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Abstract. We investigate the complexity of proofs in Frege (F), Sub-
stitution Frege (sF) and Renaming Frege (rF) systems. Starting from
a recent work of Urquhart and using Kolmogorov Complexity we give a
more general framework to obtain superlogarithmic lower bounds for the
number of lines in both tree-like and dag-like sF. We show the previous
known lower bound, extend it to the tree-like case and, for another class
of tautologies, we give new lower bounds that in the dag-like case slightly
improve the previous one. Also we show optimality of Urquhart’s lower
bounds giving optimal proofs. Finally we give the following two simu-
lation results: (1) tree-like sF p-simulates dag-like sF; (2) Tree-like F
p-simulates tree-like rF.

1 Introduction

Since the work of Cook and Reckhow [CR], the study of complexity of proofs
in propositional logic is viewed as related to main questions like NP # coN P
in Complexity Theory. The main open problem is whether for all propositional
proof systems there exists a class of tautologies requiring superpolynomial size
proofs.

Frege (F), Substitution Frege (sF) and Extended Frege (eF) systems are
fundamental propositional proof systems for which this kind of question is far
away from being answered. Actually the best known lower bounds are only linear
for the number of lines and quadratic for the number of symbols in F and eF
([Bul]). In the same work, Buss posed the open question of finding superloga-
rithmic lower bounds for the number of lines in sF and Urquhart in [Ur] showed
how to obtain a §2(->—) lower bound for the number of lines needed for the
proofs of some tautologies in the class T, where T is a tautology associated
with a binary string z.

Here we reformulate Urquhart’s proof in terms of Kolmogorov Complexity
giving a more general and intuitive approach to his technique. This way we
obtain his lower bound for the class of tautologies T, and also we show that

£2(n) lines are needed in the tree-like case (a result that can also be proved with
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another technique discussed in the paper). Moreover, with the same method, we
obtain lower bounds for sF that, in the dag-like case slightly improve Urquhart’s
one, using a class of tautologies known as permutation tautologies introduced in
[Or1]. Also we give proofs for the tautologies T, in both tree-like and dag-like
sF obtaining as a consequence that the lower bounds given are optimal.

Since there is a logarithmic speed-up between tree-like and dag-like sF proofs
of T, and since the given bounds are optimal, we approach the question of
whether tree-like s F simulates dag-like sF with a logarithmicfactor of increment
in the number of lines. This result holds for F ([BB]) and we prove it for eF. At
his point is still open if the same holds for sF. Nevertheless, we are able to show
a polynomial simulation result, obtaining it in an indirect way by the following
steps: (1) eF p-simulates sF; (2) tree-like eF p-simulates eF; (3) tree-like sF p-
simulates tree-like eF. The first simulation is work of Kraji¢ek and Pudlak [KP],
and the third is a result of [CR] that we improve to O(nlogn) lines instead of
O(n?).

Finally we prove that F linearly simulates tree-like s only in the number
of lines (whether this holds or not also for the number of symbols is a big
open problem). This result has as a consequence that F p-simulates tree-like
Renaming Frege (rF)* - a restricted version of sF introduced in [Bul]. This is
quite surprising if we consider Buss’ result that dag-like rF p-simulates sF and
that for F, eF and sF the tree-like systems p-simulate the dag-like ones. So
tree-like rF p-simulates dag-like rF implies that F and sF are polynomially
equivalent.

The paper is organized as follows. In section 2 we give basic definitions. In
section 3 we prove lower bounds using the Kolmogorov Complexity approach
and explain how this is a reformulation of Urquhart’s technique. In section 4
we prove upper bounds for Urquhart’s tautologies showing the optimality of the
lower bounds. In section 5 we prove that tree-like sF p-simulate sF and that
tree-like F p-simulates tree-like rF.

2 Preliminaries on propositional Hilbert-style proof
systems

A Frege system F is an inference system for propositional logic based on (1) a
language of well-formed formulas obtained from a numerable set of propositional
variables and any finite propositionally complete set of connectives; (2) a finite
set of axiom schemes; and (3) the rule of Modus Ponens (%). A proof P
of the formula A in a Frege system is a sequence Ay, ..., A, of formulassuch that
Ay is A and every A; is either an instance of an axiom scheme or it is obtained
by the application of the Modus Ponens from premises A; and A with j, k < 1.
We will call A a theorem and we write = A. A proof P is said to be tree-like if
every A; is used only once as premise of a rule in P. Any Frege system must

* While we were writing the paper, we have learned from T. Pitassi that the same
result has been obtained with a similar technique in [IP].



be sound and complete. We write A |= B if every truth assignment satisfying A
also satisfies B, and A F B if adding the formula A among the axioms we can
give a proof of B. A Frege proof system is implicationally complete if whenever
A |= B, then A+ B, and implicationally sound if whenever A+ B, then A | B.
The main notions of complexity of proofs are: (1) the number of lines of a proof
P for P = Ay, ..., A, is equal to n; (2) the number of symbols or size | P| defined
as Y . |Ai| where |A;] is the number of symbols in A;. A Frege system F;
p-simulates another Frege system Fy if whenever a formula A has a proof P in
Fy of size m, there is a proof P’ of A in F; of size p(m), where p is a polynomial.

Ty |MT2 denotes that the proof system T) simulates the proof system T3
with a f(n) factor of increment in the number of lines.

Frege systems can be extended with some extra rules. An extended Frege sys-
tem eF is a Frege system augmented with the extension rule. This rule allows
to write for any formula B, the formula p ¢> B under the restrictions that p does
not occur in B, in previous lines or in the last line of the proof. A substitution
o is a mapping from a finite set of propositional variables Dom(c) to a set of
well-formed formulas Rng(c). It will be called renaming whenever Rng(o) is a
set of propositional variables and T /L-substitution whenever Rng(c) C {T, L}.
By Ao we denote the result of simultaneously replacing in A any propositional
variable p; in A with o(p;). A substitution Frege system is a Frege system aug-
mented with the substitution rule X‘—o that from a formula A allows to infer the
formula Ao for any o. It will be called Renaming Frege system (rF) or T/L-
Frege system (T /L-F) whenever the substitutions are respectively renaming or
T /L. Some properties can be lost by adding extra rules. For example sF, rF are
implicationally complete but not implicationally sound. The following Theorem

holds for any two implicationally complete systems.

Theorem 2.1 ([CR]) Let Fy and Fy be two systems differing at most in the set
of connectives used. There exists a polynomial p such that if P is a proof of A
in Fy of n lines and m symbols, there is a proof of A in Fy of p(n) lines and
p(m) symbols. Moreover if F1 and F» have the same set of connectives, then the
stmulations are linear.

Since these linear simulations do not affect our work, we don’t worry about the
set of axiom schemes we use. We fix the set of the connectives as {A , =,V =}
Also, we add to our language the constants T and L whose intended meanings
are TRUE and FALSE and the extra axiom T.
Let o and A be two substitutions such that Rng(A) C Dom(¢), by Ao we denote
the new substitutions # such that Dom(#) = Dom(}\), Rng(f) = Rng(o) and if
A(pi) = Ai, then §(p;) = Ajo. Two formulas A and B are isomorphic if there is
a bijective renaming (or relettering) o such that A = Bo.

Let ¥ = {Ay,..., Ag} be a set of formulas and Var(X) = Ule Var(A;).
A substitution ¢ unifies ¥ if A0 = ... = Aio and in this case X is said
to be unifiable. A substitution ¢ is a most general unifier (mgu) for X if and
only if it unifies X' and for any other unifier # there is a substitution A with
Dom(A) C Var(Rng(o)) such that § = Ao. This means that a mgu of a set of



formulas ¥ is essentially unique since for any two mgu’s oy and o5 there is a
bijective renaming X such that o1 A = o3.
The following Theorem is due to Robinson (see [G] cap.8 for its proof).

Theorem 2.2 There is a deterministic algorithm A, that always halts, such
that for any set X of formulas, if X is unifiable, then A outputs its most general
unzfier.

Let A and B—C be two formulas. The rule of condensed detachment with
premises A and B — C and conclusions D, denoted by CD(A, B— () was in-
troduced originally in [Pr] and used in [HM, Ur]. It is defined as follows:

1. find an isomorphic formulas A’ of A such that Var(A’) N Var(B — C) = 0;

2. if A({A’, B}) = o, then change by a renaming ¢ to ¢*, in such a way that
[Var(Bo*) — Var(B)] N Var(C') = 0 and define D = Co*. If {A’, B} is not
unifiable then CD(A, B — () is undefined.

Intuitively we can think of C'D as a single rule merging together the Modus Po-
nens and the substitution rules. A Condensed Detachment Frege system CD(F)
is a Frege system whose only rule is the condensed detachment and where we use
a finite number of axioms instead of axiom schemes. We suppose that the axioms
used in C'D(F)are indexed by an order and that in the proofs all the axioms
are introduced in the first lines. It is easy to see that any proof in C'D(F)can
be transformed into such an equivalent one. We denote by i = C'D(j, k), with
J, k < i, the fact that in a proof the formula in the line i has been obtained by
the C'D rule applied to formulas on line j and on line k.
The following are Urquhart’s tautologies. Let x be a binary string, then

T fz=c¢
Te=c (T>Ty)ife =1y
(Lv Ty) if & =0y

The permutation tautologies are defined as

I, = (piA(p2A(. . A(Pn=1ADPn)...)) = (p,r(l)/\(p,r(g)/\(. . ./\(pn_l/\pw(n)) D)

where p; are propositional variables and 7 is a permutation function of [1...n] .
All log functions are in base two and j denotes the binary representation of
the number j.

3 Lower bounds for sF using Kolmogorov Complexity

In [Ur], the following theorem is proven:

Theorem 3.1 If P is a dag-like proof in sF, then there is a dag-like proof P’
in CD(F) such that: (1) every step in P is a substitution instance of a step in
P’: (2) the number of lines of P’ is less than or equal to the number of lines of
P.



It is easy to see that the same theorem also holds for the tree-like case. There-
fore, for classes of tautologies that are not substitution instances of shorter tau-
tologies, we can obtain lower bounds for the number of lines in dag-like (resp.
tree-like) sF, giving lower bounds for the number of lines in dag-like (resp. tree-
like) C'D(F). So, in what follows we will only work with C'D(F).

Following [Ur] we define the succinct representation for a dag-like C'D(F) proof
P of m lines as a string G p over the alphabet {0, 1, #}. For each line 7 in P we de-
fine G p (i) as follows: (1) if i corresponds to the axiom j, then Gp(i) = j; (2) if i is
CD(j, k), then Gp(i) = j#k. Gp is defined as Gp(1)##Gp(2)## . . . ##Gp(m)
and it is easy to see that |Gp| = O(mlogm). Algorithm A of Theorem 2.2 allows
us to recover uniquely the conclusion of a C'D rule from the two premises, so that
a proof in CD(F) can be recovered uniquely from its succinct representation.

Theorem 3.2 ([Ur]) From Gp we can recover P uniquely (up to a relettering
of the variables).

In the tree-like case we modify the definition of succinct representation, im-
proving its size by a logarithmic factor, but preserving the previous Theorem.

The succinct representation Sp of a tree-like CD(F) proof P of m lines
is a string over the alphabet {0,1,[,],#}. For each line i we define Sp(i) as
follows: (1) if ¢ is the axiom j, then Sp(i) = j; (2) if i is CD(j, k), then SP(i) =
[Sp(7)#Sp(k)]. Sp is defined as Sp(m), and it is easy to see that |Sp| = m(3 +
logd) = O(m), where d is the number of axiom in CD(F).

Theorem 3.3 ([PB, Or]) If P is a tree-like CD(F) proof of A, then from Sp
we can recover uniquely a tree-like proof P' of A with the same number of lines

of P.

Proof. First from Sp we recover the skeleton (i.e. the tree structure) of the
proof. Then starting from the leaves of the skeleton, we first recover the axioms
from their index numbers, then proceeding by depth, for each internal node we
recover uniquely, using the algorithm A of Theorem 2.2 the formula associated
with that node. Since the number of the nodes in the skeleton is the number of
lines of P, we have recovered a proof P’ with the same number of lines. The last
formula of P’ is A since the root node of the skeleton corresponds to the last
formula in P and it is the last one to be recovered. O

3.1 Lower bounds for Urquhart’s tautologies

We will give an extremely brief introduction to Kolmogorov Complexity quoted
from [B-YGN] and outline the idea of our lower bound proof.

The original goal of Kolmogorov Complexity was to have a quantitative mea-
sure of the complexity of a finite object. Kolmogorov and others had the following
idea: the regularities of an object can be used to give a short description of it;
on the other hand, if an object is highly non-regular, or random, there should
be no way of describing it that is much shorter than giving the full object itself.
To formalize this notion, we first encode discrete objects as strings. Second, we



want to have descriptions that can be handled algorithmically, so we identify
descriptions with “programs for a sufficiently powerful model of computation”.

Fix a Universal Turing Machine U whose input alphabet is {0, 1} and output
alphabet is X'. The Kolmogorov complexity of a string x € X* is the minimum
length of a program that makes U generate 2 and stops. Observe that this notion
seems to depend on the choice of the Universal Turing Machine. However, it can
be shown that changing the machine only affects this measure of complexity by
an additive constant. Strings whose Kolmogorov complexity is equal, or close to,
their length are called Kolmogorov random, or incompressible. These are strings
that cannot be compressed algorithmically. As there are at most 2 — 1 binary
“programs” of length n — 1 or less, clearly there is some string of length n whose
Kolmogorov complexity is at least n. For ¢ even a small constant, this amounts
to say that most strings of length n, all but a fraction of 27¢, have Kolmogorov
complexity > n—¢, or are almost random (see [LV] pp. 96). Many combinatorial
properties have simple proofs via this prepackaged counting argument. Suppose
you want to show that property P(z) holds for some string 2. Take a Kolmogorov
random string z. Assume that P(z) is false; show that this gives a way to de-
scribe x concisely. This is a contradiction. In fact, this argument usually gives
proofs that P(z) holds with high probability as the majority of strings are Kol-
mogorov random up to small constant. In our case the property P(z) will be
“for the binary string z of size n, any proof of T, in CD(F) requires £2(f(n))
lines”. We take 2z a random string (i.e. its shortest description is of length close
to n) and suppose that P(z) is false. Then we use the succinct representation of
a proof of T, to describe 2 succinctly, and this will give us a contradiction.
The next Theorem shows a §2(n/logn) lower bound for the number of lines
required in C'D(F)to prove tautologies in the class T,. Our result is an im-
provement of the same result of [Ur] since we count how many tautologies in
Trare hard and also provide a trade-off between this number and the number
of lines required.

Theorem 3.4 ([Ur]) For any ¢ > 0 there are at least 2"(1 — 27°) + 1 binary
string x of size n such that any dag-like proof of T, in CD(F) must have more

than [%J = Q(logn) lines for some constant d > 1.

Proof. Fix ¢ > 0. Recall that for any CD(F) proof of n lines the size of its
succinct representation is < bnlogn for some constant b. Let n > ¢+ 2 and
assume that for all z of size n there exists a dag-like proof P in CD(F) of

< ﬁ% lines with d > 2blog3 > 1. Let G'p be the succinct representation

of P. So

b(n—ec n—c
|GP| < m log(m)

= gdz=cls flog(n — ) — log(dlog(n — ¢))]

Since d > 1 and n > ¢ + 2 we have that log(dlog(n — ¢)) > 0 and therefore

b(n —¢)

|Gp| < P



Fix a string z of size n whose Kolmogorov complexity is > n—ec. Observe that,
once the axioms of C'D(F) are fixed, z can be reconstructed from Gp and from a
program P that, on input Gp: (1) recovers the proof P, (2) takes the last formula
T, and (3) rebuilds z. |P| = O(1) since it is independent from z. This means that

the Kolmogorov complexity of z is < |Gp|log3 + O(1) = ﬂ%l log3 + O(1) (the
factor log 3 is due to the fact that Gp is defined over a three symbols alphabet).

Since d > 2blog 3 we have that the Kolmogorov complexity of 2 is < @—I—O(l).

Given that z is a c-incompressible binary string, its Kolmogorov Complexity is

> n — ¢, therefore we have that 22€ 4 O(1) > n — c or O(1) > 253<, which is a

contradiction for n sufficiently large. The result then follows since there are at

least 2"(1 —27¢) + 1 binary strings of size n whose Kolmogorov Complexity is
greater than n — ¢ (see [LV] pp. 96). O

The next Theorem extends the previous result to tree-like CD(F) giving a
linear lower bound. Observe that another way to obtain this result for sF is
using the result of Buss in [Bul] that £2(n) lines are required in F for proof
of tautologies that are not substitution instance of any shorter tautology and
Theorem 5.3. In order to simplify the proofs we do not specify the trade-off
between ¢ and the number of lines in the next Theorems of this section. It is
easy to see that this trade-off can also be obtained in a similar way as in the
previous Theorem.

Theorem 3.5 For any ¢ > 0 there are at least 2" (1 — 27°) + 1 binary string z
of size n such that any tree-like proof of T, in CD(F) must have £2(n) lines.

Proof. Fix ¢ > 0 and observe that for tree-like CD(F) proof P of m lines the
size of its succinct representation Sp is O(m) and apply Theorem 3.3 to recover
the last formula of the proof. O

3.2 Lower bounds for permutation tautologies

Permutation tautologies I, were introduced in [Orl]. It was been shown in
[Or1] and [PB] that §2(nlogn) lines are required for tree-like F proofs of some
of them. Here we show that 2(n) lines are required in dag-like sF and £2(nlogn)
in tree-like sF. Observe that, if we count the size of indices of variables, then
the size of any I7,, is O(nlogn). Therefore this last lower bound is not really an
improvement of Theorem 3.4.

Theorem 3.6 For any ¢ > 0, there are at least 20" 10g”)(l — 279 4+ 1 permu-
tations m over [1...n] such that any dag-like CD(F) proof of II,, requires §2(n)
lines.

Proof. Fix ¢ > 0. Assume that for any permutation m over [1...n] there is
a dag-like C'D(F) proof for the tautology associated with = with < bn lines,
for some constant b. The n! possible tautologies obtained from the associated
permutations can be encoded in log(n!) bits. By Stirling formula we have that

n! ~ ”nei V2t So log(n!) & nlogn — O(n) 4+ O(log+/n) that is O(nlogn). This



means that we can encode any permutation tautology with a string of dnlogn
bits for some constant d. Now consider a binary string = € {0,1}9"1°6" with
Kolmogorov complexity > |z| —c¢. Let P be the proof of the permutation tautol-
ogy associated with z with less of bn lines. The succinct representation Gp of P
has size O(nlogn). Applying the same method of Theorem 3.4 and noting that
the length of z is O(nlogn) we obtain the desired lower bound.
O

The bound for the tree-like case is obtained from the previous Theorem as
in the case of Urquhart’s tautologies.

Theorem 3.7 For any ¢ > 0, there are at least 20("1°87)(1 — 27¢) £ 1 per-
mutations ™ over [1...n] such that any tree-like CD(F) proof of I, requires
2(nlogn) lines.

4 Upper bound for Urquhart’s tautologies

We know that some tautologies T, associated with binary strings of size n require
Q(%) lines sF. Here we show how to obtain a dag-like sF proof in O(%)
lines. Moreover we show that also the tree-like lower bound for 7} ’s is optimal

since we give a O(n) line tree-like sF proof for them.

4.1 Dag-like proofs of the class T,
Consider the following formulas associated with a binary string z:

p ife=c¢
TP = (T—)T"‘y’)%f:rzly
(Lv TP) ifx =0y

Lemma 4.1 All tautologies p— TP for any z € {0,1}* with n > 0 can be
obtained in a sF proof of O(2") lines.

Proof. First observe that p—T] = p— (T —p) and p— TH = p— (LV p) can
be obtained in a constant number of steps. Now suppose we have in the proof
all the tautologies p— T7 for |[y| = n — 1. To obtain p— TL for z = y1 (resp.
xz = y0) and |z| = n we do following steps:

p—=> 1Y by ind. hyp.
(T —p)— T, subst. p with (T —p)
p— TZl cut with p— (T —p) (resp. p— (LV p))

Each one of the p— T?’s can be obtained in a constant number of lines from
one of the p— T’s and one between the first tautologies, where z = yl. So the
total numbers of lines to obtain all the T2 is ¢ ) ., 28 = O(2"). O

Theorem 4.1 Given z € {0,1}" there is a sF proof of T, in O(==) lines.

n
log n /



Proof. The proof is divided in two parts. First, by previous Lemma, we obtain a
proof of all tautologies p — T4 for all |y| = log( =) This part requires O(55)

. logn logn

lines.

Second, to obtain p — TZ divide z in RE() = logn_f;glogn substrings 1, ..., 2
Tog n

(with & = m) of size log(i=2—). In the first part we have already

proved the tautologies p— TZ_ for all i. We put them together to form p— T%
starting from the innermost one in the following way: consider the sequence
p—TL ,...,p—>TE . Let T?  be the formula obtained substituting p by TZ

Tr_1
in T . In a constant number of lines we obtain the formula p—)TZJZk_1 the
following way:

P T
'I'Zgzk:;'l'“_1 subst. p with TZ
p—T,,_, cutwithp—TE

Now consider the sequence p— T% ... ,p—)TZ;k_z,p%ﬁk_l and iterate the
previous steps. After k& = m iterations we obtain p— T2 and then

by replacing p by T and one instance of Modus Ponens we obtain T,. This
second part requires O( = O(;=2-) lines. The total number of lines

logn
: n
is O(logn). ]

Togn—loglog)
logn—loglogn

4.2 Tree-like proofs for the class T,

We give a tree-like F proof of O(n) lines for any of the 2" formulas T, associated
with binary strings z of size n.

Theorem 4.2 For any z € {0,1}", there is a tree-like proof of T, of O(n) lines.

Proof. By induction on z. The base case 1s trivial. Let  be 1y. Then we have
a proof of Ty in ¢(n — 1) lines; introduce by an axiom, the line T, — (T —Ty)
and cut with T,. If 2 is Oy, then use, in the same way, the axiom Ty — (TV Ty).
The proof of T, is ¢(n — 1) 4+ 2, and for ¢ > 2 is less than or equal to c¢n. O

5 Simulations for Frege systems with substitutions

Optimal lower and upper bounds for sF proofs of T, seem to suggest that tree-
like 5.7:|Mdag—like sF. This is also supported by the fact that the same
result holds for F [BB] and for eF (see 5.1). But the technique used in [BB],
which can also be applied to eF, does not work for sF. Moreover, note that
until now it was not known whether tree-like sF p-simulates dag-like sF. In this
section we solve this problem.



5.1 Tree-like sF simulation of sF

The task of obtaining a tree-like sF p-simulation of sF can be divided in the
following steps: (1) eF p-simulates sF; (2) tree-like eF p-simulates eF; (3) tree-
like sF p-simulates tree-like e . In the last two simulations it is possible to give
a bound for the number of lines in the simulation proof as a function of the
number of lines of the simulated proof. Namely we obtain

1. tree-like 6T|Mdag—like eF;
2. tree-like 5T|Mtree—like eF.

Consider the following formulas introduced in [Bol]:

Definition 5.1 Let Ay, ..., A, be formulas with n a power of 2. The Balanced
conjunction \\_, A; of Ay,..., A, is defined inductively by

— ifn =1, then \\/_, Ai 1s Ay;
— otherwise, (/)(\fz/fAi)/\ (/)(\:.L:/?An/gﬂ-).

Definition 5.2 Let Ay,..., A, be formulas with n = 2™ + s with 0 < s < 2™,
The Psuedobalanced conjunction \\/_;A; of Ay, ..., An is defined inductively by

— if n = 1,then \\_, Ai is Aq;
— otherwise, (/X\?:lAi)/\ (MN=1A2s4i)) where the first conjunct is balanced
and the second pseudobalenced.

From this point on all conjuncts /\\ are intended to be pseudobalanced. The
following Lemma is from [BB]:

Lemma 5.1 ([BB]) The formula (/)(\d-z_llAi)/\ A — (/)(\leAi), where the con-
Junctions are associated tn a pseudobalanced way, has a tree-like Fproof of

O(logk) lines.

Tree-like eF simulation of eF. This proof is similar to the analogous theorem
for F proved in [BB]. We only sketch it.

Theorem 5.1 Tree-like eF p-simulates dag-like eJF. Moreover the following re-
sult holds: tree-like eF |M dag-like eF.

Proof. Let P = Ay,... A, be a proof in eF. Let B; = A(\;l:iAj fori=1,...,n
and By = T. The technique is that of obtaining separate tree-like proofs of
B; — Bjyi foralli = 1...n—11in O(logi) lines depending on how A;41 is inferred
in P. Then prove in a tree-like way B, — A, and finally get A,, performing cuts
between the previous proof. We treat only the case in which A;41 is inferred
by the extension rule. Assume that A;4q1 is pr <> Ck. Then obtain B; — B; in a
constant number of steps, introduce py, 4> C; (this is correct since py never occurs
in By,...,B; ) and in a constant number of steps obtain B; = B;A pi < C.
By previous Lemma we have B;A pr <> Cr — B;11 in O(logi) lines and finally
B; — B;y1 cutting with the previously obtained formula. O.



Tree-like sF simulation of tree-like eF. Cook and Reckhow show in [CR]
that sF p-simulates eF. Here we show that this simulation is preserved also
in the tree-like case and improve from O(n?) to O(nlogn) the number of lines
used.

Theorem 5.2 Tree-like sF p-simulates tree-like eF. Moreover the following re-
sult holds: tree-like sF |M tree-like eF .

Proof. Let P be the eF tree-like proof Ay,..., A,, and suppose that k many
of the A;’s are formulas of the form p; ¢+ B; introduced by the extension rule.
Consider the formula B defined by /)(\jzl(pj ¢ Bj) following the order of intro-
duction of the extension rules. First we give a tree-like Fproof of B— A. This
is obtained by showing that for all ¢ = 1,..., n there is a proof of B — A;.

case Iz A; is an axiom, then there is a tree-like Fproof of B — A; in a constant
number of lines;

case 2: A; is obtained by Modus Ponens from A; and Ay with j, k < i. We can
therefore assume there are tree-like Fproofs of B — A; and B — (A; — A;).
A tree-like proof of B — A; can be easy obtained in a constant number of
lines.

case 3: It is easy to see that B — (p; <> B;) in O(logk) lines.

This first part requires O(nlog k) lines. Now we obtain A by the following steps:

1. from Lemma 5.1 obtain /X\f;ll (p; & Bj)A (pr > Bg) — B in O(log k) lines;

2. Cut this formula with B— A and obtain M\/Z; (p; > Bj)A (px <> B) = A;
3. substitute By for pg in the last formula, derive the axiom By — By and then
. k-1
obtain J\;Z; (p; & Bj) = A;
4. iterate this process substituting the p; in the reverse order respect to their
introduction in P.

This second part requires O(klog k) lines. Since k < n, the total number of lines
is O(nlogn). O

5.2 Tree-like F simulations of tree-like rF and tree-like T/ L-F

In this subsection we first show that tree-like J:IM tree-like sF and then
we discuss differences between sF, rF and T/L-F. The technique used is that
of pushing substitution lines up above Modus Ponens lines, to obtain different
instances of the axioms. This is also stated in Lemma 1.11 of [HM]. Let P be a
tree-like sF proof. At each formula Ao obtained by a substitution, we associate
its degree d, as the depth of the formula Ao in the tree associate to the proof P,
and define the degree dp of the proof as the maximal d,. Note that a degree-0
proof is a tree-like Frege proof.

Lemma 5.2 Guven a degree d tree-like sF proof P of the formula A, there is a
tree-like sF proof P' of the formula A with degree strictly less than d.



Proof. Without loss of generality we assume that substitutions are applied only
to formulas that are conclusions of Modus Ponens. Let P be a tree-like sF proof
and let Ao be the last substitution in the proof. A is obtained by Modus Ponens
from B and B — A. Then P’ is obtained from P by the following transformation:

B B A B B> A
A Bo Bo— Ac
Ao to Ao

P’ is a valid d — 1 degree proof. O

Theorem 5.3 Tree-like fIﬂEL tree-like sF.

Proof. Let P a tree-like sF proof and assume that substitutions are only applied
to conclusions of Modus Ponens. We construct, by induction on dp a proof P’ of
degree 0. At each inductive step we copy the proof tree if no substitution rule is
used; when a substitution is used we apply Lemma 5.2 and eliminate eventually
substitutions of formulas introduced by axiom schemes and from another sub-
stitution. At the base case dp/ is 0 and so we have done. Observe that in P’ we
eliminate all the lines obtained by substitution and maintain all the other lines,
so the number of lines of P/ isn — k. O

Let m be the size of P. It is easily seen that the formulas introduced by
the axioms in P’ could have O(m”**1!) number of symbols and so we cannot
conclude that F p-simulates tree-like sF. But, an immediate corollary of this
last Theorem is that any lower bound for the number of lines for tree-like F
must hold also for tree-like sF.

We can restrict the substitutions to be renamings or T /_L-substitutions. In
this case, indeed, every substitution in the proof does not add any new symbols.
Therefore we have:

Theorem 5.4 ([IP]) F p-simulates tree-like rF and tree-like T /L-F.

We see that tree-like rF is p-equivalent to F, and by Buss [Bul] dag-like rF is p-
equivalent to sF. This means that tree-like rF p-simulates dag-like rF implies F
and sF are p-equivalent. Since an exponential separation is conjectured between
F and eF, this must lie between tree-like and dag-like rF or T/L-F. This is
very surprising since for F, sF and eF the tree-like system and the dag-like one
are p-equivalent. Observe that the known rF simulation of sF does not preserve
the tree-like property (see [Bul] Lemma 17) and the Cook-Reckhow proof that

tree-like sF p-simulates tree-like e (Theorem 5.2) cannot be extended to an
analogous proof for rF or T/L-F.

6 Conclusions

We have shown how to obtain some quasi-linear lower bounds for the number of
lines in sF using Kolmogorov Complexity. We think that what we have proven



is the best that can be done using this particular application of Kolmogorov
Complexity in the sense that no even quadratic lower bounds can be proved this
way. This is because to recover a random string z we are actually recovering the
entire proof of the tautology associated with z and this means that the succinct
representation encodes more information than we really need. In our case the
lower bounds for T, are optimal in sF, but this will in general not be true.
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