
Constructing Evolutionary Trees in the Presence of Polymorphic Characters

Maria Bonet * Cynthia Phillipst

Abstract

Most phylogenetics literature and construction methods

based upon characters presume monomorphism (one state

per character per species), and yet polymorphism (multiple

states per character per species) is well documented in both

Biology and Historical Linguistics. In this paper we consider

the problem of inferring evolutionary trees for polymorphic

characters. We show effieient algorithms for the construc-

tion of perfect phylogenies from polymorphic data. These

methods have been used to help construct the evolution-

ary tree proposed by Warnow, Ringe, and Taylor for the

Indo-European family of languages, which was presented by

invitation at the National Academy of Sciences in November

1995.

1 Introduction

Determining the evolutionary history of a set S of objects

(taxa or species) is a problem with applications in a number

of domains such as Biology, Comparative Linguistics, and

Literature. Primary data used to compare different taxa

(whether biological species, populations, or languages) can

be described using character-s, where a character is afunc-

tion c : S + Z, where Z denotes the integers and thus

represents the set of possible states of c. In this paper we

consider tree construction when characters are permitted to

have more than one state on a given object. We call this

the polymorphism problem. A character which is permit-

ted to have more than one state on a given object will be

called a polymorphic chm-acter, and one which can have only

one state for every object is referred to as a monomorphic
character.

STOC’96, Philadelphia PA, USA
0-89791-785-5/96/05

*Department of Mathematics, University of Pennsylvania.
bonet@math.upenn .edu. Research partly supported by NSF grant
number CCR-9403447

t Sandia National Labs, Albuquerque,
NM, USA, caphill@cs.sandia. gov. This work was performed under
U.S. Department of Energy contract number DEAC04-76AL85000

tDePart~ent of computer and Information Science, University Of

Pennsylvania, Philadelphia, PA, USA. t andy@central.cis .upenn .edu.
Research partly supported by an NSF National Young Investigator
Award under contract CCFL9457800 and from an NSF grant m Lin-
guistics, SBR95- 12092. Additional support is provided by Paul An-
gello, Esq.

5Department of Computer and Information science, university of
Pennsylvania,
Philadelphia, PA, USA. yooseph@gradient .cis.upenn .edu. Research
partly supported by a Fellowship from the Institute for Research in
Cognitive Science at the University of Pennsylvania and also by a
Fellowship from the Program in Mathematics and Molecular Biology
at the University of California at Berkeley, which is supported by the
NSF under grant no. DMS-9406348

Tandy J. Warnow$ Shibu Yooseph~

Polymorphism is well-documented in both the molecular

genetics and comparative linguistics domains. For example,

the population geneticist Masatoshi Nei writes: The study

of protein polymorphism has indicated that the extent Of ge-
netic variation in natural populations is enormous. How-
ever, the total amount of genetic variation cannot be known

unless it is studied at the DNA leveL The study of DNA
polymorphism is still in its infancy, but the results so far
obtained indicate that the extent of DNA polymorphism is

far greater than that of protein polymorphism.’ Polymor-

phism also arises in the comparison of different languages.

The Indo-Europeanist Donald Ringe writes: In choosing /ex-

ical characters we try to work with basic meanings (semantic

slots), choosingfrom each language the word that most IJsu-
ally expresses each basic meaning. Languages typically have
one word for each basic semantic slot, but instances of two
(or even more) words apparently filling the same basic slot
are not rare.[28]

Thus, polymorphic data is a reality when working with

evolutionary tree construction for both linguistic analysis

and biological taxa, and methods appropriate for such con-

struction must be devised. In the phylogenetics literature

and programs (such as Phylip, PAUP, and MacClade), al-

gorithms and software to evaluate fixed leaf-labelled tree
topologies for polymorphic data have explicitly required that
the number of states be kept quite small because the evalua-
tion requires time exponential in the number of states. This
is the first algorithmic study of this problem to go beyond
fixed topology problems for bounded number of states.

The major contribution of this paper is a methodol-

ogy for inferring perfect phylogenies from monomorphic and

polymorphic characters. Recent work in Historical Linguis-
tics [36] has shown that perfect phylogenies should be ob-

tainable from properly selected and encoded linguistic char-
acters. Algorithms for constructing perfect phylogenies from

monomorphic characters were used in [36] to analyze the
Indo-European family of languages, whose first-order sub-

grouping had been argued for decades without resolution.
The methodology we propose here significantly extends the
range of the data that can be analyzed in Historical Lin-
guistics. We have applied this methodology to the data set
studied by Warnow, Ringe, and Taylor. Detection and reso-
lution of polymorphism led to a modification of their initially

proposed phylogeny, which was based only on monomorphic

characters. Our methodology and its results were presented
at the Symposium on the Frontiers of Science at the N a-
tional Academy of Sciences in November 1995.

The structure of the rest of the paper is as follows. In
Section 2, we discuss the causes of polymorphism in Linguis-
tics and Biology, and define the problem of inferring trees
from polymorphic characters in these two domains. We show

that a perfect phylogeny is an appropriate objective when
working with linguistic data as well as some biological data.

In Section 3 we present two algorithms, one graph theo-
retic and one combinatorial, for the problem of inferring per-

fect phylogenies from polymorphic data. In Section 3.3, we
present a methodology for inferring perfect phylogenies from

1From [26], page 254.

220

data which combine monomorphic and polymorphic data. In
Section 4 we present our analysis of the Indo-European data

studied by Warnow, Rlnge, and Taylor [36]. In Section 5,

we consider the problem of inferring evolutionary trees from

polymorphic data when a perfect phylogeny is an unlikely

out come. We conclude in Section 6.

2 Foundations

The causes of polymorphism in Biology and Linguistics dif-
fer, and within Biology, polymorphism has more than one

cause as well. In Linguistics, convergence of meanings over

time, borrowing of synonyms from other languages, and the

inability of modern-day linguists to detect subtle differences

of meaning in words from ancient languages, can all produce
polymorphic characters. Some such cases, like English little
and small, arise by the convergence of meanings over time;
others, like American English stone and rock (to describe a
small chunk of the substance that can be t brown), are in-

stances of replacement in progress (rock is replacing stone
in that basic meaning in America). It can be shown that
the different manifestations of polymorphism in Linguistics

each can be described by the conflation of two or more dis-

tinct linguistic characters. Often we are able to determine

the precise number of monomorphic characters that have

merged into the polymorphic character. In Linguistics it

has been observed that monomorphic characters are convex,
where by this we mean that the nodes sharing any state of

any character form a connected set in the tree.

Definition 1 Given a set S of taxa defined by a set C of
characters flc’1 = k), where each CJ c C’ iS a ~unctiora Cj :

S -+ (2Z – {0}), let T be a tree which is leaf-!abetled by the
taxa in S and with each internal node u labelled with a vector

from (2Z – {O})k such that the value of Cj(v) is given by the

‘th component of this vector. A character (polymorphic orJ
monomorphic) c is convex on T if for all z E Z, the set

X.,, = {v G V(T) : i E c(v)} ES connected. T is a perfect
phylogeny if every character is convex.

For polymorphism caused by convergence
monomorphic characters, polymorphism can be
a separation problem.

Definition 2 A polymorphic character c with

of convex
considered

r states is

separated into characters al,. . . . at by a function f :

{1 ,.. .,r}+ {l,... ,1} where aJ1(i) = C-l(Z) if f(i) = j.

Undetermined values of a], ..., al are arbitrary. In partic-

ular singletons maintain the spirit of character c. That is,

if f(i) # j for any z’ ~ C(S) (species s does not contain any

state mapped to character j), then let a~l (aJ(s)) = {s} (s

has a unique state for a~).

Problem 1: Separation into 1 convex characters

Input: Set S of taxa defined by set C of characters.

Question: Can we separate each character into at most 1
monomorphic characters, so that a perfect phylogeny

exists for the derived set of monomorphic characters?

Due to inadequate historical evidence, input data may

not reflect the act uai degree of polymorphism. Separa-

tion may be necessary to obtain convexity even if all in-
put characters appear monomorphic. For example, consider

four languages with three characters: A ., (I, 2, 1), B =

(1, 2, 2), C = (1,2, 1), D = (1,2, 2). Suppose the first two
characters convolve (meanings merge) and linguists detect

only one of these characters for each languabge. This poly-

morphic character appears monomorphic: A = (1, 1), B =

(1, 2), C = (2, 1), D = (2, 2). There is no perfect phylogeny
for this set, but we can separate the first character into two
such that there is a perfect phylogeny: A := (1, a, 1), B =
(I, b, 2), C = (c,2, 1), and D = (d, 2, 2). 13ecause of lost
information, we cannot completely determine the inferred

characters ~i (hence the use of singletons).
In Biology, (a) alternative encodings of the same amino

acid sequence, (b) alleles for a specific gene, and (c) jumping
genes (transposons) can each cause polymorphic data. In

each of these cases, the number of different forms that the
character can take on a given taxon may be bounded, in
which case we may reasonably seek a tree in which every
node has no more than some pre-specified bound of states
for each character. This bound may be character dependent.

Definition 3 A tree T which has polymorphic characters is

said to have load 1 if for every character c G C and every

v C V(T), IC(V)[< /.

Problem 2: l-load perfect phylogeny

Input: Set S of taxa defined by set C of (possibly) poly-
morphic characters.

Question: Does an J-1oad perfect phylogeny exist?

For many morphological characters in Biology, convex-
ity is a reasonable assumption (e.g. consider vertebrate-
invertebrate). Alt bough the causes of polymorphism in Biol-

ogy and Linguistics differ, when convexity ca,n be assumed,
the different problem formulations are equivalent.

Theorem 1 Given a set of taxa defined by a set C of poly-

morphic characters, T is an l-load perfect phylogeny for C
if and only if we can separate each polymorphic character

into at most 1 monomorphic characters such that T is also

a perfect phylogeny for the derived set C!.

Proofi One direction is easy. For the converse, let T be
a perfect phylogeny with load 1, let a c C be given, and

assume a has r states present on S. Let T, be the subgraph
of T induced by the vertices labelled i by a. Since T is a
perfect phylogeny, each T, is a subtree. Define G~ to be the

graph whose vertices are in one-to-one correspondence with

the sybtrees T~, z = 1, 2, r, and where (Tt, Tj) c E if and
only If T, nTJ # 0. Note that since T has load 1, G~ has max

clique size at most 1. G~ is triangulated since it is the inter-
section graph of subtrees of a tree [6], and hence G~ is per-
fect [16]. Since Gm is perfect, the chromatic number of Gm

equals the max clique size, and hence is bounded by 1. Hence
we can partition the nodes of Gm into at most 1 independent

sets, Vl, V2, ..., v. Each V, thus defines a monomorphic
character (filled in with singletons), and hence T is a per-

fect phylogeny for each of these monomorphic characters.

I

Polymorphism in characters that are based upon

columns of molecular sequences behaves differently than

polymorphism in morphological characters; for these charac-
ters, variations on the parsimony criterion are more appro-

priate optimization criteria. We discuss the computational
complexity of these problems in Section 5.

221

3 Inferring Perfect Phylogenies from Polymorphic Char-
acters

When the maximum permissible load for each character is

not given, the problem of inferring perfect phylogenies is

best stated as a minimum load problem. This is addressed

in Section 3.1. When the maximum permissible load for
each character is given, we have two algorithms which can
construct perfect phylogenies; both are efficient when the

number of characters is small. These algorithms are pre-
sent ed in Section 3.2. When the character set includes a suf-

ficient number of monomorphic characters, we have a third
algorithm which combines techniques for monomorphic and

polymorphic characters. This algorithm is presented in 3.3.

3.1 Min Load Problems

When convexity of the monomorphic constituents of the

polymorphic characters is a reasonable request, we may seek
a tree with a pre-specified load bound, or else we may seek

a tree with a minimum possible load bound. We call the
latter problem the Minimum Load Problem.

We note that the Minimum Load Problem is NP-hard,
since the question of whether a l-load Perfect Phylogeny ex-

ists is NP-Complete [4, 34]. The 2-load Perfect Phylogeny
Problem is the next question to consider. The various pa-

rameters to the problem are n, the number of species; k, the
number of (polymorphic) characters; and r, the maximum

number of states per character.

Theorem 2 The M% Load Problem can be solved in poiy-
nomiat time for ail jixed n and when T = 2, but is NP-hard

for all fixed r >3 and for all jixed k. Determining whether a
2-load perfect phylogeny exists is solvable in polynomial time
if n or k is fixed, or if r = 2, but NP-Complete for jixed
T>3.

Proof: When n is fixed, the number of possible leaf-labelied
topologies is bounded, so we need only consider the Min

Load problem on a fixed topology. Determining the mini-
mum load on a fixed leaf-labelled topology is trivial, since

for each internal node v c V(T) and each character cr E C,
we simply set a(v) = {i : 3x, y leaves of T with v on the

path from z to y, and i c a(z) n a(y)}. This determines the

minimum load for the topology. The same argument can

be used to show that 2-load perfect phylogeny is solvable in
polynomial time when n is fixed.

We now show that the Min Load Problem is NP-hard
for all fixed k by showing that the l-load perfect phylogeny
problem with fixed number of characters k >1, where each
character has input load 2 (i.e. 2 states for every species), is

NP-complete. The reduction is from the following problem

involving partial t-tree recognition. See section 3.2.2 for

definitions of t-trees and partition intersection graphs.

Input : A graph G = (~ E) and an integer t < (n – 1),

where IVI = n .

Question : Is G a partial t-tree ? i.e. does there exist
G’ = (V, E’) such that E(G) G .E(G’) and G’ is a t-tree.

The above problem was shown to be NP-complete by
Arnborg, Corneil and Proskurowski [3].

The reduction is as follows. Let (G = (V, E), t) be an

instance of the partial t-tree problem. The correspond-

ing instance of the load problem consists of the species set
S = {sele E E} and one character a, with a(s~) = {i, j},

where e = (i, j). Also, set 1 = t+ 1. We claim that the

instance to the partial t-tree problem has a solution iff the

corresponding instance to the load problem has a solution.
This can be seen by observing that G is the partition inter-
section graph of the instance of the load problem and thus

we can use Theorems 4 and 6.
Next we show that the 2-load perfect phylogeny problem,

where each of the input characters is monomorphic, is NP-

complete for fixed r > 3. This will also imply that the Min
Load Problem is NP-hard for fixed r >3. The reduction is
from the Partial Binary Characters Problem (PBCP), which

is defined as follows:
Input : An n x k matrix M, of n species and k characters,
in which each entry of I’d is an element of the set {O, 1, *}.

Question : Can each * entry be set to O or 1 so that there
exists a l-load perfect phylogeny with the new matrix ?

The above problem is just a reformulation of the Quartet

Consistency Problem, which was shown to be NP-complete
by [34].

Given an instance 1 of PBCP, the instance of the load

problem is constructed as follows. Replace each * entry in
the matrix defined by 1, by a 2. Let C be the set of k char-
acters and let S be the set of n species defined by this new
mat rix. We will add 21c new characters and 9k new species
as follows. Initialize S’ = S and C! = C. Now, for each

a c C’, define two new characters al and az, and nine new
species s~, . . . , s: as follows

~~ :y~ ~ c C“ (where ,6 # cr), set /3(s~) = 2 , where

Fox e&h s c S’ set CYl(s – 2 and crz(.) = 2
1 -’002),4 :(0,1,2), s:=”(022) s’ -Also set Sa – (, ,

(2,0,0), s: = (2, 1,1), s: = (2, 2, 2), s: = (1:2: 0): s{ :

(1,2, 1), s: = (1,2,2).

(Notation: s; = (z, y, z) indicates that cr(s~) = z, crl(s~) =

;, C#(s:) = z,).
Update S’ = S’U{s~,..., s:} and C’ = dU{CV], a2}.

1’ = (S’, C’) is the instance of the load problem. It can
be shown that 1 has a solution iff 1’ has a solution.

If k is fixed then the 2-load perfect phylogeny problem

can be solved in polynomial time using the algorithms from

Section 3.2.
If r = 2, then clearly the Min Load problem and thus

the 2-load perfect phylogeny problem can be solved in poly-
nomial time by observing that l-load perfect phylogeny on

binary characters is solvable in polynomial time [17] and that
there is always an r-load perfect phylogeny on any input set

containing characters with at most r states. B

This theorem shows that any polynomial time algorithm
requires both k and 1 bounded.

3.2 Algorithms for Perfect Phylogenies from Polymorphic
Characters

In this section we present the two algorithms for inferring

perfect phylogenies from polymorphic data when we know
the load bound. Although the algorithms we will present as-
sume a universal load bound, these algorithms can be easily
modified to allow individual load bounds for each character,
and wiU achieve comparable running times. For the sake of
clarity, we will present these algorithms as though the load
bound is the same for each character; the runtimes of these
algorithms when implemented to handle variable constraints
are given within their respective sections. Because of space

222

constraints, some of the proofs have been omitted. They

will appear in the full version of the paper.

3.2.1 A Combinatorial Algorithm for fixed k and 1

The algorithm we present is an extension and simplifica-
tion of the algorithm of Agarwala and Fern~ndez-Baca [2].

For the remainder of this section the term perfect phylogeny

refers to an l-load perfect phylogeny.

Note that the number of possible labels for nodes is ri~.
This follows from the observation that each character haa

only r states, and each node can choose at most 1 of these.

Let us call this set of possible node labelings S*, and note

that S ~ S* (since otherwise some node in S has load greater
than i). We need some preliminary definitions and facts.

Definition 4 The Hamming distance of e = (x, y) is

Zcec Ic(z)Ac(Y)I, where A i. symmetric diference.

We note that if a perfect phylogeny exists for S, then one

exists where the Hamming dist ante on any edge is exactly

one. We will seek a perfect phylogeny with this property.
Working with such perfect phylogenies allows us to quickly

solve subproblems, because it limits the number of ways a
(maximally refined) perfect phylogeny can be constructed.

Definition 5 (See /..2]) Given x c S*, the equivalence re-
lation E= is the transitive closure of the following relation
E: on S – {x}: aE~b if there exists character c such that

(c(a) n c(b)) – C(Z) # 0. We denote this set of equivalence
classes by (S – {z})/z.

Some facts follow from this definition.
Fact 1: Two species in S which are in the same equiv-

alence class of (S - {z })/x must be in the same component

of T – {x}, for any perfect phylogeny for S that contains x.

Fact 2: If a perfect phylogeny exists for S u {z}, then

there is a perfect phylogeny T in which the subtrees of z in

T have leaf sets which are the components of (S – {z})/z.
Fact 2 does not necessarily hold simultaneously for all in-

ternal nodes of a perfect phylogeny T. Instead the following
fact is true for every internal node of T.

Fact 3: Let T be a perfect phylogeny for a set of species

S. Let x be an internal node of T and G an equivalence class
of (S – {z})/z. Let y be an internal node of T such that

the subtree rooted at y, when we think of T as having root

x, contains G. Then there exist HI, ..., Ht in (S — {Y})/Y

such that HIU. .. UHt=G.
We now present a dynamic programming algorithm for

constructing perfect phylogenies from polymorphic data.
We define the search graph SG = (V, E) as follows. Each

vertex in V is associated with a pair [G, z], where G = S

or G E (S — {z})/z, and represents the question: Does
G u {z} have a perfect phglogeng?”. The edges of the search
graph are of the form ([G, z][S, z]), and all pairs of the

form ([G1, z1], [G2, m]) where G1 G G2 and XI and Z2 sat-

isfy X.ec [call = 1. There are 0(#~) nodes of

type [S, z], and O(n#k) of type [G, z] (because there are at

most n equivalence classes in (S - {z}) /x). Also, there are

O(rwik) edges of type ([G, z][S, x]), and O(nlk~tk+l) of type

([G,, m], [G,, m]), since the outdegree of every node is at
most /kT.

Definition 6 Given a node [G, x], a set of nodes

[~1, vl, [~z)vl,..., [Hp, y] such that (a) Hamming(x,y)=l
and (b) u,H, = G is called a bundle.

There can be multiple bundles going into [G, z], corre-
sponding to the maximally refined perfect phylogenies of
GU {x}. If [Hi, V], [HZ, Y],..., [HP, Y] is a bundle for [G, x]
and all the subproblems have perfect phylogenies, then there
is a perfect phylogeny for G U {z} with subtree T~ Iabelled

by H,. We can also have a bundle of just one edge (i.e.

([G,y],[G,x])); such a bundle indicates the existence of a
perfect phylogeny T for G U {y} in which the node corre-

sponding to y has only one child. This is necessary if we
require all edges to have Hamming distance 1,

The Algorithm PHYLOGENY(S) First create the search
graph Gs. For each node [G, x], determine its bundles. Note

that some incoming edges ([G], Zl], [G, z]) may not corre-

spond to any bundle because (S - {z1 })/zl does not have
the proper form (i.e. G may not be the union of a subset
of the components of (S — {xl })/z I). Remove such edges.

Now for each bundle, compute the size of the bundle (num-
ber of edges) b, and set a counter count, equal to b,. Each

node [Gl, z]] that is a predecessor of node [G,, z,] is given a
pointer to the counter for its bundle. We initialize a queue

of “true” nodes as empty.
We locate each node [G, z] with IG[= 1., mark it as

“true” , and place it in the queue. We then pull a node

[GI, XI] out of the queue and process it as follows. For each

edge in the search graph ([GI, z]], [G,, Zz]), we decrement
the counter for the appropriate bundle into [Gz, m]. If the
counter is decremented to O, then all edges of the bundle
have been set to true and node [Gz, z,] is added to the queue.
When we have processed all edges out of node [Gl, z1] we
choose another node from the queue and continue. If we ever

try to enqueue a node of the form [S, z], then the instance
has a perfect phylogeny. If the queue is emptied without

ever Iabelling a node of this form as “true”, then there is no

perfect phylogeny.

As we enqueue “true” nodes, we build a topology for a

perfect phylogeny for the subproblem represented by that
node, ultimately building one for the whole problem if it
exists. We denote the topology of the perfect phylogeny
for [G, z] by T[G, z]. We enqueue [G, z] when a bundle

[Hi, YI, [H2, YI,..:, [lfp, y] is found such that each [H,, y]

has been determmed to be “true,” and hence a topology

T[H,, y] for each subproblem has already been determined.
We create a new node v. If x E S, then we label the node

z. Otherwise it remains unlabeled for now. A method
for labelling these nodes is given in the proof of Theo-

rem ?? (omitted in this abstract). We take each of the

trees TIH1, y], T[Hz, y],.. . , T[HP, y], merge the roots into a

single node, and make this node a child of nc)de v. Once

[G, z] has been enqueued, we construct the tree T[G, z] and
we do not consider any more edges entering [G, z]. Thus we
only compute one topology per “true” subproblem.

Lemma 1 If there exists a perfect phylogeng for S U {z},

then the algorithm PHYLOGENY assigns true to [G, x], joT
each G c (S – {z})/x.

Theorem 3 The algorithm PHYLOGENY(S) runs in time

O(T1k+l lkn)l and returns “yes “ if and only if S has a perfect

phylogeny.

Most of the details of this proof are similar to tlhose provided
in [2], except that they omit the question of how to label the
nodes of the tree. (The initial labelling they provide can be

shown to be faulty in some cases.)

223

Comment: When individual load bounds {C are given,
the algorithm can be modified to run in O(r ‘+l Ln), where

L = ~ccc l..

3.2.2 A Graph-Theoretic Algorithm for Fixed k and i

The algorithm we present is based upon a characterization of

intersection graphs of subtrees of l-load perfect phylogenies.

Preliminary Definitions Let G = (V, -E) be a graph. A ver-
tex coloring of G is a function color : V + Z. We do not
require that CO?OT be a proper coloring (a coloring function

is proper if and only if V(O, u) c E, color(v) # CO1OT(U)).

Given a graph G = (V, E) and a vertex coloring color :
V + Z, a monochromatic clique in G is a clique V. c V

such that color(v) = colo~(zv) for all v, w c VO. A graph

G = (V, E) is triangulated if it has no induced chord-
free cycles of size four or greater. Given a vertex-colored
graph G = (V, E), we say that G is l-triangulated if G

is both triangulated and has no monochromatic cliques of
size greater than 1. Let G = (V, E) be a graph with a
vertex coloring. We say that G has an i-triangulation
G’ = (V, E’) if E ~ E’ and G’ is l-triangulated. Let
1 = (S, C) be an input to the phylogeny problem. Let
a E C’ be a fixed character, and let i E Z. We define

Cr*={scs:z Ecr(s)}. The Partition-Intersection

Graph of I is the vertex colored graph GI = (~ E) in

which V = {CYi : a ● C}, E = {(~i, ,8J) : ~i fl/3j # 0, where

i # ~ if @ = ,8}. The vertex coloring COIOT is defined ss
follows: for a # ~, CO1OT(CY,)= COiOT(a3) # coior(~s). Thus
we have a color for each character; all nodes associated with

a character receive the same color. Note that because the

input 1 can have load greater than one, the coloring function
color may not be proper.

The main results in this section can be paraphrased as
follows:

● Let I be an input to the Z-load perfect phylogeny prob-

lem. Then there is an l-load perfect phylogeny for 1 if

and only if the partition intersection graph GI has an

l-triangulation.

● Given a k-colored graph G (not necessarily properly

colored), we can determine in time polynomial in fixed
k and 1whether G has an l-triangulation and construct
the l-triangulation when it does.

● Given an l-triangulation G’ of GI, we can construct

an l-load perfect phylogeny in polynomial time.

As a consequence, we will provide an algorithm for de-
termining if an Lload perfect phylogeny exists for k oly-

?
morphic characters defined on n species in 0((Tk312)~ ‘1 +
n(ki)2) time.

There is a characterization of triangulated graphs as inter-

section graphs [6].

Theorem 4 [6] A graph G = (V, E) is triangulated if and
only if it is the intersection graph of subtrees of a tree.

We now look at an extension of this particular characteriza-
tion for i-triangulated graphs.

Theorem 5 Let G = (V(G), E(G)) be a verter-colorect
graph,

Then G is l-triangulated ifl 3 a tree T = (V(T), E(T))

together with functions p : V(G) -+ {subtrees of T} and

4: V(T) bije~i”n {maximal cliques of G} such that

(a) (v, W) G E(G) iflp(v) n P(w) #0.
(b) W(V) = {u c V(T) : V E d(u)}.

(c) VU E V(T), #(v) has at most 1 vertices of the same color.

Theorem 6 Given an instance I of the l-load perfect phg-

logeny problem, let GI be the corresponding partition irz-

tersection graph. Then I has a solution i~ GI has an t-
triangulation.

Further Definitions Consider a graph G = (~ E) with

IVI = n ~ k that contains at least one k-clique. Such
a graph G is a k-tree if the nodes of G can be ordered

‘W>V2, . . . , v~ whereby rG(vi) fl {~i+l, vt+2, ..., vn} is a k-
clique for all i with 1 < i ~ n — k. A k-tree also has the
following recursive defi~tion: the complete graph on k ver-

tices is a k-tree; if G = (V, E) is a k-tree, and S C V is a

k-clique, then the graph formed by adding a new vertex v
and attaching it to each vertex in S is also a k-tree. Each
k-tree may be constructed using several different sequences

of these operations. The initial set S C V is called a basis
for the k-tree. For a graph G = (V, E) and vertex-separator
S C V with C a component of G – S, we define C U cl(S)

to be the graph formed by adding to the subgraph of G in-

duced by C U S sufficient edges to make S into a clique.
Let G = (V, E) be a k-colored graph. We say that G is a

(k,l)-partition intersection graph if (a) the maximum
monochromatic clique size is 1, and (b) G is edge covered by

kl-cliques.
We will need the following lemma in our dynamic pro-

gramming algorithm.

Lemma 2 Let G be a (k, I)-partition intersection graph.
Then G can be l-triangulated if and only if there exists a
set K ~ V of size W — 1 which is a separator for G such
that for all components C of G – K, C U cl(K) can be 1-

triangzdated.

We are thus motivated to make the following definition:

Definition 7 Let G = (V, E) be a k-co~or_ed graph with max-

imum monochromatic clique size no greater than 1. A poten-
tial basis for G’, the t-triangulation of G, is a subset V. L V

such that (a) lVO1 = kl — 1 and (b) VO is a vertex separator

for G. If VO C V satisfies both these conditions then we say

that V. is a potential basis for G, and call V. a pb-set.

We will present a dynamic programming algorithm which
will solve the l-load problem when the input is a (k, l)-

partition intersection graph. As our input graphs may not
be (k, 1)-partition intersection graphs, we need the following

result:

Lemma 3 Let G = (V, E) be vertex-colored with a coloring
function color (using k colors) and assume that the maxim-

um monochromatic clique size is 1. Then there exists a
(k, i)-partition intersection graph G’ = (V’, E’) such that
the following is true: (a) For every pb-set S C V’ contain-
ing (k – 1) colors and every component C of ~ – S, C U S

has all k colors present, (b) G can be l-triangulated if and
only if G’ can be l-triangulated, and (c) The number of
vertices in G’ is n + m(kl – 2), where n = lVl,m = IEI.

We now have the basis for an algorithm for computing
l-triangulations of k-colored graphs:

224

Algorithm B

~ep 1: Embed G in a (k, 1)-partition intersection graph,

Step z: Compute all pb-sets VO ~ V(G’), and all compo-

nents C of G’ – VO. The subproblems C U cl(VO) are then
bucket sorted by size.

Step 3: Use dynamic programming to determine the an-

swers for each subproblem in turn.

Step 4: If there is a pb-set VO such that for all components

C of G’ – VO, CU ci(VO) is has an l-triangulation, theu return

(Yes), else return (No).

It is clear that we need to indicate how we implement
Step 3. We have thus reduced the problem of determining
whether the graph G can be l-triangulated to looking at
graphs of the form C U cl(S), where S is a pb-set, C is one

of the components of G – S, and we presume G’ to be a
(k, i)-partition intersection graph.

We state the following theorem:

Theorem 7 Let G = (V, E) be a (k-, /)-partition intersec-
tion graph with lVl ~ H +1. Let SO be a pb-set and let C be

a component of G–SO. Then CUC1(SO) can be l-triangulated
if and only ij there exists some vertex v in C and a family

of pb-sets M such that the following is ,@ae:

(a) For each M EM, M c SO U {v}, and M as a separator

for C U c1(SO) and for G.
(b) For each vertex x E SO there is a M. E M and a com-
ponent C. of G – Ms and of C U cl(So) – M. such that
ICSI < ICI and Cz U c1(MX) can be l-triangulated.

(c) Every edge in C is in exactly one C, given above.

Proof: [Sketch] Suppose that C U c1(SO) can be 1-

triangulated, and let G’ be an l-triangulation of C U c1(SO)

It can be shown that there is a vertex v 6 C such that the
subgraph of G’ induced by the vertices of C U c1(SO) can

be written M the union of the i-triangulated (kl – 1)-trees
TK based upon pb-sets K C S’ = SO U {v}. We will let

M consist of these subsets K, which form the bases of the
(Jc1– 1)-trees TK. It can then be shown that M satisfies the

conditions above.
For the converse, if such a family M = {M, : z ~ 1} of

pb-sets exists, then there exists v E C such that the graph
CUcl(SO) is cent ained in the union of Ltriangulat able graphs

of the form CL U c1(M), where each M G M is a pb-set and
a subset of SO U {o} and Cz is a component of G – M and

a proper subset of C. These graphs can be completed to

l-triangulated (kl – 1)-trees T., where V(T=) = V(C= U M).

This family of (kl – I)-trees 7 = {Ts : z 6 C - {v}} shows

that C U ci(SO) is l-t riangulatable. ~

Theorem 8 Let G = (~ E) be a (k, Z)-partition intersec-

tion graph. Algorithm B can, in O(lVlkl+l) time, deter-
mine whether G can be l-triangulated, and produce the 1-
triangulation when it exists.

Summary Given 1, compute the Partition Intersection

Graph, GI, and embed GI in a (k, 1)-partition intersection
graph G;. Use Algorithm B to determine if G; can be L
triangulated, and compute the triangulation G? if it exists.

If there is no l-triangulation, Return No. Else, use G! to
compute the l-load perfect phylogeny T.

Theorem 9 The t-load perfect phylogera y problem can be
solved and the l-load perfect phylogeny constructed (when it

exists) in O(fzkziz + (rk3iz)h1+1) time.

Proofi Let I be the input to the l-load perfect phylogeny

problem, and GI = (V, E) be the partition intersection

graph. Then IVI = rk, and it can be shown that if
IEI > kllVl then there is no l-triangulation [25]. Hence

Il?l s k21r, Let G\ = (V’, E’) be the (k, 1)-partition in-
tersection graph embedding of GI, and note that Iv’1 =

IVI + lEl(kl - 2) < rk + lC312T. The rest follows. ~

Comment: In the case where individual load bounds lC
are given, the algorithm can be modified to run in 0(nL2 +

(rkL2)L+’), where L = ~CeC 1..

3.3 Inferring Perfect Phylogenies from Mixed Data

In the previous section we presented two algorithms for infer-
ring perfect phylogenies from polymorphic character data;
these algorithms had running times which were exponential

in L, where L = ~ ccc 1., and & is the load bound for the

character c. We can use these algorithms directly for sets

of characters when some of the characters are monomorphic
and some are polymorphic, but the expense would be too

large. This follows since in typical data sets, the number of

characters k is the largest parameter, often in the hundreds
or thousands; since L > k, algorithms that are exponential
in L are prohibitively costly. Instead, we propose a method

which should be efficient when the number of monomorphic
characters is sufficient to reduce the number of minimal per-

fect phylogenies to a small number. In practice, as the ma-
jority of the characters will be monomorphic,, this is likely

to be very efficient. The method we propose involves two

steps, and is efficient when the number of mi nimai perfect

phylogenies generated from the monomorphic characters is

small.

Algorithm C:
Step 1: Infer all minimal perfect phylogenies from the

monomorphic characters, using [22].
Step 2: Determine whether any of the minimal perfect phy-

logenies obtained in Step 1 can be refined so that each poly-
morphic character is convex on it within the specified load

bound.

Discussion of Step 1: The algorithm in [221 has running

time which is 0(2 2“~” k~t3 + &fk~n), where M is the num-

ber of minimal perfect phylogenies and km is the number of

monomorphic characters. This is theoretically expensive if
T, the number of states, is too large; however, in practice,

the algorithm works quickly as long as not too many of the

characters have large number of states. Also, in practice, as
long as the monomorphic characters are independent of each
other and comprise a suitably large set, there will be very
few perfect phylogenies. Thus, we expect Step 1 to be very
fast, and to produce very few minimal perfect phylogenies.

Discussion of Step 2: We consider the following problem:

Problem: Refining a tree

Input: Leaf-labelled tree T, and set C of polymorphic char-

acters, each with an individual load bound.

Question: Does a perfect phylogeny T’ exist for the poly-

morphic characters, subject to the constraint that T’
is a refinement of T?

Algorithm D:
For each internal v c T which has degree greater than 3, do:

225

1. Let I’(v) = I’l(v)U17z(v) where I’l(o) consists of all the
neighbors of v which are leaves and rz (v) consists of

all the non-leaf neighbors of o. For each u, E I’z (v)

add a new node WJ on the edge (w, Uj). Compute the

labelling of wj so as to make every character convex
(each character must contain every state that appears
on both sides of WJ).

2. If some new node has a load for a character that

exceeds the stated bound for that character, RE-
TURN(NO). Let Se = rl(v) U {wJ Iwl is a new node
and W3 is a neighbor of v}. Use any of the algorithms

from Section 3 to determine if there is a perfect phy-

logeny for (SV, C). If any (S”, C) fails to have a perfect
phylogeny then RETURN(No), else RETURN(yes).

Theorem 10 Algorithm D correctly determines whether a

perfect phylogeny T’ exists refining T within the stated load
bounds, and can be modijied to produce the perfect phylogeny

T’ in time rnin{O(rL+l Ln2), 0(n2L2 + n(rkL2)L+1)}.

Proofi If the algorithm returns NO, it is clear that no per-
fect phylogeny within the constraints of the problem ex-
ists. If it returns YES, then the perfect phylogenies re-
fining each of the stars can be hooked up via the new
nodes. The refinement can be done by using the algorithms
in Section 3.2. It can be shown that the algorithm takes
rnin{O(r~+l Ln2), 0(n2L2 + n(rkL2)L+l)}. S

In Algorithm D, if ISOI is small then it may be cheaper in
practice to look at all possible leaf-labelled topologies on Sv

rat her than use the algorithms of Section 3.2 to determine
the existence of perfect phylogenies on S..

4 Polymorphism in Linguistics

Properly chosen and encoded characters in Linguistics have

been shown to be convex on the true tree, so that with

proper scholarship we should be able to infer a perfect phy-
logeny. In recent work on an Indo-European data set, [36]

began with 220 characters, 185 of which were monomorphic
and 35 of which were polymorphic. The degree of polymor-

phism for each polymorphic character could be determined
from the data with high confidence, so that the question
of inferring the correct tree amounted to determining if a
perfect phylogeny existed in which each character was per-
mitted a maximum degree of polymorphism (i.e. load) on
the tree. [36] found that there was one perfect phylogeny

on the monomorphic characters. We used Algorithm D on
this phylogeny and verified that the entire set of characters

(i.e. including the 36 polymorphic characters) was compat-

ible wit h this single perfect phylogeny.

The discovery by Ringe, Taylor, and Warnow of the ex-
tent of polymorphism within linguistics led them to recheck

each of the characters for evidence of polymorphism. This
careful examination revealed that one of the characters

used in their preliminary analysis (which originally appeared
monomorphic, and upon which the presentation at the NAS
Symposium on the Frontiers of Science in November 1995
was based) was polymorphic. Their subsequent search for
new grammatical characters led to a discovery of a character
(based upon the construction of abstract nouns) which they
hoped might provide additional evidence for Indo-European
subgroupings. Our algorithms, applied to the enlarged data

set, now indicate weak support for the Italo-Celtic hypoth-

esis. Thus, the tree they now posit (presented in Figure 1)

as the evolutionary tree in Indo-European is different from

their earlier hypothesis, and is the direct result of this anal-

ysis.

AL

PIE

P

1

LA 01

AL above

dotted lines

HI - Hittite, 01- Old Irish, LA - Latin

TB- Tocharian B, GK - Greek, AR - Armenian

OE - Old English, OCS - Old Church Slavic

LI - Lithuanian, AV - Avestan, VE - Vedic

AL - Albanian

Figure 1: The tree on the Indo-European data set.

5 Polymorphism in Biology

The evolution of biological polymorphic characters can be

modelled using the following operations [26]. A mutation

changes one state into another. A loss drops a state from

a polymorphic character from parent to child. A duplica-
tion replicates a state which subsequently mutates. This

allows children to have higher load on a polymorphic char-
acter than their parents. We consider two types of costs

: 1. State-independent costs, in which any loss costs costl,
any mutation costs cost~, any duplication costs costd, and

any match costs O. 2. State-dependent costs, in which the

costs are dependent on the states involved.

Parsimony is a popular criterion for evaluating evolution-

ary trees from bimolecular data. A most parsimonious tree

T minimizes ~e=~(~) cost(e). Traditionally, for monomor-

phic characters, ;o;t(’e) is the Hamming distance of the la-
bels at the two endpoints of e. For unknown topology,
the traditional parsimony problem is NP-hard [8, 9], but for
fixed topology it is in P [15].

Consider the case where costs cost!, cost~, and Costd are
not state-dependent. Let (u, v) be an edge in T with u

above v. We define the cost cost(cr, (u, v)) of a c C on

(u, v) as follows: Let X = a(u) – a(v), Y = a(v) – m(u),
and Z = a(u) n a(v).

● If 1X1 = IYI then cost(cr, (u, v)) = costmlXl (all events

are mutations, but shared states do not change).

● If 1X1 > IYI then cost(a, (zt, v)) = cost~[lXl - IYI] +
costmlY1.

226

● If 1X1 < IYI then cost(cr, (u, v)) = costd[lYl – 1X1] +

Costmlxl.

The cost of the edge (u, v) is then ~oec cosi(a, (u, v)). For

stat e-dependent costs, we must also match states in the
parents to states in the child for mutation and duplication

events.

We consider the following problem: Given a fixed leaf-

labelled topology and a maximum load, 1, what is the most

parsimonious labelling of the internal nodes?

The problem is NP-complete for arbitrary loss, mutation,

and duplication cost functions. If coste = O, such as when
we wish to maximize convexity, the problem becomes even
harder.

Theorem 11 The following problems are NP-covnplete :

● Given a tree with leaves labeled by species each with

load at most 1 and a value P, determine if the internal

nodes can be labeled to create a phylogeny with load

at most 1 and parsimony cost at most P for arbitrary

coste < Costm < costci.

● If coste = O and cost~ < Costd are arbitrary then given

a tree with leaves labeled by species and values 1 and PI

determine if the internal nodes can be labeled to create
a phylogeny with toad at most 1 and parsimony cost at
most P. This problem remains NP-complete even if
the tree is binary, no edges of weight O are allowed,

and the input toad is 1 < L < ~.

Proofi In the fixed-topology setting, characters are inde-
pendent. Therefore we consider only the case of a single
character with r states.

Clearly the problem is in NP. We now show it is NP-
hard. Our reduction is from the 3-dirnensionai matching
problem (3DM), known to be NP-complete [19], which is

defined as follows. We are given three disjoint sets, A, B,
and C, each with n elements, and and a set X of m triples,
X = {(a,, b~, c~) : a, E A,b$ G B,and c~ E C}. We say that
triple (al, bj, (%) covers ai, b~ and Ck. We wish to find a set

of n triples that covers every element of A, B and C exactly
once. This set of n triples is called a perfect matching.

Given an instance of 3DM, we construct a tree T with

leaves labeled by species each with load at most m – n. The

internal nodes of T can be labeled with load m – n and

parsimony (3mn – 3n2)cost~ if and only if the instance of

3DM has a perfect matching.
We construct the tree T as follows. We begin by creating

an internal root node. This root has 3n children al . . . an,
bl,... ,b~and cl,... cm which are all internal nodes. Let

n(a,), for 1 < i < n be the number of triples that contain

a,. We have have the following states for our character: m

states x1, x2,..., z~ corresponding to the m triples Xj E X,

and d(a,) - m — n — n(a;) + 1 dummy states associated

with each a, (similarly we have d(b~) - m – n – n(b~) + 1
dummy states for each b~ and d(c~) = m – n – n(ck) + 1
dummy states for each c~). Let D(a,) be the set of dummy

states associated with a, (lD(a,)l = d(a,)). Let X(a,) be

the set of triples that contain a, (lX(a,)1 = n(a,)). For the

remainder of this discussion, we will concentrate on nodes

a,. The nodes b~ and ck are treated symmetrically.
Node a, has n(a,) leaf children. Let Z1, x2, ..., x~(~:j be

the states associated with the triples that contain a,. The
ith leaf under node a, has all the dummy states D(a,) as-
sociated with a, and all of z1, 32, r~f~,) WXX@ for state
x,. Each child thus has load m – n.

It can be shown that we can label the internal nodes of
this tree with load at most m – n and cost at most (3mn –

3n2)cost~ if and only if the instance of 3DM has a perfect
mat thing.

We now prove the second part of Theorem 11. Clearly

the problem is in NP. We now show it is NP-hard. We again

use a reduction from 3DM as in the proof of the first part
of theorem 11. We construct the tree as above with the fol-

lowing modifications. Each node a; now has 2 children. For

the case of load-l input, each child is the root of a binary

tree. Each of these trees has all the dummies in D(a,) repre-
sented in the leaf set and the states of X(a,) are arbitrarily

divided among the children, appearing as a leaf just once in
the subtree rooted at a,. For other input loads, the labels
of the leaves vary. For instance, for load L, there are only
two leaf children of a,, one labeled with all the dummies in

D(a,) and all but one state in X(a,), the other labeled with
all the dummy states and the single state Zg s X(a,) miss-

ing in the label of its sibling. For other loads, the children of

a, can also be made into binary trees where the input load

is met by at least one leaf, all dummy states are represented

in each child of a~ and each state in X(a~) is represented

exactly once. To make the whole tree binary, we form an
arbitrary binary tree with the a, as “leaves” (the two chil-
dren of a, will be attached). We call this tree (without the
children of a~) the A tree. We make the root of the A tree

a child of the global root. Similarly we form a. B tree and a
C tree and make them children of the global coot.

Again, it can be shown that we can find labels for the
internal nodes of this tree with load at most m — n and

cost at most (3rnn + 6n – 3n2 – 3m)cost~ if and only if the

instance of 3DM has a perfect matching. m

We now consider algorithms for fixed load 1. Since the

topology is given, characters can be solved independently.
We first give the algorithm for the most general possible cost

function and then consider special cases which can be solved
more efficient ly. All the algorithms are st anda.rd bottom-up
dynamic programming. A final pass downward from the root
produces an optimal labeling of the tree in tim,e O(n/k). We

can also randomly sample optimal solutions.

Theorem 12 Given a tree on n species with k characters

where r is the maximum number of states for any character,

1.

2.

3.

There exists an 0(nkr21)-time algorithm to compute

the most parsimonious load-l labelling ~or the tree for
arbitrary state-dependent costs.

There exists an 0(nkl(2r)1)-time algorithm to compute
the most parsimonious load-l labelling for the tree for
arbitrary fixed costs coste < cost~ < co:!td.

There exists an O(nkrl)-time al.qorithm to comwte the./
most parsimonious load-l labelling for the given tree

when costt = O.

Proofi When the cost function is state-dependent, we con-
vert our input to a weighted monomorphic parsimony prob-
lem. We define a new set of O(r~) states, one for each pos-
sible label of a node. Given two labels 1P and L, we can
determine the cost of an parent-child edge with labels 1Pand
lC. We must match states for mutations and~duplications.
We thus compute a matrix of edge costs. Because loss and
duplication costs are not the same, this matrix is not sym-
metric in general. We then use the algorithm of Sankoff and

227

Ceder~ren [32] for weighted parsimony which runs in time

O(nkj) for n species, k characters, and j states/character.

In our case, we have r~ states, where r was the original
number of states in the polymorphic character. Thus this
algorithm has time 0(nkr2Z).

The bottom-up dynamic programming algorithm for
weighted parsimony proceeds as follows. For an internal
node v, let C(V, lV) be cost of the best Iabelling of the sub-
tree rooted at v provided that node w is Iabelled lV. Then
we have C(’V, I“) = ~V/C~ild of “ (mbu”,c (v’, /“,)+ W(L, iv,)),

where w(i., l.:) is the cost of the edge with parent label 10

and child label Iv,. Thus we consider every possible label

for an internal node and compare it against every possible

label for its children. For arbitrary weight function w, this

will cost Tzi for each parent-child interaction.
For the case of arbitrary coste < cost~ < costd

(not state-dependent), we can reduce the overall time to

0(nki(2r)1). Again, we wish to consider every possible la-
bel for node v, but we need not consider every possible label

for its children. Suppose that for each child we know the
best choice of label for each of load 1,2,...,/, where some

specific subset (possibly empty) of thelabel is specified. For
example, we know the best load-3 labeling of the child where

a and b are 2 of the 3 states. This is O(lrl) information. To
find the best labelling of the subtree rooted at v provided v

is labelled by /v, the only labels we need to consider for the
children of v are the best ones for each possible subset of iv
and each possible load. For example, if 10 = {a, b}, 1 = 3,
and * can be any state, then the only labels that must be
considered for a child is * (best tree with load-1 label), **,
* * *, a, a~, a* *, b, b~, be *, ab, and abe. More formally, let

C(V, L, x) be the cost of the best subtree rooted at v where
the label of v contains state set L and z other states. Then

the cost of label 10 and node v is:

c(v, /.) = x min min (c(v’, L, 1’) + W(lV, L, i’)),
-Lqle 0~2J<&lLl

children v)

where W(lV, L, 1’) =

{

/’costm + (I(ol – ILI – r’)costl if ILI +1’ ~ I/Ul
(Ilvl – L)costm + (ILI + 1’ – 11.l)cost~ otherwise

Thus to compute the cost of a label, each parent must

check 0(12~) labels in each child. Once the label 1“ is com-

puted, it contributes to 0(2[) minimizations used by its par-

ent (each subset of 10 with load Il. l). Since each of the O(n)

edges is checked 0(12t) times for each of the rt possible par-

ent labels, the overall cost is 0(nkZ(2r)1).

To prove the final part of the theorem, when costz = O
(for example when we wish to maximize convexity), we ex-

tend the special case algorithm if Sankoff and Cedergren

for weighted parsimony of monomorphic characters with
weights all 1. We can show that whenever we have Coste = O,
then there exists an optimal solution where each internal

node contains all the states in the subtree rooted at it or
has maximum load. We begin by locating the highest inter-
nal nodes v with at most 1 states in the subtree rooted at
them. We label node v by these states and make it a leaf by

removing all its children. Now we can assume all internal
nodes will have load i. Since we have only mutations, the
cost of an edge is simply the number of mismatches between
the labels at the opposite ends. Thus, if the best labelling

for the subtree rooted at v has cost c(v) (number of mis-
matches), then we need only consider labels with cost at

most c(v) – 1+ 1. For each internal node v, we compute the
set of labels with cost c(v) — z for O ~ 1 — 1 and store it in

set L(u, z). Set L(v, O) is never empty, but any of the others
can be. For leaves, set L(u, O) is the single label and other

sets are empty.
Because there can be # labels in the .L(v’, z) sets of each

child v’ of node o, we must be somewhat careful when com-
puting the sets L(u, z) to achieve an overall time of r~. Intu-
itively, a label at node v is good if the states in it appear in
many of the labels of its children. To compute the L(u, x) for

node v, we begin by initializing an array of nl buckets. Each
possible label for v begins in the Oth bucket (with pointers

to them so they can be located quickly). For each child v’,

each label in set L(v’, Z) earns 1— z points. This means that

this label is 1 – x better than the “worst” possible cost of
c(v’) — 1. If label lVJ c -L(v’, z), then we locate v’ in the

set of buckets and move it 1 — x buckets forward. We step
through all L(v’, z) of all children in time O(T-l) per child.

Then we find the highest non-empty bucket & All labels
in bucket b are placed in set L(u, O). All labels, if any, in

bucket b – z are placed in set L(u, z). We can compute all

the sets L(v, x) in time O(nk#) time. I

6 Discussion

In this paper we introduce an algorithmic study of the prob-

lem of inferring the evolutionary tree in the presence of poly-
morphic data. We consider parsimony analysis for poly-
morphic data on fixed topologies, and present algorithms

as well as hardness results. We also present algorithms
for inferring perfect phylogenies from such data, and note

that it is reasonable to seek perfect phylogenies for certain

types of data. The results of our analysis of the an ex-

panded Indo-European data set studied by Warnow, Ringe,

and Taylor, has led to a new hypothesis for the evolution of
Indo-European languages.

References

[1]

[2]

R. AGARWALA AND D. FERN~NDEZ-BACA, A
Polynomial-time Algorithm for the Perfect Phylogeny
Problem when the Number of Character States is Fixed,
SIAM J. on Computing, Vol. 23, No, 6, pp. 1216-1224.

R. AGARWALA AND D. FERNLNDEZ-BACA, Fast and
Simple Algorithms for Perfect Phylogeny and Triangu-

lating Colored Graphs. To appear in the special issue on
Algorithmic Aspects of Computational Biology of Inter-

national Journal of Foundations of Computer Science.

Available as DIMACS technical report TR94-51.

[3] S. ARNBORG, D. CORNELL, AND A. PROSKUROWSKI,

[4]

[5]

Complexity of finding embedding in a k- Tree, SIAM J.
of Algebraic and Discrete Methods, Vol. 8, No. 2, April
1987, pp. 277-284.

H. BODLAENDER, M. FELLOWS, AND T. WARNOW,

Two strikes against perfect phylogeny, In Proceedings

of the 19th International Colloquium on Automata,
Languages, and Programming, Springer Verlag, Lec-
ture Notes in Computer Science (1992), pp. 273–283.

H. BODLAENDER AND T. KLOKS, A simple linear time

algorithm for triangulating three-colored graphs, In Pro-
ceedings of the 9th Annual Symposium on Theoretical

228

Aspects of Computer Science (1992), pp. 415-423. To

appear, Journal of Algorithms.

[6] P. BUNEMAN, A characterization of rigid circuit

graphs, Discrete Math 9 (1974), pp. 205-212.

[7] L. LUCA CAVALLI-SFORZA, P. MENOZZI AND A. PI-
AZZA, The History and Geography of Human Genes,

Princeton University Press, 1994.

[8] W. H. E. DAY, Computationalty dificult parsimony
problems in phylogenetic systematic, Journal of The-

oretical Biology, 103: 429-438, 1983.

[9] W.H.E. DAY, D.S. JOHNSON, AND D. SANKOFF, The
computational complexity of inferring phylogenies by
parsimony, Mathematical biosciences, 81:33-42, 1986.

[10] W. H. E. DAY AND D. SANKOFF, Computational com-
plexity of inferring phylogenies by compatibility, Syst.
zoo]., Vol. 35, No. 2 (1986), pp. 224-229.

[11] A. DRESS AND M. STEEL, Convex tree realizations of

partitions, Appl. Math. Letters, Vol. 5, No. 3 (1992),
pp. 3–6.

[12] G.F. ESTABROOK, Cladistic methodology: a discussion
of the theoretical basis for the induction of evolutionary
history, Annu. Rev. ECOL Syst., 3 (1972), pp. 427-456.

[13] G. F. ESTABROOK, C. S. JOHNSON JR., AND F. R.
MCMORRIS, An idealized concept of the true cladis-
tic character, Mathematical Biosciences, 23 (1975),

pp. 263-272.

[14] J. FELSENSTEXN, Alternative methods of phylogenetic
inference and their interrelationships, Systematic Zool-

ogy, 28: 49-62, 1979.

[15] W. FITCH, Towards defining the course of evolution:
minimum change for a specified tree topology, Syst.

Zool., 20:406-416 (1971).

[16] M. C. GOLUMBIC, Algorithmic Graph Z’heor~ and Per-
fect Graphs, 1980 Academic Press Inc.

[17] D. GUSFIELD, E&cient algorithms for inferring evolu-
tionary trees, Networks, 21 (1991), pp. 19–28.

[18] R. IDURY AND A. SCHAFFER, Triangedating three-
colored graphs in linear time and linear space, to ap-
pear, SIAM J. Discrete Mathematics.

[19] R. KARP, Reducibility among combinatorial problems,
In R.E. Miller and J. W. Thatcher, editors, Complex-
ity of Computer Computations, pages 85–103. Plenum

Press, NY, 1972.

[20] S. KANNAN AND T. WARNOW, Inferring evolutionary
history from DNA sequences, SIAM J. on Computing,
Volume 23, No. 3, (1994) pp. 713-737. A preliminary

version of this paper appeared in the Proceedings of the

Symposium on the Foundations of Computer Science,
St. Louis, Missouri, 1990.

[21] S. KANNAN AND T. WARNOW, Triangulating three-
coiored graphs, SIAM J. on Disc. Math., 5 (1992),

pp. 249–258; a preliminary version of this appeared in
Proc. 2nd Annuat ACM/SIAM Symposium on Discrete
Algorithms.

[22] S. KANNAN AND T. WARNOW, A fast algorithm for
finding and enumerating perfect phylogenies, Proc. 6th
AnnuaJ ACM/SIAM Symposium on Discrete Algo-
rithms, 1995, San Francisco.

[23] W. J. LE QUESNE, A method of selection of characters
in numerical tazonomy, Syst. Zool., 18 (1969), pp. 201–

205.

[24] W. J. LE QUESNE, Further studies based on the
uniquely derived character concept, Syst. Zool,, 21

(1972), pp. 281-288.

[25] F. R. MCMORRIS, T. WARNOW, AND T. WIMER, Tri-
angulating vertez colored graphs, SIAM ,J. on Discrete
Mathematics, Vol. 7. No. 2, (1994), pp. 296-306.

[26] M. NEI, Molecular Evolutionary Genetics, Columbia
University Press, New York. 1987.

[27] A. PROSKUROWSKI, Separating subgraphs in k-trees:
cables and caterpillars, Discrete Math., 49 (1984), pp.

275-285.

[28] D. RINGE, personal communication, 1995.

[29] D.J. ROSE, On simple characterization of k-trees, Dis-
crete Math., 7 (1974), pp. 317-322.

[30] D.J. ROSE, R.E. TARJAN, AND G.S. LUEKER, Algo-
rithmic aspects of vertex elimination on graphs, SIAM

J. Comput., Vol. 5, No. 2, June 1976.

[31] A.K. ROYCHOUDHURY AND M. NEI, Human Polymor-
phic Genes: World Distribution, 1988, Oxford Univer-

sity Press.

[32] D. SANKOFF AND R.J. CEDERGREN, 1983. Simultane-

ous comparison of three or more sequences related by
a tree, pp. 253-263 in “Time Warps, String Edits, and

Macromolecules: the theory and practice of sequence
comparison” edited by D. Sankoff and J.B. Kruskal,

Addison-Wesley, Reading MA.

[33] D. SANKOFF AND P. ROUSSEAU, 1975, Locating the ver-

tices of a Steiner tree in arbitrary space, Mathematical

Programming, 9:240-246.

[34] M. A. STEEL, The complexity of reconstructing trees
from qualitative characters and subtrees, Journal of

Classification, 9 (1992), pp. 91-116.

[35] T. WARNOW, Constructingphylogenetic trees eficientiy

using compatibility criteria, New Zealand Journal of
Botany, 1993, Vol. 31: 239-248.

[36] T. WARNOW, D. RINGE AND A. TAYLCIR, A charac-
ter based method for reconstructing evolutionary his-

tory for natural languages, Tech Report, Institute for
Research in Cognitive Science, 1995, and Proceedings

1996 ACM/SIAM Symposium on Discrete Algorithms.

229

