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Abstract

Frege systems with the deduction rule produce at most quadratic

speedup over Frege systems using as a measure of length the number

of symbols in the proof. We study whether that speedup is in reality

smaller. We show that the speedup is linear when the Frege proofs

are tree-like. Also, two groups of formulas, permutation formulas and

transitive closure formulas, that seemed most likely to produce an

almost quadratic speedup when using the deduction rule, are shown

to produce only log n and log2
n factors respectively.

1 Introduction

A Frege proof system is an inference system for propositional logic in which
the only rule of inference is Modus Ponens.

Definition 1 A Frege Proof System consists of:

1. A finite complete set of propositional connectives. We use the following
set: ¬,∨,∧,⊃.
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2. A finite set of axiom schemata.

3. A proof in this system is a sequence of lines A1, . . . , An where each Ai

is either a substitution instance of an axiom scheme, or is inferred by
Modus Ponens(MP) from some formulas Aj and Ak where j, k < i.

4. The proof system must be consistent and complete.

By Modus Ponens we mean the rule:

A A ⊃ B

B

We write A1, . . . , An k B to mean that there is a sequence of ≤ k formulas
each of which is one of the Ai ’s, is an axiom, or is inferred by modus ponens
from earlier formulas such that B is the final formula of the proof.

Although it suffices to have modus ponens as the single inference rule to
obtain a complete proof system, it is well-known that other modes of inference
are also sound. The most notable example of this is the deduction rule which
states that if a formula B has a proof from an additional, extra-logical
hypothesis A (in symbols, A ` B ) then there is a proof of A ⊃ B .

A ` B

A ⊃ B
Deduction Rule

This paper establishes upper bounds on the proof speedups obtained by
this rule on certain types of proofs and certain types of formulas. By a
“speedup” of a proof, we mean the amount that proofs can be shortened with
additional inference rules. In this paper, the length of a proof is the number
of symbols in the proof.

If S and T are proof systems we say that S can linearly (respectively ,
quadratically) simulate T if, for any T -proof of k symbols, there is an S -proof
of the same formula of O(k) symbols (respectively, of O(k2) symbols). We
say that T provides at most linear (respectively, quadratic) speedup over S if
S can linearly (respectively, quadraticly) simulate T .

Counting length in terms of number of symbols, any two Frege systems
simulate each other with at most polynomial increase in the length of the
proofs if we change the set of connectives. See Reckhow [?] for a proof of
this fact. If we only change the set of axiom schemata, again any two Frege
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systems simulate each other with only linear increase in the length (number
of symbols) of the proofs (see [?]). Therefore in this paper we fix the set of
connectives, but not the set of axiom schemata. For an example of a complete
set of axiom schemata see [?].

In section 2 we analyze the proof of the deduction theorem to show that
Frege systems with the deduction rule provide at most quadratic speedup over
the Frege systems. The second theorem proves that Frege systems linearly
simulate tree-like Frege systems with the deduction rule.

The open question is whether Frege systems can do better than a quadratic
simulation of the deduction Frege systems. The last two sections of this paper
will consist on the analysis of some examples that seem to be the most likely
to get an almost quadratic speedup when using the deduction rule. But in all
our examples, we prove that the speed up is much less than quadratic.

Also there is an intermediate section (section 3) about ways to associate
parenthesis on formulas, and how that leads into different ways of balancing
trees.

Work on lengths of propositional proofs counting the number of symbols
in a proof was done also by Cook-Reckhow [?, ?] and Statman [?]. Also work
on strengthenings of the deduction theorem but counting number of lines as
a measure of length was done by Bonet-Buss [?, ?, ?].

2 TheDeductionTheoremCountingtheNum-

ber of Symbols

Let us make the following important comment before we prove any theorems
in this section:

Note Say a fixed tautology B has p1, . . . , pn as propositional variables,
and a proof of B has m symbols. Then if we substitute p1, . . . , pn by
A1, . . . , An respectively, then the resulting formula has a proof with at most
m(|A1| + . . .+ |An|) symbols.

Theorem 1 If A ` B in n symbols, then ` A ⊃ B in O(n2) symbols.

Proof By the hypothesis, there is a proof of B from the assumption A that
looks like:
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C1 = A
C2
...
Cm = B

To find a proof P of A ⊃ B in the Frege system, we will transform the
former proof into the sequence P ′ :

A ⊃ C1

A ⊃ C2
...

A ⊃ Cm

This is not really a Frege proof, but we can easily get a Frege proof by
filling in the gaps the following way:

The first line is A ⊃ A. We need to introduce a proof of it at the beginning
of P to justify that first line. This means an increase in length of O(|A|)
symbols. This is because if p ⊃ p has a proof of a constant k number of
symbols, then by the note A ⊃ A has a proof in at most k|A|.

We need to fill in the rest of the lines to make up a proof. Let’s justify
A ⊃ Ci for any i such that 2 ≤ i ≤ n. We have two cases:

• Ci is an axiom. The proof of A ⊃ Ci will consist of: axiom Ci , a proof
of Ci ⊃ (A ⊃ Ci) and a use of MP to get A ⊃ Ci . All this will have
length O(|A| + |Ci|).

• Ci was obtained by MP on Cj and Ck . Say Ck = Cj ⊃ Ci . Then in
some former lines of P ′ we have A ⊃ Cj and A ⊃ Ck . From these two
former lines, we can justify A ⊃ Ci , and the number of symbols to do
such justification is O(|A|+ |Ci|+ |Cj|), or alternatively O(|A|+ |Ck|).

This way we get a proof P of A ⊃ B . In general each line A ⊃ Ci can be
justified with

d(|A| + |Ci| + |Ck|)

symbols, where d is a constant. Each formula in the proof of A ` B will play
the role of Ck only once, since each formula will be proven only once.
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If we count the number of symbols of P , we get that it is at most

d(m · |A| +
m

∑

i=1

|Ci| +
m

∑

i=1

|Ck|) (1)

Also, all we know about A and m is that |A| < n and m < n. So P has less
than

d(n2 + n+ n) (2)

symbols. Therefore A ⊃ B has a proof in O(n2) symbols. 2

If we could bound m and |A| so that m · |A| = O(n), then the above
argument shows that we can obtain a proof of A ⊃ B with O(n) symbols.
But it is possible to have a proof where both |A| and m are O(n). In fact
the examples we are going to be working with have big |A|’s and m’s. Before
we look into these examples, let us show that Frege systems linearly simulate
tree-like Frege systems with the deduction rule.

Definition 2 We say a proof P is tree-like if each line in P is used only once
in the proof. By used in a proof we mean to be a hypothesis of a MP inference.
Also, if A ` B , then A can occur more than once in the proof.

Definition 3 Given A ` B , we say A is used in a linear way if all the lines
A1, . . . , As in the proof that depend on A are obtained the following way: there
are lines ϕ1, . . . , ϕs in the proof that don’t depend on A (i.e. they can be proved
without any hypothesis) such that ∀i, 1 ≤ i ≤ s, Ai is obtained by MP on ϕi

and Ai−1 , A1 is obtained by MP on ϕ1 and A, and As = B . Pictorically,
A ` B looks like
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Figure 1

where the ϕi ’s have their proofs possibly non tree-like.

Lemma 2 If A ` B is tree-like and A occurs only once in the proof, then also
A is used in a linear way.

However, the opposite is not true, since the formulas ϕ1, . . . , ϕs could have
been obtained in a non tree-like manner. The next theorem is due to S. Buss.

Theorem 3 Suppose that A ` B in n symbols, with A used in a linear way.
Then ` A ⊃ B in O(n) symbols.

Proof Say P is the proof of B from the hypothesis A in n symbols. Say
A1, . . . , As are the lines in the proof that depend on the hypothesis A. Also
there are lines ϕ1, . . . , ϕs such that each Ai is obtained by MP from ϕi and
Ai−1 . Note that As = B , since B should depend on A, otherwise B would
be provable without assuming A.
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Let us create the following sequence P ′ :

ϕ1 ⊃ (A ⊃ A1)
ϕ2 ⊃ (A1 ⊃ A2)
...
ϕs ⊃ (As−1 ⊃ As)

A ⊃ A1

A1 ⊃ A2
...
As/2−1 ⊃ As/2

As/2 ⊃ A(s/2)+1
...
As−1 ⊃ As

A(s/2)−1 ⊃ A(s/2)+1

A(s/2)−2 ⊃ A(s/2)+2

A(s/2)−3 ⊃ A(s/2)+3
...
A1 ⊃ As−1

A ⊃ As

The first s lines of the sequence above have less than O(n) symbols
because each formula Ai appears only twice, and |ϕi| is O(|Ai−1|+ |Ai|). The
second set of s lines has again less than 2 ·n symbols because each formula of
the proof P appears at most twice. The last s/2 lines of the sequence above
have less than n symbols because each formula appears only once. Therefore,
the sequence above has at most 5 · n symbols.

From the sequence P ′ we want to create a proof P1 of A ⊃ B in O(n)
symbols. To do that we need to justify each line, i.e., to fill in the blanks in
P ′ .

In the first group of s lines each line ϕi ⊃ (Ai−1 ⊃ Ai) is justified by
adding to the proof O(|ϕi| + |Ai−1| + |Ai|) symbols. Since each formula Ai

shows in the first lines of P ′ at most twice, and |ϕi| is O(|Ai−1| + |Ai|) , the
first s lines can be justified in O(n) symbols. The reason we worry about |ϕi|
is because some ϕi ’s could be identical, and they wouldn’t be repeated in the
original proof as they would in P ′ .
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The second set of s lines can be justified very easily. P contains a subproof
that doesn’t depend on A and proves all the ϕi ’s. Insert this subproof between
the first and second set of s lines. This subproof has < n symbols since it is
just part of P . Now with s uses of MP (using the first s lines of P ′ ), we can
get the second set of s lines. The total number of symbols added is O(n).

Now let us explain how to justify the last s/2 lines. We get
each A(s/2)−i ⊃ A(s/2)+i from the former lines, assuming we have jus-
tified lines A(s/2)−i ⊃ A(s/2)−(i−1) , A(s/2)−(i−1) ⊃ A(s/2)+(i−1) , and
A(s/2)+(i−1) ⊃ A(s/2)+i . To obtain A(s/2)−i ⊃ A(s/2)+i we add
O(|A(s/2)−i| + |A(s/2)−i+1| + |A(s/2)+i−1| + |A(s/2)+i|) symbols. Note that
A(s/2)−(i−1) and A(s/2)+(i−1) were used in the line before, but they won’t
be used anymore in the sequence. Also A(s/2)−i and A(s/2)+i were not used
before, but they will be used to justify the next line and then not used
anymore. So each line Ai from P is used a constant number of times to
justify the last s/2 lines. Therefore the number of symbols added to justify
the last s/2 lines is O(n) also.

Therefore the proof P1 obtained by filling in the blanks of P ′ as explained
above has O(n) symbols. 2

If we analyze the former proof, and compare it with what we did in
theorem ??, we will see that the reason why we don’t get the quadratic
increase is because we don’t have to put A ⊃ in front of each line. In fact,
for all Ai , we put Ai ⊃ in front of a line only a constant number of times in
the sequence.

Corollary 4 Suppose that A ` B in n symbols, A occurs only once and the
proof is tree-like. Then ` A ⊃ B in O(n) symbols.

Theorem 5 Suppose that A ` B in n symbols, and the proof is tree-like.
Then ` A ⊃ B in O(n) symbols.

Proof We prove that ` A ⊃ B in c(3n − |A| − |B|) symbols for some
constant c, by induction on the number of occurences of A in the tree-like
proof. Suppose the theorem is true for all proofs where A occurs less than
l times. We are going to prove it for l ≥ 2 (if l = 1 it’s true by the former
corollary).

Say A ` B has l occurences of A, and it looks as figure 1, where now the
ϕi ’s have tree-like proofs, and some of them depend on A. Say Ai is such
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that Ai−1 and ϕi depend on A, but for all j > i ϕj doesn’t depend on A
(this always happens since l ≥ 2). Also say the proof of A ` Ai−1 has m1

symbols, the proof of A ` ϕi has m2 symbols, and the proof of Ai ` B (the
rest) has m3 symbols. So m1 +m2 +m3 = n. In the proof of Ai ` B , Ai was
used in a linear way, since the ϕj ’s for j > i don’t depend on any hypothesis.
So by the theorem ??, we can obtain a proof of ` Ai ⊃ B in O(m3) symbols,
say in d ·m3 symbols. Also by the induction hypothesis, there are proofs of
A ⊃ Ai−1 and A ⊃ ϕi of length c(3m1 −|A|− |Ai−1|) and c(3m2 −|A|− |ϕi|)
respectively, since A occurs less than l times in those subproofs. We can
obtain a proof of A ⊃ B the following way:

...
A ⊃ Ai−1







c(3m1 − |A| − |Ai−1|)

...
A ⊃ ϕi







c(3m2 − |A| − |ϕi|)

...
Ai ⊃ B







dm3

Ai−1 ∧ ϕi ⊃ Ai

A ⊃ Ai

A ⊃ B











d1(|Ai−1| + |ϕi| + |Ai| + |A| + |B|)

Note that if Ai = As = B , then we don’t have to do the work in the third
section.

Adding up all the work we get a proof with at most

c(3m1 + 3m2) + (d1|A| − 2c|A|) + (d1|Ai−1| − c|Ai−1|) + (d1|ϕi| − c|ϕi|)+
(dm3 + d1|B| + d1|Ai|)

number of symbols. Since dm3+d1|Ai|+d1|B| ≤ m3(d+d1), taking c ≥ d+d1 ,
we get that the number of symbols in the proof is

≤ c(3m1 + 3m2) − c|A| + cm3

≤ c(3m1 + 3m2 + 3m3 − 2m3 − |A|)
≤ c(3n− |B| − |A|).

So the result follows. 2
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3 Balanced and Pseudobalanced Trees and

Formulas

Definition 4 We say a tree is binary if each node has degree at most two. We
say a binary tree is complete if each node has degree either zero or two, and all
the leaves (i.e. nodes of degree zero) are at the same depth.

Definition 5 A tree T is balanced if for every subtree T ′ of T of n leaves, the
left immediate subtree of T ′ has d(n− 1)/2e leaves, and the right immediate
subtree of T ′ has b(n− 1)/2c leaves.

Definition 6 A tree T is pseudobalanced if for every subtree T ′ of T , the left
immediate subtree of T ′ is a complete binary tree, and the right immediate
subtree of T ′ has at most as many nodes as the left immediate subtree.

Fact: A complete binary tree is balanced and pseudobalanced.

Parenthesis on formulas can be associated in several different ways. In
this paper, we are going to do it in a pseudobalanced way, following the tree
model. In fact we can view a formula as a tree, and depending on how the
parenthesis are associated, the tree that it represents can be more or less
balanced. But before we look at ways to parenthesise a formula, let us see
how formulas are represented by trees. Given a formula F ,

i) if F is atomic, F = p, then the tree has one node and zero edges. The
node is labeled as p.

ii) if F is (A ∧ B), (A ⊃ B) or (A ∨ B), then F represents a tree that has
a root labeled ∧, ⊃ or ∨, and A represents the left immediate subtree,
and B the right immediate subtree. If F is ¬(A), then the root of the
tree is labeled ¬, and A represents the left immediate subtree of the
tree rooted at ¬. Such a tree won’t have a right immediate subtree.

Definition 7 A formula A is binary, if it only contains connectives ∧, ∨ and
⊃.

Definition 8 The depth of a formula is the height of the tree that represents
it.
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Definition 9 A binary formula is completely balanced if the tree that repre-
sents is a complete binary tree. Thus, a completely balanced binary formula
has 2n atomic formulas and 2n − 1 connectives, where n can be any natural
number. A formula is balanced, if the tree that represents it is balanced. A
formula is pseudobalanced, if the tree that represents it is pseudobalanced.

The definitions of balanced and pseudobalanced formula make sense for
binary formulas only, since the presence of ¬ makes the formula harder to
balance. Although, one way to balance non-binary formulas would be to push
¬’s down to the leaves, and then pseudobalance the formula.

Let us now give some examples of balanced and pseudobalanced:

Example 1: A balanced formula like

[((A1 ∧A2)∧A3)∧ ((A4 ∧A5)∧A6)]∧ [((A7 ∧A8)∧A9)∧ (A10 ∧A11)]

produces a highly balanced tree:
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Figure 2

Example 2: A pseudobalanced formula like

[((A1 ∧A2)∧ (A3 ∧A4))∧ ((A5 ∧A6)∧ (A7 ∧A8))]∧ ((A9 ∧A10)∧A11)

produces the following tree:

11



r

r

r

r

r r

r

r r

r

r

r r

r

r r

r

r

r r

r

����������9
�������)

�
�

��+

�
�	

@
@R

Q
Q

QQs

�
�	

@
@R

PPPPPPPq
�

�
��+

�
�	

@
@R

Q
Q

QQs

�
�	

@
@R

XXXXXXXXXXz

�
�	

�
�	

@
@R

@
@R

∧

∧

∧

∧

A1 A2

∧

A3 A4

∧

∧

A5 A6

∧

A7 A8

∧

∧

A9 A10

A11

Figure 3

Notice that the depth of the tree is actually the same in the balanced
tree.

Now let us prove some facts about what it takes to restore the pseudobal-
anced property on trees and formulas. Given two pseudobalanced formulas,
we will study how many symbols it takes to prove that the conjunction of them
implies a new pseudobalanced formula. And if we take two pseudobalanced
trees and make a new tree by making each one be an immediate subtree of
the root, we will see how can we restore the pseudobalanced property in the
new tree. Before we prove these facts, let us define the notion of operations
on trees, and what it means to pseudobalance a tree:

Definition 10 There are two kinds of tree operations:

1. Given a node X with left child Y and right child Z , then the operation
of switching TY and TZ is a permutation operation.
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2. The second kind is called a rotation operation. The notion is best
explained by the figure below:
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When we go from the picture on the left to the one on the right, we say
we perform a right rotation on Y . When we go from the picture on the
right to the one on the left, we say we perform a left rotation on X .

The second type of operation is a well-known one. For more information
see [?]. Since we can represent formulas as binary tree, let us see the effect
on formulas and on the association of parenthesis that these two operations
have. The permutation operation corresponds to:

(A ∧ B) =⇒ (B ∧ A)

The rotation operation corresponds to:

((A ∧B) ∧ C) =⇒ (A ∧ (B ∧ C))

and
(A ∧ (B ∧ C)) =⇒ ((A ∧ B) ∧ C)

Definition 11 Let T be a binary tree. To pseudobalance T means to obtain
a pseudobalance tree T ′ by doing a succession of tree operations on T . Note
that the leaves might be permuted doing the tree operations.

Theorem 6 Let T1 and T2 be two pseudobalanced binary trees, and let T be
the binary tree such that T1 is the left immediate subtree, and T2 is the right
immediate subtree of the root of T . Let n be the number of leaves in T . Then
T can be pseudobalanced with O(n) tree operations.
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Proof by induction on the number of leaves. Suppose the theorem holds for
all numbers < n. We will prove it for n. Say T1 has n1 leaves, and T2 has n2

leaves (n = n1 +n2 ). Also say n1 = 2r +a and n2 = 2s + b, where 1 ≤ a ≤ 2r

and 1 ≤ b ≤ 2s . Assume w.l.o.g. that n1 ≥ n2 . We will label the root of
T as X , the root of T1 as X1 , the root of T2 as X2 . Also, the roots of the
left and right immediate subtrees of T1 and T2 are XiL and XiR for i = 1, 2.
The tree T looks as in the figure below.
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Figure 6

TX1L
and TX1R

have 2r and a leaves respectively, and TX2L
and TX2R

have 2s and b leaves respectively.

Case 1: r = s. We want to interchange the trees TX1R
and TX2L

. For that
we have to do the following sequence of 5 operations: right rotation on
X1 , left rotation on X2 , permutation of TX1R

and TX2L
, right rotation

on X , left rotation on X .

Now the left immediate subtree of X is a complete binary tree since
r = s, and we need to make the right immediate subtree of X a
pseudobalanced tree. For that we will use the induction hypothesis on
a+ b. With say c(a+ b) operations we can pseudobalance TX2

. At this
point T is pseudobalanced, and we have used c(a + b) + 5 operations.
c(a+ b) + 5 ≤ c · n for c ≥ 2.

Case 2: r > s. Doing a right rotation on X1 (see figure 12) we obtain the
tree:
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We want to pseudobalance the new subtree rooted at X of a + b + 2s

leafs. By the induction hypothesis, we can do that with c(a + b + 2s)
operations, obtaining a new tree rooted at X . If a+b+2s ≤ 2r , then we
are finished at this point, since the whole tree is then pseudobalanced.
But if a + b + 2s > 2r , we are not finished. Since b ≤ 2s and s < r ,
then b + 2s ≤ 2 · 2s < 2r . Also, a ≤ 2r , so a + b + 2s < 2r+1 . So
a+ b+ 2s = 2r + c for c < 2r . So if a+ b+ 2s > 2r , the tree looks like:
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At this point, doing a left rotation on X , we obtain a pseudobalanced
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tree. We have done at most c(a+ b+2s) + 2 operations. It is clear that
c(a+ b + 2s) + 2 ≤ c · n for c ≥ 1.

The result follows for c = 2. 2.

The former theorem can be improved to theorem ??. In theorem ?? we
don’t count number of operations, but number of symbols.

Theorem 7 Let
t

∧∧

i=1
Ai and

n
∧∧

i=t+1
Ai be pseudobalanced formulas. Then there

is a permutation i → ji (for i = 1, . . . , n) and a pseudobalanced formula
n
∧∧

i=1
Aji

such that the formula

t
∧∧

i=1

Ai ∧
n

∧∧

i=t+1

Ai ⊃
n

∧∧

i=1

Aji

has a proof in O(n) symbols.

Proof by induction on n. Suppose the theorem holds for all numbers < n.
Say t = 2r + a, n − t = m, and m = 2s + b, where 0 ≤ a ≤ 2r , 0 ≤ b ≤ 2s ,
and say r ≥ s.

Case 1: r = s. The formula

t
∧∧

i=1

Ai ∧
n

∧∧

i=t+1

Ai ⊃ [
2r

∧∧

i=1

Ai ∧
t+2r

∧∧

i=t+1

Ai] ∧ [
t

∧∧

i=2r+1

Ai ∧
t+m
∧∧

i=t+2r+1

Ai] (3)

is provable in O(n) symbols. We can apply the induction hypothesis to
a+ b ≤ n, and get

t
∧∧

i=2r+1

Ai ∧
t+m
∧∧

i=t+2r+1

Ai ⊃
a+b
∧∧

i=1

Asi
(4)

in O(a+b) symbols, say c(a+b) symbols, where i→ si is a permutation
for 2r + 1 ≤ i ≤ t or t+ 2r + 1 ≤ i ≤ t+m. Also

[
2r

∧∧

i=1

Ai ∧
t+2r

∧∧

i=t+1

Ai]∧ [
t

∧∧

i=2r+1

Ai ∧
t+m
∧∧

i=t+2r+1

Ai] ⊃ [
2r

∧∧

i=1

Ai ∧
t+2r

∧∧

i=t+1

Ai]∧
a+b
∧∧

i=1

Asi

(5)
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is provable with O(n) extra symbols from formula (??). Finally we get

[
2r

∧∧

i=1

Ai ∧
t

∧∧

i=2r+1

Ai]∧ [
t+2r

∧∧

i=t+1

Ai ∧
t+m
∧∧

i=t+2r+1

Ai] ⊃ [
2r

∧∧

i=1

Ai ∧
t+2r

∧∧

i=t+1

Ai]∧
a+b
∧∧

i=1

Asi

with extra O(n) symbols from formulas (??) and (??). This last formula
is what we wanted to show. The total number of symbols we have used
is: c(a + b) + d · n for some constant d. We are going to show that if
we pick c ≥ 2 · d, then c(a+ b) + d · n ≤ c · n, and the result follows for
this case. If d ≤ c/2, then

c(a+ b) + d · (a+ b + 2r · 2) ≤ c(a+ b) + d · (2r · 2 + 2r · 2)
≤ c(a+ b) + c/2 · (2r · 2 + 2r · 2)
≤ c · n

Case 2: s < r . By the induction hypothesis applied to a + b + 2s , we get a
proof of

t
∧∧

i=2r+1

Ai ∧
t+m
∧∧

t+1

Ai ⊃
a+m
∧∧

i=1

Aji
(6)

in O(a+m) symbols, where i→ ji is a permutation for 2r < i ≤ t+m.
From formula (??) we get with O(n) extra symbols:

2r

∧∧

i=1

Ai ∧ [
t

∧∧

i=2r+1

Ai ∧
t+m
∧∧

t+1

Ai] ⊃
2r

∧∧

i=1

Ai ∧
a+m
∧∧

i=1

Aji
(7)

Since we can prove in O(n) symbols

[
2r

∧∧

i=1

Ai ∧
t

∧∧

i=2r+1

Ai] ∧
t+m
∧∧

t+1

Ai ⊃
2r

∧∧

i=1

Ai ∧ [
t

∧∧

i=2r+1

Ai ∧
t+m
∧∧

t+1

Ai], (8)

then from (??) and (??) with O(n) extra symbols we prove

t
∧∧

i=1

Ai ∧
t+m
∧∧

i=t+1

Ai ⊃
2r

∧∧

i=1

Ai ∧
a+m
∧∧

i=1

Aji
(9)

If a + m ≤ 2r , then we are finished at this point, since
2r
∧∧

( ) ∧
a+m
∧∧

( )
is then pseudobalanced. But if a +m > 2r , we are not finished. Since
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b < 2s and s < r , then m = b + 2s < 2 · 2s < 2r . i.e., m < 2r . Also,
a < 2r , so a + m < 2r+1 . So a + m = 2r + e for e < 2r . So formula
(??) is actually the formula

t
∧∧

i=1

Ai ∧
t+m
∧∧

i=t+1

Ai ⊃
2r

∧∧

i=1

Ai ∧ [
2r

∧∧

i=1

Aji
∧

e
∧∧

i=2r+1

Aji
] (10)

where
c
∧∧

i=2r+1
Aji

is pseudobalanced. With O(n) symbols we get from

formula (??)

t
∧∧

i=1

Ai ∧
t+m
∧∧

i=t+1

Ai ⊃ [
2r

∧∧

i=1

Ai ∧
2r

∧∧

i=1

Aji
] ∧

e
∧∧

i=2r+1

Aji
(11)

which is what we wanted to show.

We have used a total of c(a+m)+d′ ·n symbols, where d′ is a constant.
We need to show that

c(a +m) + d′ · n ≤ c · n.

Taking c ≥ 3d′ , since a+m < 2r+1 ,

d′ · n + c(a+m) ≤ d′(a+m + 2r) + c(a+m)
≤ d′ · 3 · 2r + c(a +m)
≤ c · 2r + c(a+m) = c · n

So the result follows taking c = 3 · max(d, d′). 2

We can prove a variant of theorem ?? which states how many symbols
are required to prove that an arbitrary conjunction implies a pseudobalanced
conjunction.

Theorem 8 Let
n
∧∧

i=1
Ai be a non-pseudobalanced formula of depth d. Then,

there is a permutation i→ ji (for i = 1, . . . , n) and a pseudobalanced formula
n
∧∧

i=1
Aji

such that

n
∧∧

i=1

Ai ⊃
n

∧∧

i=1

Aji

has a proof in O(n · d) symbols.
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Proof by induction on n. Suppose the fact is true for all numbers < n.

Say
n
∧∧

i=1
Ai =

t
∧∧

i=1
Ai ∧

n
∧∧

i=t+1
Ai , and the depth of

t
∧∧

i=1
Ai is n1 , the depth of

n
∧∧

i=t+1
Ai is n2 and w.l.o.g., n1 ≥ n2 . Then the depth of

n
∧∧

i=1
Ai is n1 + 1. Now,

by the induction hypothesis

t
∧∧

i=1

Ai ⊃
t

∧∧

i=1

Asi

and
n

∧∧

i=t+1

Ai ⊃
n

∧∧

i=t+1

Asi

can be proved with say ctn1 and c(n − t)n2 symbols respectively, for the
same constant c. The consequents of those formulas are a permutation of the
antecedents pseudobalanced. Also with say d1 · n symbols, we can get

t
∧∧

i=1

Ai ∧
n

∧∧

i=t+1

Ai ⊃
t

∧∧

i=1

Asi
∧

n
∧∧

i=t+1

Asi
.

By theorem ?? in say d2 · n symbols we can show

t
∧∧

i=1

Asi
∧

n
∧∧

i=t+1

Asi
⊃

n
∧∧

i=1

Aji
.

i.e. we obtain a pseudobalanced formula from the conjunction of two
pseudobalanced ones. Finally, with say d3 · n symbols more we prove

n
∧∧

i=1

Ai ⊃
n

∧∧

i=1

Aji

The total number of symbols used is ctn1 + c(n − t)n2 + (d1 + d2 + d3)n. If
we take c ≥ d1 + d2 + d3 , then

ctn1 + c(n− t)n2 + (d1 + d2 + d3)n ≤ ctn1 + c(n− t)n2 + cn
≤ ctn1 + c(n− t)n1 + cn
≤ cnn1 + cn = cn(n1 + 1)

The result follows. 2
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4 Number of Symbols in Proofs of Permuta-

tion Formulas

In this last two sections we are going to talk about two types of propositional
formulas, that seem most likely to produce an almost quadratic speed up
when using the deduction rule. The first formula to consider is

n
∧∧

i=1

pi ⊃
n

∧∧

i=1

pji
(12)

where i → ji is any permutation for i such that 1 ≤ i ≤ n, and both
antecedent and consequent are pseudobalanced. Formula ?? means that a
conjunction of atomic formulas implies any permutation of the atoms. We will
study the lengths of proofs (counting number of symbols) of such formulas
with and without the deduction rule.

Let us first give a sketch of theorem due to Buss which implies that any
proof of formula (??) requires Ω(n log n) symbols. If A is a tautology and B
is a subformula, then we write A(B/>) and A(B/⊥) to denote the formulas
obtained by replacing every occurence of B in A by > (a fixed tautology) and
by ⊥ (i.e., ¬>), respectively. The subformula B is needed in A iff at least
one of A(B/>) or A(B/⊥) is not a tautology. Now suppose A is a tautology
with proof P and let X be the set of formulas which are needed in A. Then
we claim that the number of symbols in P has the lower bound Ω(

∑

B∈X |B|).
To prove this, consider any axiom ϕ in P ; ϕ is of course an instance of an
axiom schema ψ : we say that a subformula B of ϕ is affected by the axiom ϕ
iff some occurence of B in ϕ has principle connective corresponding to a
connective from the schema ψ . It is easy to see that any formula B needed
in A must either be affected by some axiom in the proof P or be used as the
(second) hypothesis of a modus ponens inference in P ; since otherwise every
occurence of B in P could be replaced by > or ⊥ to yield proofs of A(B/>)
and A(B/⊥), respectively. Since an axiom can affect only a bounded number
of formulas, the lower bound on the size of P follows.

For a special case of this lower bound, suppose that A is a tautology,
that no non-atomic subformula occurs twice in A and that every non-atomic
subformula of A is needed in A. Then any proof P of A requires Ω(s)
symbols where

s =
∑

{depth(q) : q is an occurence of a variable in A} .
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As a special case, Buss’s lower bound shows that, in general, formula (??)
will require Ω(n log n) symbols. An important observation is that the same
lower bound applies (by the same argument as above) to proofs of (??) with
the deduction rule.

With the deduction rule we can easily produce an optimal length proof of

(??), with O(n logn) symbols, the following way: first assume
n
∧∧

i=1
Ai . For

simplicity, we will assume that n is a power of 2. We obtain

n/2
∧∧

i=1

Ai and
n

∧∧

i=(n/2)+1

Ai.

Then we get

n/4
∧∧

i=1

Ai,
n/2
∧∧

i=(n/4)+1

Ai,
3n/4
∧∧

(n/2)+1

Ai, and
n

∧∧

i=(3n/4)+1

Ai

etc., until finally we obtain

A1, A2, . . . , An.

This process takes O(n logn) symbols and O(n) lines. We reverse the process

to obtain
n
∧∧

i=1
Aji

in O(n logn) symbols and O(n) lines more. With the

deduction rule we obtain (??) with O(n logn) symbols and O(n) lines.
If we try to prove the same formula in the Frege system, using the methods

of theorem ?? we would obtain a proof of O(n2) symbols, since the proof with

the deduction rule has n lines, and
n
∧∧

i=1
Ai has size n (see equations ?? and

??). But, can we give a Frege proof of (??) with less than O(n2) symbols?
The answer is yes. We are going to produce a proof of (??) of O(n log2 n)
symbols without the deduction rule. So we obtain a O(n/ log2 n) speedup
over theorem ??. It is still open whether there is a Frege-proof of (??) with
O(n logn) symbols. Only in some cases we were able to obtain proofs of
permutation formulas in O(n logn) without the deduction rule. Let us see
one example:

Lemma 9 For every m, the formula

2m

∧∧

i=1

qi ⊃
∧∧

{q1, q(2m/2)+1, q2, q(2m/2)+2, . . . , q2m/2, q2m}
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where antecedent and consequent are completely balanced, has a proof in
O(n logn) symbols, where n = 2m .

Proof by induction on m. Suppose the result is true for all numbers < m.
By the induction hypothesis, the formulas

n/4
∧∧

i=1

qi ∧
3n/4
∧∧

i=(n/2)+1

qi ⊃
∧∧

{q1, q(n/2)+1, q2, q(n/2)+2, . . . , qn/4, q3n/4} (13)

and

n/2
∧∧

(n/4)+1

qi ∧
n

∧∧

(3n/4)+1

qi ⊃
∧∧

{q(n/4)+1, q(3n/4)+1, q(n/4)+2, q(3n/4)+2, . . . , qn/2, qn}

(14)
have proofs of O((n/2) log(n/2)) symbols.

Say that E =
∧∧

{q1, q(n/2)+1, q2, q(n/2)+2, . . . , qn/4, q3n/4} and
F =

∧∧

{q(n/4)+1, q(3n/4)+1, q(n/4)+2, q(3n/4)+2, . . . , qn/2, qn}. From (??) and (??)
we can obtain

[
n/4
∧∧

i=1

qi ∧
3n/4
∧∧

i=(n/2)+1

qi] ∧ [
n/2
∧∧

(n/4)+1

qi ∧
n

∧∧

(3n/4)+1

qi] ⊃ E ∧ F (15)

with O(n) extra symbols. From (??) we can prove

[
n/4
∧∧

i=1

qi ∧
n/2
∧∧

(n/4)+1

qi] ∧ [
3n/4
∧∧

i=(n/2)+1

qi ∧
n

∧∧

(3n/4)+1

qi] ⊃ E ∧ F

in O(n) extra symbols, which is what we wanted to show.
So we have used a total of say 2c(n/2) log(n/2) + dn symbols. Since

2c(n/2) log(n/2) + dn = c · n · logn − c · n + d · n, the result follows taking
c ≥ d. 2

In general, for any possible permutation, there is a proof in O(n log2 n)
symbols. But before we prove this, let us prove the following lemmas:

Lemma 10 Let
m
∧∧

i=1
qi be a pseudobalanced formula such that

m
∧∧

i=1
qi =

2r
∧∧

i=1
qi ∧

m
∧∧

i=2r+1
qi . Let n be the smallest power of 2 bigger than m. Let

n
∧∧

i=1
Ai be a
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completely balanced formula where each Ai is either > (where > is any fixed
tautology) if i > m or qi if i ≤ m. Then we can prove the formulas

m
∧∧

i=1

qi ⊃
n

∧∧

i=1

Ai and
n

∧∧

i=1

Ai ⊃
m
∧∧

i=1

qi

in O(n logn) symbols.

Proof by induction on n. The proof is left to the reader.

Definition 12 Let A be a binary formula, and let T be the tree that represents
A. An extract of A is a formula represented by a tree T ′ obtained by the
following process:

1. Removing from T any subset of the leaves of T .

2. If a node x labeled ∧, ∨ or ⊃ has only one child, we remove x and
connect the child to the ancestor of x. Also we remove the edge from the
ancestor of x to x.

3. If a non leaf node has no children, we remove it as well as the edge going
to it.

Operations 2 and 3 are to be performed iteratively as long as possible.

So an extract of a formula A, is a formula where we pulled out some
atomic subformulas and extra connectives and parenthesis, but keeping the
structure of A on what is left over.

Lemma 11 Let
n
∧∧

i=1
qi be a completely balanced formula, and for m ≤ n,

m
∧∧

i=1
Ai

is an extract of
n
∧∧

i=1
qi , possibly unbalanced formed by removing some of the qi ’s

from
n
∧∧

i=1
qi . Then,

n
∧∧

i=1

qi ⊃
m
∧∧

i=1

Ai

has a proof in O(n logn) symbols.
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Proof by induction on n. Suppose the fact is true for all powers of two < n.
By the induction hypothesis,

n/2
∧∧

i=1

qi ⊃
t

∧∧

i=1

Ai

and
n

∧∧

i=(n/2)+1

qi ⊃
m
∧∧

i=t+1

Ai

have proofs of say c(n/2) log(n/2) symbols where t is the number of qi ’s that
we want to keep from the first half of the conjunction. With extra O(n)
symbols we get

n
∧∧

i=1

qi ⊃
t

∧∧

i=1

Ai ∧
m
∧∧

i=t+1

Ai

which is what we wanted to show. 2

Theorem 12 Let
n
∧∧

i=1
qi and

n
∧∧

i=1
qji

be completely balanced formulas, where n

is a power of two, say n = 2m , and i→ ji is any permutation for i = 1, . . . , n.
Then the formula

n
∧∧

i=1

qi ⊃
n

∧∧

i=1

qji

has a proof in O(n log2 n) symbols.

Proof by induction on n. Suppose the theorem is true for all powers of 2
less than n. We will prove it for n = 2m .

Let
n/2
∧∧

i=1
Ai be an extract of

n
∧∧

i=1
qi where all the qji

’s from i = (n/2) + 1 to

n have been removed and the parentheses kept as in
n
∧∧

i=1
qi , and

n
∧∧

i=(n/2)+1
Ai be

an extract of
n
∧∧

i=1
qi where all the qji

’s from i = 1 to n/2 have been removed

and the parentheses kept the same. Then by lemma ?? we can show

n
∧∧

i=1

qi ⊃
n/2
∧∧

i=1

Ai (16)
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and
n

∧∧

i=1

qi ⊃
n

∧∧

i=(n/2)+1

Ai (17)

with O(n logn) symbols. The depth of the formulas
n/2
∧∧

i=1
Ai and

n
∧∧

i=(n/2)+1
Ai

is at most the depth of
n
∧∧

i=1
qi . i.e. at most log n. By the theorem ?? the

consequents of ?? and ?? can be rebalanced in O(n logn) symbols. So we can
prove

n/2
∧∧

i=1

Ai ⊃
n/2
∧∧

i=1

Aki
(18)

and
n

∧∧

i=(n/2)+1

Ai ⊃
n

∧∧

i=(n/2)+1

Aki
(19)

with O(n logn) symbols, where
n/2
∧∧

i=1
Aki

and
n
∧∧

i=(n/2)+1
Aki

are completely

balanced and the Aki
’s are a permutation of the Ai ’s. Now by the induction

hypothesis we can prove
n/2
∧∧

i=1

Aki
⊃

n/2
∧∧

i=1

qji
(20)

and
n

∧∧

i=(n/2)+1

Aki
⊃

n
∧∧

i=(n/2)+1

qji
(21)

with say c(n/2) log2(n/2) symbols each. With O(n) symbols we can prove

n
∧∧

i=1

qi ⊃
n/2
∧∧

i=1

qji

and
n

∧∧

i=1

qi ⊃
n

∧∧

i=(n/2)+1

qji

from ??, ?? and ??, and from ??, ?? and ??. Finally, with O(n) more symbols
we prove

n
∧∧

i=1

qi ⊃
n

∧∧

i=1

qji
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which is what we wanted to show.
Let us now look at the total number of symbols used in this proof. Say

we have used c2(n/2) log2(n/2) + d1n log n+ d2n symbols. we will show that
by taking c ≥ d1 + d2 , c2(n/2) log2(n/2) + d1n logn+ d2n ≤ cn log2 n. Since
log2(n/2) = log2 n + 1 − 2 logn,

c2(n/2) log2(n/2) + d1n logn + d2n

≤ cn log2 n + cn− 2cn logn+ n log n(d1 + d2)

≤ cn log2 n− cn log n+ n logn(d1 + d2)

≤ cn log2 n

The result follows. 2

Corollary 13 The formula

n
∧∧

i=1

qi ⊃
n

∧∧

i=1

qji

where
n
∧∧

i=1
qi and

n
∧∧

i=1
qji

are pseudobalanced, and
n
∧∧

i=1
qji

is any permutation of

n
∧∧

i=1
qi , has a proof in O(n log2 n) symbols.

Proof note that in the corollary we don’t require n to be a power of 2. The
result follows by two uses of lemma ??, and one use of theorem ??. 2

5 Number of Symbols in Proofs of Transitive

ClosureFormulas

In this last section we are going to be working with closure formulas of the
form

n
∧∧

i=1

(qi−1 ⊃ qi) ⊃
m
∧∧

i=1

(qsi
⊃ qti) (22)

where both
n
∧∧

i=1
(qi−1 ⊃ qi) and

m
∧∧

i=1
(qsi

⊃ qti) are pseudobalanced, and

m
∧∧

i=1
(qsi

⊃ qti) is a conjunction of implications qsi
⊃ qti where si < ti .
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Again we are going to be studying the length of proofs of such formulas
with and without the deduction rule. As in the case of permutation
formulas, by the informal argument given there, any proof of (??) has at
least Ω((n +m) logn) symbols (since m ≤ n2 , logm ≤ log(n2) = 2 logn and
O(n logn+m logm) = O((n+m) logn)). With the deduction rule, we can
get a proof of (??) with O((n + m) log n) symbols the following way: first

assume
n
∧∧

i=1
(qi−1 ⊃ qi). Again for simplicity let n be a power of 2. Then we

get
n/2
∧∧

i=1

(qi−1 ⊃ qi) and
n

∧∧

i=(n/2)+1

(qi−1 ⊃ qi)

We undo (??) until we obtain

q0 ⊃ q1, q1 ⊃ q2, . . . , qn−2 ⊃ qn−1, qn−1 ⊃ qn

This process takes O(n logn) symbols and O(n) lines. By the work of
Bonet-Buss [?, ?, ?], we prove

qs1
⊃ qt1 , qs2

⊃ qt2 , . . . , qsm
⊃ qtm

in O((n+m)α(n)) symbols and O((n+m)α(n)) lines, where α is the inverse

of the Ackerman function. Finally we obtain
m
∧∧

i=1
(qsi

⊃ qti) in O(m logm)

symbols or O(m) lines. So with a total of O(m logm + n logn) symbols and
O((n+m)α(n)) lines we obtain the formula ??.

If we go back to theorem ??, we see that we can prove (??) with at most
O((n + m)(n + m)α(n)) symbols without the deduction rule (see (??) and
(??)). The main question is now whether we can prove (??) without the
deduction rule with less than O((n +m)2α(n)) symbols. The answer is yes.
We will prove (??) with O((n + m) log3 n) symbols without the deduction
rule. So we obtain a O((n +m)α(n)/ log3 n) speedup over theorem ??. It is
still open whether (??) has a Frege-proof of O((n+m) logn) symbols.

Before we prove the main theorem, let us obtain the following lemmas:

Lemma 14 The formulas

n
∧∧

i=1

(qi−1 ⊃ qi) ⊃
n

∧∧

i=1

(q0 ⊃ qi)
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and
n

∧∧

i=1

(qi−1 ⊃ qi) ⊃
n−1
∧∧

i=0

(qi ⊃ qn)

where n is a power of 2, the conjunctions are completely balanced, and the qi ’s
are atomic formulas, have Frege proofs of O(n log2 n) symbols.

Proof by induction on n. Suppose the lemma holds for all numbers < n.
We will prove it for n.

By the induction hypothesis the formulas

n/2
∧∧

i=1

(qi−1 ⊃ qi) ⊃
n/2
∧∧

i=1

(q0 ⊃ qi) (23)

and
n

∧∧

i=(n/2)+1

(qi−1 ⊃ qi) ⊃
n

∧∧

i=(n/2)+1

(qn/2 ⊃ qi) (24)

have proofs of O((n/2) log2(n/2)) symbols. Also in the next lines we are
going to show how to get a proof of

(q0 ⊃ qn/2) ∧
n

∧∧

i=(n/2)+1

(qn/2 ⊃ qi) ⊃
n

∧∧

i=(n/2)+1

(q0 ⊃ qi) (25)

in O(n logn) symbols. We are going to do it by induction on the size of
conjunctions. Assume it holds for all numbers < n, and let us show it for n.
By the induction hypothesis the formulas

(q0 ⊃ qn/2) ∧
3n/4
∧∧

i=(n/2)+1

(qn/2 ⊃ qi) ⊃
3n/4
∧∧

i=(n/2)+1

(q0 ⊃ qi)

and

(q0 ⊃ qn/2) ∧
n

∧∧

i=(3n/4)+1

(qn/2 ⊃ qi) ⊃
n

∧∧

i=(3n/4)+1

(q0 ⊃ qi)

have proofs of O((n/2) log(n/2)) symbols. So we can prove both of them in
cn log(n/2) = cn logn− cn symbols, where c is a constant. With extra O(n)
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symbols we can prove

(q0 ⊃ qn/2) ∧ [
3n/4
∧∧

i=(n/2)+1

(qn/2 ⊃ qi) ∧
n

∧∧

i=(3n/4)+1

(qn/2 ⊃ qi)] ⊃

[
3n/4
∧∧

i=(n/2)+1

(q0 ⊃ qi) ∧
n

∧∧

i=(3n/4)+1

(q0 ⊃ qi)]

which is what we wanted to prove. It is easy to see that we can prove (??)
with O(n logn) symbols, since we used cn logn− cn +O(n) symbols.

Also we need to prove the formula

n/2
∧∧

i=1

(q0 ⊃ qi) ⊃ (q0 ⊃ qn/2). (26)

Such formula has a proof with O(n) symbols. The proof by induction is left
to the reader.

From (??) and (??) we can obtain the formula

n/2
∧∧

i=1

(q0 ⊃ qi) ∧
n

∧∧

(n/2)+1

(qn/2 ⊃ qi) ⊃
n

∧∧

i=(n/2)+1

(q0 ⊃ qi) (27)

with O(n) additional symbols. Also with O(n) extra symbols we prove

n
∧∧

i=1

(qi−1 ⊃ qi) ⊃
n

∧∧

i=1

(q0 ⊃ qi)

from (??), (??) and (??). The total number of symbols used is cn log2(n/2)+
e1n logn+ e2n. If c ≥ e1 + e2 then cn log2(n/2)+ e1n log n+ e2n ≤ cn log2 n.
2

Lemma 15 The formula

l
∧∧

i=1

(pi ⊃ X) ∧
l

∧∧

i=1

(X ⊃ qi) ⊃
l

∧∧

i=1

(pi ⊃ qi)

has a proof with O(l · log l) symbols, where X is an atomic formula.
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Proof by induction on l. The proof is left to the reader.

Lemma 16 Let
n
∧∧

i=1
qi be a completely balanced formula for n a power of

2, and 〈j1, . . . , js〉 be a sequence from the set {1, . . . , n}. Then there is
some permutation 〈k1, . . . , ks〉 of the sequence 〈j1, . . . , js〉, and there is a

pseudobalanced formula
s
∧∧

i=1
qki

(qi ’s can be omitted or repeated) such that the

formula
n

∧∧

i=1

qi ⊃
s

∧∧

i=1

qki

can be proved with O((n+ s) logn) symbols.

Proof by induction on n. Suppose it is true for all numbers < n. We’ll
prove it for n. By the induction hypothesis the formulas

n/2
∧∧

i=1

qi ⊃
t

∧∧

i=1

qai

and
n

∧∧

i=(n/2)+1

qi ⊃
s

∧∧

i=t+1

qai

have proofs of O(((n/2) + t) log(n/2)) and O(((n/2) + (s − t)) log(n/2)
symbols, where 〈a1, . . . , at〉 is a permutation of the ji ’s which are ≤ n/2, and
〈at+1, . . . , as〉 is a permutation of the ji ’s which are ≥ n/2. So the proofs have
a total of cn log(n/2)+cs log(n/2) symbols. i.e., at most c(n+s) log n−c(n+s)
symbols. We can obtain the formula

n/2
∧∧

i=1

qi ∧
n

∧∧

i=(n/2)+1

qi ⊃
t

∧∧

i=1

qai
∧

s
∧∧

i=t+1

qai

with extra O(n + s) symbols. Finally we can pseudobalance the consequent
with O(n+ s) symbols (by theorem ??), to obtain

n
∧∧

i=1

qi ⊃
s

∧∧

i=1

qki

The result follows. 2.
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Theorem 17 Let
n
∧∧

i=1
(qi−1 ⊃ qi) be a completely balanced formula where n is

a power of 2. Let 〈s1, . . . , sm〉 be any sequence from the set {0, 1, . . . , n− 1},
and 〈t1, . . . , tm〉 be any sequence from the set {1, . . . , n} such that si < ti .
Then the formula

n
∧∧

i=1

(qi−1 ⊃ qi) ⊃
m
∧∧

i=1

(qsi
⊃ qti)

has a proof with O((n+m) log3 n) symbols.

Proof by induction on n. Assume it holds for all numbers < n. Say
m = l1 + l2 + l3 where l1 is the number of implications for which qti ≤ n/2
(i.e. in the first half), l2 is the number of implications for which qsi

≥ n/2 (i.e.
in the second half) and l3 is the number of implications for which qsi

< n/2
and qti > n/2 (i.e. implications across qn/2 ).

Let 〈siti〉 be the tuple representing the implication si ⊃ ti . We can form
the sequence of tuples, 〈〈s1t1〉, . . . , 〈smtm〉〉. We can partition this sequence
in three sequences: 〈〈a1b1〉, . . . , 〈al1bl1〉〉 representing the implications in the
first half, 〈〈c1d1〉, . . . , 〈cl2dl2〉〉 representing the implications in the second
half, and 〈〈g1j1〉, . . . , 〈gl3jl3〉〉 representing the implications across qn/2 .

By the induction hypothesis we can prove

n/2
∧∧

i=1

(qi−1 ⊃ qi) ⊃
l1
∧∧

i=1

(qai
⊃ qbi

) (28)

and
n

∧∧

i=(n/2)+1

(qi−1 ⊃ qi) ⊃
l2
∧∧

i=1

(qci
⊃ qdi

) (29)

with c((n/2) log3(n/2)+ l1 log3(n/2))+c((n/2) log3(n/2)+ l2 log3(n/2)) sym-
bols, for some constant c. So with c log3(n/2)(n + l1 + l2) symbols. With
extra O(n+ l1 + l2) symbols we prove the following three facts:

n/2
∧∧

i=1

(qi−1 ⊃ qi) ∧
n

∧∧

i=(n/2)+1

(qi−1 ⊃ qi) ⊃
l1
∧∧

i=1

(qai
⊃ qbi

) ∧
l2
∧∧

i=1

(qci
⊃ qdi

)

from (??) and (??),

l1
∧∧

i=1

(qai
⊃ qbi

) ∧
l2
∧∧

i=1

(qci
⊃ qdi

) ⊃
l1+l2
∧∧

i=1

(qei
⊃ qfi

)
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where the consequent is now pseudobalanced by theorem ??, and the ei ’s
are a permutation of the ai ’s and ci ’s, and the fi ’s are the corresponding
permutation of the bi ’s and di ’s, and finally,

n
∧∧

i=1

(qi−1 ⊃ qi) ⊃
l1+l2
∧∧

i=1

(qei
⊃ qfi

) (30)

from the latter two statements. Say we have used d1(n + l1 + l2) symbols.
Now we need to prove such an implication for l3 .

By lemma ?? we can prove

n/2
∧∧

i=1

((qi−1 ⊃ qi) ⊃
(n/2)−1

∧∧

i=0

(qi ⊃ qn/2) (31)

and
n

∧∧

i=(n/2)+1

(qi−1 ⊃ qi) ⊃
n

∧∧

i=(n/2)+1

(qn/2 ⊃ qi) (32)

with say d2(n/2) log2(n/2) symbols each. So with a total of at most d2n log2 n.
By lemma ?? we can prove the formulas

(n/2)−1
∧∧

i=0

(qi ⊃ qn/2) ⊃
l3
∧∧

i=1

(qgi
⊃ qn/2) (33)

and
n

∧∧

i=(n/2)+1

(qn/2 ⊃ qi) ⊃
l3
∧∧

i=1

(qn/2 ⊃ qhi
) (34)

with O(((n/2) + l3) log(n/2)) symbols each where the hi ’s are a permutation
of the ji ’s. Say with at most d3n log n+ 2d3l3 log n symbols. Also we need to

obtain the formula
l3
∧∧

i=1
(qgi

⊃ qji
). By theorem ?? and lemma ?? we can do all

this in at most O(l3 log2 l3) symbols, obtaining

l3
∧∧

i=1

(qgi
⊃ qn/2) ∧

l3
∧∧

i=1

(qn/2 ⊃ qhi
) ⊃

l3
∧∧

i=1

(qgi
⊃ qji

) (35)

in say d4l3 log2 l3 symbols. And from (??), (??) and (??) we obtain

(n/2)−1
∧∧

i=0

(qi ⊃ qn/2) ∧
n

∧∧

i=(n/2)+1

(qn/2 ⊃ qi) ⊃
l3
∧∧

i=1

(qgi
⊃ qji

) (36)
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with O(n+ l3) symbols, as well as from (??), (??) and (??) we can obtain

n
∧∧

i=1

((qi−1 ⊃ qi) ⊃
l3
∧∧

i=1

(qgi
⊃ qji

) (37)

with O(n + l3) symbols. The last two formulas are proved with d5(n + l3)
symbols, for some constant d5 . From (??) and (??) we get

n
∧∧

i=1

((qi−1 ⊃ qi) ⊃
l1+l2
∧∧

i=1

(qei
⊃ qfi

) ∧
l3
∧∧

i=1

(qgi
⊃ qji

) (38)

with O(n + m) symbols. Say with d6(n + m) symbols, for some constant
d6 . At this point we only need to pseudobalance the consequent of (??) (by
theorem ??), and give it the required order (by theorem ??). So we prove

l1+l2
∧∧

i=1

(qei
⊃ qfi

) ∧
l3
∧∧

i=1

(qgi
⊃ qji

) ⊃
m
∧∧

i=1

(qsi
⊃ qti) (39)

with at most say d7m log2m symbols, where the si ’s are a permutation of the
ei ’s and gi ’s, and the ti ’s are a permutation of the fi ’s and ji ’s. Finally from
(??) and (??) we prove

n
∧∧

i=1

((qi−1 ⊃ qi) ⊃
m
∧∧

i=1

(qsi
⊃ qti)

with say d8(n +m) symbols, for some constant d8 .
Now we need to compute the total of symbols used. To simplify that, let

us group the following terms. Let

e1(n+m) = d1(n+ l1 + l2) + d5(n + l3) + d6(n +m) + d8(n+m)

Also, to group d2n log2 n, d4l3 log2 l3 and d7m log2m, consider the fact that
m ≤ n2 . Then log2m ≤ log2(n2) = 4 log2 n. Also, log2 l3 ≤ 4 log2 n. Then
let

e2(n+m) log2 n = d2n log2 n+ 4d7m log2 n + 4d4l3 log2 n
= d2n log2 n+ d7m log2m + d4l3 log2 l3

So now we just need to show that

c(n+m) log3 n ≥ c(n+ l1 + l2)(log3 n− 3 log2 n + 3 logn− 1)+
e1(n +m) + e2(n+m) log2 n+ d3n log n+ 2d3l3 log n
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Given that if c ≥ max(e1, e2, 2d3) and n ≥ 4, then

e1l3 + 2d3l3 log n+ e2l3 log2 n ≤ cl3 log3 n,

we only need to show that,

c(n+ l1 + l2) ≥ c(n+ l1 + l2)(log3 n− 3 log2 n+ 3 logn− 1)+
e1(n + l1 + l2) + e2(n+ l1 + l2) log2 n+ d3n log n

Since we take c ≥ max(e1, e2, 2d3), that is equivalent to proving that

c(n+ l1 + l2)(log2 n + logn + 1) ≤ c(n+ l1 + l2)(3 log2 n− 3 logn+ 1)

i.e. equivalent to proving that

log2 n+ log n+ 1 ≤ 3 log2 n− 3 logn+ 1.

The equation above is true for n ≥ 4, therefore the result follows. 2

In theorem ?? we assumed n was a power of 2. By padding the formula
n
∧∧

i=1
(qi−1 ⊃ qi) with > to make it have the right length we can prove the result

for n not a power of 2.

Corollary 18 With O((n+m) log3 n) symbols we can prove the formula

n
∧∧

i=1

(qi−1 ⊃ qi) ⊃
m
∧∧

i=1

(qsi
⊃ qti)

where for all i, 1 ≤ i ≤ m, si < ti .
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