formula depending on propositional variable x. The
formula may also depend on other variables; the notation F (x) means that only
x is relevant in the context. Given another formula A, F (A) will denote the
formula obtained by replacing every occurrence of x by A. A derivation of a
sequent S from S1, . . . , Sp is a proof of S that uses the sequents S1, . . . , Sp as
additional initial sequents.
Lemma 5.1 can be proved by induction on the structure of the formula F .

Lemma 5.2 then follows from Lemma 5.1, and Lemma 5.3 from Lemma 5.2.

Lemma 5.1. Let A, B and F (x) be AC0-Frege formulas and let Γ and ∆ be
sequences of AC0-Frege formulas. Let n be the total size of all these formulas
and let d be their maximum depth. Then there is an absolute constant c such
that the following sequents have AC0-Frege proofs of size nc and depth d:

(i) (Γ → F (A),∆) from (Γ → F (B),∆), (Γ, B → A,∆) and (Γ, A → B,∆).

(ii) (Γ, F (A) → ∆) from (Γ, F (B) → ∆), (Γ, B → A,∆) and (Γ, A → B,∆).

Lemma 5.2. Let A and F (x) be AC0-Frege formulas of total size n and max-
imum depth d. Then there is an absolute constant c such that the following
sequents have AC0-Frege proofs of size nc and depth d:

(i) F (0) → A, F (A).

(ii) F (1), A → F (A).

(iii) F (A), A → F (1).

(iv) F (A) → A, F (0).

Proof. The first sequent is easily obtained from Lemma 5.1(i) by substitut-
ing F (0) for Γ, A for ∆ and 0 for B. The other sequents are proved in a similar
way. �

58 Bonet et al. cc 13 (2004)

Lemma 5.3. Let A and F (x) be AC0-Frege formulas of total size n and max-
imum depth d. Then there is an absolute constant c such that the following
sequents have AC0-Frege proofs of size nc and depth d:

(i) → F (A) from → F (0) and → F (1).

(ii) F (A) → from F (0) → and F (1) →.

Lemma 5.4. Let F (x1, . . . , xn) be a tautological AC0-Frege formula. Then,
for every sequence of formulas A1, . . . , An, the sequent → F (A1, . . . , An) can
be derived in AC0-Frege from at most n2 sequents of the form F (B1, . . . , Bn)
→ F (Bπ(1), . . . , Bπ(n)) where π is a permutation. The size of the derivation is
a fixed polynomial in the size of F (A1, . . . , An), and its depth is at most that
of F (A1, . . . , An).

Proof. By applying induction on m, we show how to derive the sequents
→ F (A1, . . . , Am, 0

i, 1n−m−i), 0 ≤ i ≤ n − m. The base case, m = 0, is easy
since the sequents → F (0i, 1n−i), 0 ≤ i ≤ n, contain no variables.
Suppose that the case m holds. Let i be arbitrary. We want to derive the

sequent → F (A1, . . . , Am+1, 0
i, 1n−(m+1)−i). By Lemma 5.3, it is sufficient to de-

rive → F (A1, . . . , Am, 0, 0
i, 1n−(m+1)−i) and → F (A1, . . . , Am, 1, 0

i, 1n−(m+1)−i).
These two sequents follow from the inductive hypothesis by permuting the
arguments of F .
The bound on the size of the derivation is easy to verify. In particular, the

total number of permutation sequents used is bounded by n2. �

Lemma 5.5. In AC0-Frege, if Γ → ∆ is a tautology of size n and depth d with
at most m variables, then it has a proof of size cn22m and depth d, for an
absolute constant c. In particular, if m ≤ b log n, then the size of the proof is
at most cn2+b.

Proof. Since the number of variables is m, the number of truth assignments
to the variables is 2m. The proof proceeds by giving proofs of τ,Γ → ∆, where
τ is a set of literals corresponding to a particular truth assignment to all q
variables. These proofs each have size n2. They are then combined using
2m − 1 repeated applications of the cut rule to remove the literals in the τ ’s, in
a tree-like way. �

Lemma 5.6. Let Γ → ∆ be an AC0-Frege tautology of size n and depth d with
underlying variables x1, . . . , xm. Let Γ

′ → ∆′ be the result of replacing every

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 59

occurrence of each xi by some formula fi. Then Γ′ → ∆′ has an AC0-Frege
proof of size cn22m and depth d, for an absolute constant c. In particular, if
m ≤ b log n, then the size of the proof is at most cn2+b.

Proof. The proof is very similar to the one above, except that we obtain
proofs of τ,Γ → ∆ where now τ corresponds to a particular sequence of truth
values for the formulas f1, . . . , fm. Since Γ

′ → ∆′ is a tautology, each of these
2m sequents is true and has a simple proof of size n2. Now again, we use 2m −1
applications of the cut rule (now applied to formulas instead of literals) to
remove all of the formulas in the τ ’s. �

6. Simulating the restricted TC
0-Frege proofs

Let P denote a TC0-Frege proof of a sequent Γ → ∆. Suppose that P has size
polynomial in n and that all the threshold and parity connectives in P have
fan-in polylog n. Our goal in this section is to show that P can be simulated
by an AC0-Frege proof of size polynomial in n. This will be done by trans-
lating the lines L1, . . . , L|P | of P into equivalent AC0-Frege sequents that will
constitute the skeleton of an AC0-Frege proof. More precisely, each line Li will
be translated into L′

i and L
′
1, . . . , L

′
|P |−1 will become intermediate lines in an

AC0-Frege proof of L′
|P |.

An AC0 formula A′ is an AC0 translation of a TC0 formula A if A′ can be
obtained by replacing every threshold and parity connective in A by the TH
and PARITY formulas defined in Section 4. Note that if A has size polynomial
in n and if the threshold and parity connectives in A all have fan-in polylog n,
then A′ has size polynomial in n. Also note that A′ is not unique since the
arguments of the connectives are multi-sets while the inputs to the TH and
PARITY formulas are ordered. The notion of an AC0 translation extends in
the obvious way to sequents.

The main result of this section can now be stated precisely.

Theorem 6.1. Suppose that the family of sequents Γ → ∆ has a TC0-Frege
proof of size polynomial in n in which all the threshold and parity connectives
have fan-in polylog n. Then any AC0 translation of Γ → ∆ has an AC0-Frege
proof of size polynomial in n.

The proof will be by induction on the number of steps in P . For i =
1, . . . , |P |, we will show that there is an AC0-Frege proof of L′

i, of size polyno-
mial in n, with intermediate lines L′

1, . . . , L
′
i−1.

60 Bonet et al. cc 13 (2004)

For the inductive basis, we need to give polynomial-size AC0-Frege proofs of
the initial sequents of the TC0-Frege system. The first of these sequents is A →
A which translates to A′ → A′′ where A′ and A′′ are two—possibly different—
AC0 translations of A. Our first task is therefore to give a polynomial-size
AC0-Frege proof of A′ → A′′. We start with the following lemma.

Lemma 6.2. Consider the following sequents:

(i) THt(A1, . . . , Am) → THt(Aπ(1), . . . , Aπ(m)),

(ii) PARITYb(A1, . . . , Am) → PARITYb(Aπ(1), . . . , Aπ(m)),

where A1, . . . , Am are AC0-Frege formulas and π is any permutation. Assume
that these sequents have size n, maximum depth d and that m = (log n)k.
Then these sequents have AC0-Frege proofs of size nc and depth d, where c
depends only on k.

Proof. The formula THt(A1, . . . , Am) is defined as GE(SUM(A1, . . . , Am), t)
and the circuit SUM(A1, . . . , Am) has only log(log n)

k outputs. Therefore, by
Lemma 5.6, the sequent

THt(A1, . . . , Am), (SUM(A1, . . . , Am) = SUM(Aπ(1), . . . , Aπ(m))

→ THt(Aπ(1), . . . , Aπ(m)),

which is of size at most 2n, has an AC0-Frege proof of size c1(2n)
2(log 2n)k,

for some absolute constant c1. This implies that to prove THt(A1, . . . , Am)
→ THt(Aπ(1), . . . , Aπ(m)), it is sufficient to prove that SUM(A1, . . . , Am) =
SUM(Aπ(1), . . . , Aπ(m)). The same is true for the PARITYb sequent.
In order to show that SUM(A1, . . . , Am) = SUM(Aπ(1), . . . , Aπ(m)), it suf-

fices to show that

SUM(A1, . . . , Ar, . . . , As, . . . , Am) = SUM(A1, . . . , As, . . . , Ar, . . . , Am).

In other words, it suffices to show that the result holds when we transpose two
elements, Ar and As. The idea is to rewrite SUM(A1, . . . , Ar, . . . , As, . . . , Am)
in terms of the variables Ar and As, and O(logn) new (meta)variables. This
will be done by replacing most of the subformulas of the original formula by
these new variables. The formula SUM(A1, . . . , As, . . . , Ar, . . . , Am) will be
rewritten in a similar way. The resulting two formulas will be truth-functionally
equivalent, and since they will involve only O(logn) variables, we will be able

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 61

to apply Lemma 5.6 to complete the proof. In order to see how to do this, we
will need some notation.
Recall that the SUM circuit on m = (logn)k 1-bit inputs is divided into

2k levels, where each level consists of depth-2 TT circuits. Let j = (logn)1/2.
Then the SUM circuit on A1, . . . , Am can be viewed as a tree with 2k levels.
Let ρ denote a particular path in this tree. (So the nodes in the tree at level
1 have path names 1, . . . , j; the nodes in the tree at level 2 have path names
11, 12, . . . , 1j, 21, 22, . . . , 2j, . . . , j1, . . . , jj and so on.) Then Xρ

i will denote
the subcircuit at level i in the tree obtained by following the path ρ. In this
notation, we have SUM(A1, . . . , Am) = TT(X1

1 , X
2
1 , . . . , X

j
1) and in general

Xρ
i = TT(X

ρ,1
i+1, X

ρ,2
i+1, . . . , X

ρ,j
i+1). Also, notice that X

ρ
2k are vectors of j input

variables.
Assume for notational simplicity that Ar ∈ X11...1

2k and As ∈ Xjj...j
2k . That

is, Ar is the very first variable and As is the very last variable. Then we will
write SUM(A1, . . . , Am) as follows:

SUM(A1, . . . , Am) = TT(X
1
1 , X

2
1 , . . . , X

j
1)

= TT(TT(X11
2 , X

12
2 , . . . , X

1j
2),

X2
1 , . . . , X

j−1
1 ,

TT(Xj1
2 , . . . , X

jj
2))

= TT(TT(TT(X111
3 , . . . , X11j

3), X12
2 , . . . , X

1j
2),

X2
1 , . . . , X

j−1
1 ,

TT(Xj1
2 , . . . , X

j(j−1)
2 ,TT(Xjj1

3 , . . . , Xjjj
3))).

The idea of the above representation is that we are representing most of the
SUM circuit by large subformulas that are never looked at; only the part of the
circuit that must be opened up in order to look at Ar and As will be represented.
Thus, in this representation, at each of the 2k levels, we are adding 2j new
variables, each of length log(logk n). Therefore, the number of metavariables
that are represented in total is 4kj log(logk n) = 4k(log n)1/2(k log log n) ≤
4k2 logn.
In the same manner, we break up the formula

SUM(A1, . . . , As, . . . , Ar, . . . , Am)

with Ar and As transposed. Again, this formula will involve at most 4k
2 logn

metavariables, and these metavariables will be identical to the metavariables
involved in SUM(A1, . . . , Am). Furthermore, these two formulas (on 4k

2 logn
metavariables) are equivalent. Thus, by Lemma 5.6, the sequent

SUM(A1, . . . , Ar, . . . , As, . . . , Am) = SUM(A1, . . . , As, . . . , Ar, . . . , Am)

62 Bonet et al. cc 13 (2004)

has a proof of size c1n
2+4k2 and depth d. This implies that SUM(A1, . . . , Am) =

SUM(Aπ(1), . . . , Aπ(m)) has a proof of size m
2c1n

2+4k2 and depth d. Therefore,
THt(A1, . . . , Am) → THt(Aπ(1), . . . , Aπ(m)) has a proof of size c1(2n)

2(log 2n)k+

m2c1n
2+4k2 , which (when n ≥ 2) is at most nc for some number c that depends

only on k. �

Lemma 6.3. Let A′ and A′′ be AC0 translations of the same TC0-Frege for-
mula A. Suppose that A has size n, depth d and that all the threshold and
parity connectives in A have fan-in m = (log n)k. Then the sequent A′ → A′′

has an AC0-Frege proof of size nc and depth d, where c depends only on k.

Proof. The proof is by induction on the structure of A. The inductive
basis is trivial. For the inductive step, several cases need to be considered
depending on the top connective of A. Suppose, for example, that A is a formula
of the form Tht(A1, . . . , Am). Then A′ = THt(A

′
π(1), . . . , A

′
π(m)) and A′′ =

THt(A
′′
σ(1), . . . , A

′′
σ(m)), where π and σ are permutations and the primes and

double primes indicate different AC0 translations of the same formula. We want
to derive A′ → A′′. By Lemma 6.2, it is sufficient to derive THt(A

′
1, . . . , A

′
m) →

THt(A
′′
1, . . . , A

′′
m).

Let F (x) = THt(A
′
1, . . . , A

′
m−1, x). By Lemma 5.1, and by the inductive

hypothesis applied to Am, we can derive F (A
′
m) → F (A′′

m), that is,

THt(A
′
1, . . . , A

′
m−1, A

′
m) → THt(A

′
1, . . . , A

′
m−1, A

′′
m).

Repeat this, with a different formula F (x), to get

THt(A
′
1, . . . , A

′
m−2, A

′
m−1, A

′′
m) → THt(A

′
1, . . . , A

′
m−2, A

′′
m−1, A

′′
m).

Continue repeating until we get

THt(A
′
1, A

′′
2, . . . , A

′′
m) → THt(A

′′
1, A

′′
2, . . . , A

′′
m).

A series of cuts will now produce the desired sequent.
The other cases are similar and the bound on the size of the proof is easy

to verify. �

Note that the proof of Lemma 6.2 is the only place in the proof of Theo-
rem 6.1 where we mention the particular definitions we are using for the TH
and PARITY formulas. Therefore, our proof of Theorem 6.1 works with any
kind of AC0 translation that is obtained by replacing every threshold and parity
connective by AC0 formulas that satisfy the property stated in Lemma 6.2.

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 63

Let us now return to the inductive basis of the proof of Theorem 6.1. The
initial sequent A → A is taken care of by Lemma 6.3. The sequents → ∧()
and ∨() → remain unchanged under AC0 translation and are therefore han-
dled by the identical AC0-Frege initial sequents. Next, the sequents ⊕1() →,
→ ⊕0() and Tht() →, for t ≥ 1, become PARITY1() →, → PARITY0() and
THt() →, respectively. These are all tautologies with no variables that can
therefore be easily proven. Finally, the sequent → Th0(A1, . . . , Am) becomes
→ TH0(A1, . . . , Am), a tautology that can be proven using Lemma 5.4 and
Lemma 6.2.
We now move to the inductive step. Suppose that we have an AC0-Frege

proof of L′
i, of size polynomial in n, with intermediate lines L

′
1, . . . , L

′
i−1. We

want to get an AC0-Frege proof of L′
i+1, of size polynomial in n, with intermedi-

ate lines L′
1, . . . , L

′
i. In the original TC

0-Frege proof P , Li+1 is either an initial
sequent or obtained from previous sequents by one of the TC0-Frege inference
rules. If Li+1 is an initial sequent, then we are done by the argument used in
the inductive basis. So suppose that Li+1 was obtained from previous sequents
by one of the TC0-Frege inference rules. We will show how to simulate these
rules using AC0-Frege proofs of size polynomial in n.
All of the structural rules as well as the cut, ¬-left, ¬-right, ∧-left, ∧-right,

∨-left and ∨-right rules can be easily simulated by using Lemma 6.3 and the
corresponding AC0-Frege rules. We are left with the ⊕-left, ⊕-right, Th-left
and Th-right rules.
Consider the Th-right rule. Suppose that Li+1 is a sequent of the

form Γ → Tht(A1, . . . , An),∆ and that Li+1 was derived from Γ →
A1,Tht(A2, . . . , An),∆ and Γ → Tht−1(A2, . . . , An),∆. We need to show
that the sequent Γ′ → THt(A

′
π(1), . . . , A

′
π(n)),∆

′ can be derived from Γ′′ →

A′′
1,THt(A

′′
σ(2), . . . , A

′′
σ(n)),∆ and Γ′′′ → THt−1(A

′′′
τ(2), . . . , A

′′′
τ(n)),∆

′′′, where π,
σ and τ are permutations and the primes, double primes and triple primes indi-
cate different AC0 translations of the same formula or sequent. By Lemmas 6.2
and 6.3, it is sufficient to show that Γ′ → THt(A

′
1, . . . , A

′
n),∆

′ can be derived
from Γ′ → A′

1,THt(A
′
2, . . . , A

′
n),∆ and Γ′ → THt−1(A

′
2, . . . , A

′
n),∆

′. We will
use the following lemma:

Lemma 6.4. Consider the following sequents:

(i) THt(A2, . . . , Am) → THt(A1, . . . , Am),

(ii) A1,THt−1(A2, . . . , Am) → THt(A1, . . . , Am),

(iii) THt(A1, . . . , Am) → THt−1(A2, . . . , Am),

64 Bonet et al. cc 13 (2004)

(iv) THt(A1, . . . , Am) → A1,THt(A2, . . . , Am),

where A1, . . . , Am are AC0-Frege formulas. Suppose that these sequents have
size n, maximum depth d and that m = (log n)k. Then these sequents have
AC0-Frege proofs of size nc and depth d+ 2, where c depends only on k.

Proof. Consider the first sequent. Let

G0(A2, . . . , Am) = THt(0, A2, . . . , Am) ∨ ¬THt(A2, . . . , Am)

and
G1(A2, . . . , Am) = THt(1, A2, . . . , Am) ∨ ¬THt(A2, . . . , Am).

Using Lemma 6.2, we can easily prove that the arguments of G0 and G1 can be
permuted. Therefore, by Lemma 5.4, we get the sequents → G0(A2, . . . , Am)
and → G1(A2, . . . , Am). Now by Lemma 5.3, we get

→ THt(A1, A2, . . . , Am) ∨ ¬THt(A2, . . . , Am).

The first sequent can be easily derived from this. The proof of the other
sequents is similar. �

Continuing with the simulation of the Th-right rule, let A′ = A′
1, B

′ =
THt(A

′
2, . . . , A

′
m), C

′ = THt−1(A
′
2, . . . , A

′
m) and D′ = THt(A

′
1, . . . , A

′
m). We

want to derive Γ′ → D′,∆′ from Γ′ → A′, B′,∆′ and Γ′ → C ′,∆′. From the
second sequent in Lemma 6.4, we have A′, C ′ → D′. Using this together with
Γ′ → C ′,∆′ we can apply weakening and cut to derive Γ′, A′ → D′,∆′. Now
applying cut to this formula together with Γ′ → A′, B′,∆′ yields the formula
Γ′ → D′, B′,∆′. Finally, applying weakening and cut to this formula together
with B′ → D′, the first sequent in Lemma 6.4, we derive Γ′ → D′,∆′ as desired.
The simulation of the threshold-left rule is similar. The simulation of

the ⊕ rules is also similar except that it uses the following lemma instead
of Lemma 6.4:

Lemma 6.5. Consider the following sequents:

(i) A1,PARITYb(A1, . . . , Am) → PARITYb−1(A2, . . . , Am),

(ii) PARITYb(A1, . . . , Am) → A1,PARITYb(A2, . . . , Am),

(iii) A1,PARITYb−1(A2, . . . , Am) → PARITYb(A1, . . . , Am),

(iv) PARITYb(A2, . . . , Am) → A1,PARITYb(A1, . . . , Am),

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 65

where A1, . . . , Am are AC0-Frege formulas. Suppose that these sequents have
size n, maximum depth d and that m = (log n)k. Then these sequents have
AC0-Frege proofs of size nc and depth d+ 2, where c depends only on k.

The proof this lemma is similar to that of Lemma 6.4.

7. Our main result

We are now ready to prove our main theorem.

Theorem 7.1. If there is a constant δ > 0 such that the Diffie–Hellman func-
tion cannot be computed with circuits of size less than 2n

δ
, then AC0-Frege

does not have feasible interpolation.

Proof. DHm, as defined by Bonet et al. (1997b), is a TC
0-Frege formula with

m variables and of size polynomial in m. By the main theorem of Bonet et al.
(1997b), DHm has a TC

0-Frege refutation of size polynomial in m. Let m =
(log n)k, where k > 1/δ. By Theorem 6.1, it follows that the AC0 translation
of DHm has an AC

0-Frege refutation of size polynomial in n. Note that any
AC0 translation of DHm has the same interpolation function as DHm itself.
Thus, if AC0-Frege has feasible interpolation, then the Diffie–Hellman function
on (log n)k many bits has circuits of size polynomial in n. The result follows.�

Acknowledgements

We thank the anonymous referees for several useful comments. Bonet was
supported in part by projects PB98-0937-C04-03, HA2000,41 and TIC2001-
1577-C03-02. Gavaldà was supported in part by the IST Programme of the EU
under contract number IST-1999-14186 (ALCOM-FT), by CIRIT 1997SGR-
00366, TIC2000-1970-CE, and by project FRESCO (PB98-0937-C04-04). Ma-
ciel was supported in part by NSF grant CCR-9877150. Pitassi was supported
in part by an NSERC Research grant, a Premiere’s Research Excellence Award
(Ontario), and NSF grant CCR9820831. Most of this work was done while
Domingo was at the Department of Software (LSI), Universitat Politècnica de
Catalunya, Barcelona, Spain, and Pitassi was at the Department of Computer
Science, University of Arizona, Tucson, AZ, U.S.A.

References

N. Alon & R. B. Boppana (1987). The monotone circuit complexity of Boolean
functions. Combinatorica 7, 1–22.

66 Bonet et al. cc 13 (2004)

A. E. Andreev (1985). On a method for obtaining lower bounds for the complexity
of individual monotone functions. Dokl. Akad. Nauk SSSR 282, 1033–1037 (in
Russian). English transl.: Soviet Math. Dokl. 31, 530–534.

E. Biham, D. Boneh & O. Reingold (1999). Breaking generalized Diffie–Hellman
modulo a composite is no easier than factoring. Inform. Process. Lett. 70, 83–87.

M. Bonet, T. Pitassi & R. Raz (1997a). Lower bounds for Cutting Planes proofs
with small coefficients. J. Symbolic Logic 62, 708–728.

M. Bonet, T. Pitassi & R. Raz (1997b). No feasible interpolation for TC 0-Frege
proofs. In Proc. 38th IEEE Symposium on Foundations of Computer Science, 254–
263. Final version in SIAM J. Computing 29 (2000), 1939–1967, with the title: On
interpolation and automatization for Frege proof systems.

S. R. Buss & G. Turan (1988). Resolution proofs of generalized pigeonhole prin-
ciples. Theoret. Comput. Sci. 62, 311–317.

S. Cook & A. Haken (1995). An exponential lower bound for the size of monotone
real circuits. In Proc. 36th IEEE Symposium on Foundations of Computer Science.
Final version in J. Comput. System Sci. 58 (1999), 326–335.

S. Cook & R. Reckhow (1979). The relative efficiency of propositional proof
systems. J. Symbolic Logic 44, 36–50.

W. Diffie & M. Hellman (1976). New directions in cryptography. IEEE Trans.

Inform. Theory 22, 423–439.

R. Impagliazzo, T. Pitassi & A. Urquhart (1994). Upper and lower bounds for
tree-like Cutting Planes proofs. In Proc. IEEE Symposium on Logic in Computer

Science.

M. Kharitonov (1993). Cryptographic hardness of distribution-specific learning.
In Proc. 25th ACM Symposium on Theory of Computing, 372–381.

J. Kraj́ıček (1997). Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. J. Symbolic Logic 62, 457–486.

J. Kraj́ıček (1998). Discretely ordered modules as a first-order extension of the
cutting planes proof system. J. Symbolic Logic 63, 1582–486.

J. Kraj́ıček & P. Pudlák (1995). Some consequences of cryptographical conjec-
tures for S12 and EF . In Logic and Computational Complexity, D. Leivant (ed.),
Lecture Notes in Comput. Sci. 960, Springer, 210–220.

cc 13 (2004) Non-automatizability of bounded-depth Frege proofs 67

A. Maciel & T. Pitassi (1998). Towards lower bounds for bounded-depth Frege
proofs with modular connectives. In Proof Complexity and Feasible Arithmetics,
P. Beame and S. Buss (eds.), DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
39, Amer. Math. Soc., 195–227.

K. McCurley (1988). A key distribution system equivalent to factoring. J. Cryp-
tology 1, 95–105.

J. B. Paris, A. J. Wilkie & A. R. Woods (1988). Provability of the pigeonhole
principle and the existence of infinitely many primes. J. Symbolic Logic 53, 1235–
1244.

P. Pudlák (1997). Lower bounds for resolution and cutting planes proofs and
monotone computations. J. Symbolic Logic 62, 981–998.

P. Pudlák (1999). On the complexity of propositional calculus. In Sets and Proofs,
Logic Colloquium 97, B. Cooper and J. Truss (eds.), London Math. Soc. Lecture
Note Ser. 258, Cambridge Univ. Press, 197–218.

P. Pudlák & J. Sgall (1998). Algebraic models of computation and interpolation
for algebraic proof systems. In Proof Complexity and Feasible Arithmetics, P. Beame
and S. Buss (eds.), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 39, Amer.
Math. Soc., 179–295.

A. A. Razborov (1985). Lower bounds on the monotone complexity of some
Boolean functions. Dokl. Akad. Nauk SSSR 281, 798–801 (in Russian). English
transl.: Soviet Math. Dokl. 31, 354–357.

A. A. Razborov (1995). Unprovability of lower bounds on the circuit size in certain
fragments of bounded arithmetic. Izv. Ross. Akad. Nauk Ser. Mat. 59, 201–224 (in
Russian). English transl.: Izv. Math. 59, 205–227.

Z. Shmuely (1985). Composite Diffie-Hellman public-key generating systems are
hard to break. Technical Report 356, Computer Sci. Dept., Technion, Haifa.

Manuscript received 2 August 2000

Maria Luisa Bonet

Department of Software (LSI)
Universitat Politècnica de Catalunya
Barcelona, Spain
bonet@lsi.upc.es

Carlos Domingo

Department of Mathematical and
Computing Science

Tokyo Institute of Technology
Ookayama, Meguro-ku, Tokyo, Japan

68 Bonet et al. cc 13 (2004)

Ricard Gavaldà

Department of Software (LSI)
Universitat Politècnica de Catalunya
Barcelona, Spain
gavalda@lsi.upc.es

Alexis Maciel

Department of Mathematics and
Computer Science

Clarkson University
Potsdam, NY 13699-5815, U.S.A.
alexis@clarkson.edu

Toniann Pitassi

Department of Computer Science
University of Toronto
Toronto, Ontario, Canada, M5S 3G4
toni@cs.toronto.edu

