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Abstract

We consider small-weight Cutting Planes (CP* ) proofs;

that is, Cutting Planes (CP) proofs with coefficients

up to Poly(n). We use the well known lower bounds
fc)r monotone complexity to prove an exponential lower
bound for the length of CP* proofs, for a family of tau-
tologies baaed on the clique function. Because Resolu-
tion is a special case of small-weight CP, our method
also gives a new and simpler exponential lower bound
fcn Resolution.

We also prove the following two theorems : (1) Tree-
like CP’ proofs cannot polynomially simulate non-tree-
like CP* proofs. (2) Tree-like CP” proofs and Bounded-
depth-Frege proofs cannot polynomially simulate each
other.

Our proofs also work for some generalizations of the
C’P* proof system. In particular, they work for CP*

with a deduction rule, and also for any proof system
that allows any formula with small communication com-
plexity, and any set of sound rules of inference.

1 Introduction

One of the most fundamental questions in propositional
proof theory is: how strong is a particular proof system?
In particular, one tries to give examples of tautologies
with no short roofs in the system. It is believed that for

Yany conceivab e proof system there exist tautologies (of

size n), with no proofs of size polynomial in n. However,
proving. this for every conceivable system is equivalent
tc) proving that NP # Co – NP [CR], which is an ex-
tremely hard task. Therefore, many researchers have
concentrated on proving the existence of hard tautolo-

!
i.es (i.e. tautologies with no polynomial size proofs),
c,r specific natural classes of proof systems. TWO of the
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biggest open problems in the area are to prove the ex-
istence of hard tautologies for Frege systems, and for
extended Frege systems. So far, however, such lower
bounds have been given only for weaker systems.

The Cutting Planes (CP) proof system, first intro-

duced in [CCT], is a sound and complete refutation sys-
tem for proving the unsatisfiability of propositional for-
mulas in conjunctive normal form. It is based on show-
ing that there are no integral solutions for a family of
linear inequalities associated with an unsatisfiable CNF

formula. The Cutting Planes technique was first intro-
duced in [Gem] in the context of linear programming,

and shown in [Chv] to be a canonical way of proving
that every integral solution of a given system of linear
inequalities satisfies another given inequality. In brief, a
CP refutation is a sequence of linear inequalities, where
the initial inequalities are those that we are trying to
prove unsatisfiable, the final inequality is the inequality
O ~ 1, and all intermediate inequalities follow from one
or two previous ones by a sound rule of inference.

Besides being a very natural proof system, CP ap-
pears to be relatively powerful. First, it is a natural en-

!eralization of Resolution. Secondly, the propositiona pi-
geonhole principle (PHP) has a very simple polynomial-

[
size CP proof CCT]. This is interesting because PHP

is the canonica hard tautology that haa been previously
used to rove lower bounds for Resolution aa well aa for

#bounde -depth Frege systems (e.g., [H , [BIKPPW]).

)Since PHP haa a short CP proo , CP is strictly
stronger than Resolution (with respect to what can be

proven by polynomial-size proofs). It was shown in G]

Jthat any Frege system can polynomially simulate P,

and therefore CP lies between Resolution and Frege.
Thus? understanding the power of CP is an important
step m order to give lower bounds for Frege systems.

A restriction of CP is the system CP”. CP* proofs
are CP proofs with the sole restriction that all inter-
mediate inequalities are required to have coefficients
bounded in size by Poly(n), where n is the size of the
formula to be proven. CP* still appears to be quite pow-
erful: Resolution is still a special case of CP*, where the
coefficients have size 0(1), and PHP still has small CP*
proofs. In fact, aa far as we know, all the CP proofs ever
considered are actually CP* proofs!

The main result of this paper is an exponential lower
bound on the size of CP” proofs. Our family of unsatisfi-
able formulas are based on the clique function. To prove
our lower bound, we show how to extract a small mono-
tone circuit computing clique on many inputs, from a
small CP* proof. The lower bound for CP* then fol-
lows usin known monotone lower bounds for the clique

ffunction Razb 1], [AB]. This lower bound method can

be viewed as an extension of the method in [IPU]. 1 We
also show how our lower bound method can be applied

1We have recently learned that the same methods were used
independently and before us by Razborov [Razb2], to prove that
certain statements are not provable in some fragments of bounded
arithmetic.
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to obtain exponential lower bounds for several general-
izations of CP*. In particular, our method works for any
propositional proof system consisting of a sound family
of inference rules,. each of which takes a constant number
of formulas to a single formula, and such that intermedi-
ate formulas have small communication complexity. Our
method also works for a generalization of CP* where we
allow a form of the deduction rule.

Our second result is a separation between tree-like
CP* and non-tree-like (2’ P’.(A tree-like proof is a proof

where each intermediate formula is used only once).

We also obtain separations between tree-like CP* and
bounded-depth Fre e systems. The family of formulas

fused in the latter ower bounds are based on the st-
connectivity function.

This paper is organized as follows. In Section 2, we
give some preliminary definitions and notation. In Sec-
tion 3, we give an informal discussion of our method
and the general idea of the proof. Section 4 contains
the main result, the exponential lower bound for small-

%“
wei ht CP proofs, as well as several generalizations
of t 1s lower bound for stronger systems. In Section
5 we study a particular tautology based on the st-
connectivity function, and show that it has short CP*

proofs but requires large tree-like CP* proofs. As a
corollary of this theorem combined with known results,
we obtain several separation results. Finally we con-
clude in Section 6 with a short discussion of a general
interpolation theorem that follows from this work and
its connection with recent works of Razborov and Kra-
jicek.

2 Definitions and Background

2.1 Cutting Planes

We will first describe the CP refutation system for CNF

formulas. For a more complete treatment see [C, G,

CCT] .
CP formulas in the variables ZI, . . . . Za are inequali-

ties of the form

&Zi > A

i=l

where al, . . .. an. and A are integral constants, and
*I, ..., Xn are integral variables. We think of the for-
mula as a linear inequality in the variables Z1, . . . . Zn.
Notice that in this definition of a CP formula, the con-
stant A always appears at the right hand side of the
inequality, and the variables always appear in the same
order. To simplify notation we will sometimes write
constants on both sides of the inequality, and change
the order of variables. Also, sometimes we will write

A <.x~=l ai~: .
Given an mltlal family of CP formulas in the vari-

ables xl,..., Xn, the CP system has four sound rules of
reference :

1.

2.

Basic algebraic simplifications like deleting (or

adding) terms of the form Ozi.

Addition of two inequalities: if ~~=1 aix~ > A, and

~~=1 b;xi > B we can derive

~(ai + bi)zi > (A + B)

i=l

3.

4.

M#tiplication of an inequality by an integer: if

z~=l six, 2 A, and c E Z, we can derive

i=l

Division of an inequality by an inte~er: if

~~r;eaixi > A, aid c 6 Z-divides ~ach ai, we can

[1
e:’i~ $
‘i=l

As introduced in [CCT , the CP system can be used as
a refutation system for 2 NF formulas : Given a CNF

formula ~, in the variables Z1, . . . . Zn, we think of the
variables Z1, . . . . Xn as integers that can et the values

$0, or 1, where O represents FALSE, an 1 represents
TRUE. We first translate the formula ~ into a family
of CP formulas in the following way: a clause

~ .j, V ~ ~Z[,

i=l i=l

is translated into the CP formula

5%, +5(1 - z,,) >1—
i=l i=l

The family, E(f , of C’P formulas corresponding to the
CNF formula, ) is the set of CP formulas we obtain by
translating each ‘clause in f, together with the inequali-
ties ~i >0, and –xi > –1, for all 1< i< n.

A CP refutation off (or E(f)) is a CP proof for the

inequality O > 1, from the initial family E(f). It was

proved in [CCT] that CP is a sound and complete refu-
t ation system for CNF formulas. Clearly, by looking at

mf, Cp is a sound and complete proof system for DN F
formulas. This result can also be derived by noticing
that CP is in fact a generalization of Resolution.

Definition The length of a CP proof is the number of
formulas in it. The size of the proof is the number of
binary symbols needed to write down the proof.

It was shown in [CCT] that any CP proof can be con-
verted into a new one, such that the lengths of all the
coefficients in the new proof, and the length of the new

proof, are all polynomially bounded in the length of the
original proof. Therefore without loss of generality, we
can assume that the length and the size of a CP roof

“{are polynomially equivalent, and will not distingms be-
tween them in this paper.

How small can we assume that the coefficients in the
proof are ? By [CCT], we can assume without loss of
generality that all of the coefficients are smaller than

2P0@f(l, where / is the length of the proof. Can we
assume that all the coefficients are even smaller ? It
is still open whether coefficients smaller than 0(2n), or

0(2nc), or PoJy(n) (where n is the number of variables)
are enough.

Definition A refutation of a formula ~, in small-weight
Cuttin Planes (CP*) is a CP refutation of E( f ) with

ithe ad itional requirement that all the coefficients in-
volved are of size Poly(n), where n is the size off.
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CP* is in fact a complete refutation system for CNF
formulas, simply because it is a generalization of Reso-
lution. It is still not known whether CP* can polyno-
mially simulate CP. Although we tend to believe that
C’P is stronger,, we believe that CP proofs with large co-
efficients are hl hly non-intuitive. Therefore, in a way,

?)CP* captures at least the intuitive part of CP. We
also believe that our hard tautologies for CP* will turn
out to be hard for CP as well.

To any CP proof (or CP* proof) corresponds a stan-
dard directed acyclic raph: the nodes of the graph cor-

frespond to the formu aa in the proof. An edge from a
formula L’ to a formula L exists if and only if L’ was
directly used to derive L. Clearly the in-degree of each
node, L, is 0,1, or 2, as L can be one of the initial formu-
las, or can be derived by one or two previous formulas.
If the out-degree of all of the nodes are at most 1, the
graph is a tree, and the proof is called tree-like. Thus
a tree-like proof is one where every formula is used at
most once. (If one wants to construct a tree-like proof
from a non-tree-like proof, one might have to re-derive
a formula each time the formula is used).

2.2 Generalized Cutting Planes systems

In this section we define more general abstract systems
that our lower bound applies to.

Let S be an arbitrary refutation system, and let ~ be
a set of formulas that we are trying to refute. Then the
deduction rule for S allows the prover to query an arbi-
trary allowable formula L, and then the proof splits into
two halves, where the first half is dedicated to refuting
~ V {L}, and the second half is dedicated to refuting

f V {lL}. We will now formally define CP with Deduc-
t ion.

Definition Let ~ be a set of unsatisfiable linear inequal-
ities. P is a refutation of ~ in CP with Deduction if
and only if P consists of the following two parts:

1. The first part, A, is a set of threshold formulas ar-
ranged in a balanced binary tree, where each edge
of the tree is labeled with exactly one threshold for-
mula in A,. and such that if el and e2 are the two
edges Ieadmg out of a vertex, then the threshold
formula associated with e 1 must be the negation of
the threshold formula associated with e2. Let the
set of all sim le paths from root to leaf in the tree be

/’denoted by pl, . . . pq}, and let the set of associated

formulas along path pi be denoted by Form(pi).

2. The second part, B, consists of q separate CP
proofs, BI, . . . . Bq, where Bi is a CP refutation

of f u Form(pi).

Definition A proof P in CP* with Deduction is defined
aa in the definition of CP with Deduction, except that
now all of the formulas in P are required to have small
coefficients.

We will now define a eneralization of CP” where the
%formulas are allowed to e more expressive.

Definition Let f be a boolean formula over underly-
ing variables Z1, ... Zn. Let S1, S2 be a fixed partition
of {Xl, . . . Xn} into two disjoint sets. The communication

com lexity of f with respect to S1 and S2 is the stan-
1dar deterministic communication complexity required

to compute f, when Player I is given a truth assignment

of the variables in S:, and Player II is given a truth ass-
ignment of the variables in S2. The communication
complexity of f is the worst-case deterministic commu-
nication complexity of f with respect to S1 and S2, over
all partitions S1 ,S2 of the variables. The e-probabilistic
communication complexity of f is defined in the same
maner.

The threshold formulas of CP are a special case of
formulas with small communication complexity. Any
small-weight threshold function has a small determinis-
tic communication complexity protocol for any partition
of the input, and any high-weight threshold function
haa a small c-probabilistic communication complexity
protocol for any partition of the input. The following
generalizations of CP* and CP allow us to work with
more general formulas that have smalll communication
complexity (c-probabilistic communication complexity),
and more general sets of rules of inference.

Definition Let f be a set of boolean formulas using
n distinct variables. Let P be a sequence of boolean
formulas. P is a Generalized CP* refutation of f if
and only if P satisfies the following conditions:

1. Each formula in P has communication complexity
of O(po/y(log n));

2. Each formula in P is either from j’, or follows from
one or two previous formulas by a sound inference

i
that is] h follows from gl and g2 by a sound in-
erence lf any truth assignment that falsifies h also

falsifies either gl or gz);

3. The final formula in P is unsatisfiable

If only conditions 2 and 3 hold we will call P an Infer-
ence refutation of f.

Definition P is a Generalized CP refutation off if
and only if every formula of P haa c-probabilistic com-
munication complexity O(poly(log n)), and conditions 2
and 3 above also hold.

In Section 4, we will prove lower bounds for both of
the above generalizations of Cutting Planes. We also
note here that our lower bounds in Section 4 also hold
in the more general setting where the inferences take
up to some fixed constant number of formulas to a sin-
gle formula (in the above definition, we have fixed the

constant to be 2).

3 Methods and Results

In this paper, we will use the well-known lower bounds
for monotone complexity Razb 1, AB] to prove lower

Jbounds for the length of P* proofs. Our result is in-
spired by the result of [IPU], who prove an exponential
lower bound for the length of tree-like CP proofs, for

some tautology. Below we give the main ideas of their
proof.

Given a monotone boolean function, ~, a minterm x
of f, and a maxterm y of f, there must be at least
one coordinate z, such that Zi = 1, and Vi = O. This
simple fact inspired [KW] to define the following com-
munication search problem: Assume that A is a subset
of minterms of a monotone boolean funl:tion f, and B is

a subset of maxterms of the same function f. Player I
gets a minterm z c A, Player II gets a maxterm y E B,
and their goal is to find a coordinate i, with Zi = 1 and
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Yi = O (the sets A and B are known to both players).
Karchmer and Wigderson [KW] proved that if A is the
set of all the minterms of ~, and B is the set of all the
maxterms of f, then the communication complexity of
the corresponding search problem is exactly equal to the
monotone circuit depth of the function f.

Inspired by [KW]’s result, [IPU] constructed tautolo-

Hgies T A, B for particular sets
press t e fo lowing:

n

ZEA, yEB+V(Xi

‘i=l

A,B c {O, I}n, that ex-

=lAy~= O).

By simple reductions, [IPU] showed how in some cases:

a tree-like CP* (CP) proof for T(A, B) can be cheaply

translated into a deterministic (probabilistic) communi-
cation complexity protocol for the corresponding com-
munication search problem. These connections enabled
them to use known lower bounds for communication
search problems to prove lower bounds on the length
of tree-like CP (or CP* ) proofs.

In particular, IPU took f to be the monotone~1
boolean function t at interprets the inputs as an undi-
rected graph of n = 3k vertices, and outputs 1 if and
only if the graph cent ains a mat thing of size k. They
took the sets Al B of minterms and maxterms that were
previously considered in [RW2].

In this paper we will also use this method with minor
modifications to give a tree-like CP* lower bound for an
st-connectivity tautology. This result combined with a
new upper bound will give us a separation between CP*
and tree-like CP*.

Can the same be done for non-tree-like proofs? The
main result of this paper generalizes the result of [IPU]
to the non-tree-like case. We show directly how to trans-
late any CP* proof for T(A, B) into a monotone boolean
circuit that separates the sets A and B.

In this paper, we will consider the monotone boolean
function f that interprets the inputs as a non-directed

graph of n = kl 5 vertices, and outputs 1 if and only if
the graph ~ontains a clique of size k. We take the sets
A, B of mmterms and maxterms of f that were previ-
ously considered in [Razb 1, AB]. We form the tautology

T(A, B) as before. Then using our main result together
with known lower bounds for the monotone complex-

)
it y of the clique function [Razb 1, AB , we obtain ex-

~or T(A,B). We remark that the proof actually works
onential lower bounds for the size o any CP* proof

for coefficients up to 0(2”’). We also remark that we
use the clique-based tautology rather than the tautology
used in [IPU] only because the monotone circuit lower
bounds are stronger for the clique function.

4 Lower bounds for CP*

In this section, we are going to use the lower bound
for the monotone complexity of the clique function
[Razbl, AB] to obtain a lower bound for a certain clique
tautology in small-weights Cutting Planes.

A graph Gz on n vertices is called a k-clique if G.
consists of a sin@e clique of size k, and no other edges.
The graph G= 1s said to be a minterm of the cli ue
function because Go contains a k-~lique, but if any e~
is taken away, this condition is violated. A graph ~

on n vertices is called a (k — 1)-coclique if the vertices
are partitioned into k – 1 sets, and no edges are present

within each set, but all edges are present between the
sets. The graph Gy is a maxterm of the clique function

because GY does not contain a k-clique, but if any edge

is added, then there will be a k-cli ue.

7The lower bound in [Razbl, AB is very strong. It
says that for some k, every monotone circuit separating
k-cliques from (k – 1)-cocliques requires exponential size.

Definition A monotone boolean function ~. ,k is called

a clique separator if it interprets the inputs as the
edges of a graph on n vertices, and outputs 1 on an input
representing a k-clique, and O on an input representing
a (k — 1)-coclique.

Theorem 1 [Razbl, AB] For k = n213, any monotone
boolean circuit that computes a clique separator function

Q~,k requires szze Q(2i~/ ‘Og~)’/3).

Informally, our version of the clique rinci le states

(Ythat if Gz is a k-clique, and if GV is a k – 1 -coclique

then there must be an edge present in GZ that is absent
in GY. We will formalize the negation of the k-clique

principle on graphs with n vertices by the propositional
formula ~CLIQU&,k. The underlying variables are

z={zi,jll<i<k, l<j< n}, andy={yi,jll<

i < k – 1, 1 < j .< n}. The matrix z describes the graph
G= in the following way: the variable z~,j is 1 if and only

‘th element of the k-clique, and O otherwise.if j is the ~
Similarly, y describes the graph Gy, where Yj,j is 1 iff

vertex j is in set i, and O otherwise.
Let us note here that every clique and coclique have

several different matrix representations. We will often
use the phrase “in some matrix representation”.

The unsatisfiable formula ~CLIQUEn ,k is the con-

junction of the following clauses. The clauses in (l)-(3)
describe the condition that z must be a matrix that
describes a k-clique. The clauses in (4)-(5) say that y

must be a matrix that describes a (k – 1)-coclique. The

clauses in (6) say that if there is an edge from vertex i
to vertex j in GZ, then i and j cannot be in the same
group in GY.

l.zJ,l V. Vzl,nforalll,l< /<k

2. Tzi,i. v -zc[,j for all i, j, 1 such that 1 <1 < k and

l<z, j<n, i#j

3. 7X1,i V-xll,i for all i, 1,1’ such that 1<1,1’< k and

I<i<n, l+l’

4. yl,i V ...Vyk_~,~ for all i such that 1< i < n

5. 7yI,~V~y~I,~ for all i,l,l’ such that 1<1,1’< (k–1)

andl<i<n, l#lt

6. YXC,i V-xl,,j VTY~,~ V-IY~,j for all i, j, 1,1’, tsuch that

l<l~l’$ k,l<t<(k– l)andl<i, j <n, l#l’
and z+].

To prove our CP* lower bound> we are going
to assume we have a polynomial size refutation of

~CLIQU&,k. From the existence of such a refutation
we will extract a monotone circuit of polynomial size

computing a function Qn,k, as above. By the previous

theorem this is a contradiction, and we have to con-
clude that there cannot be a polynomial size refutation
of ~CLI@7En,k.
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In the next theorem we will show how to extract

monotone circuits from refutations. Let us note here
that while the representation ofgraphs in the tautology

uses a matrix encoding, the input variables, ei,j, of the

circuit represent (in the standard way) possible edges in
the raphs. So we will use different representations of

igrap sdepending on whether wearein theproofcontext
or in the circuit context. Also, we will use capital letters

to refer to O-1 truth assignments, and lowercase letters
to refer to propositional variables and input variables to
circuits.

4.1 Bounds for Standard CP*

Theorem 2 Given any Cutting Planes refutation of

7CLIQUEn,k, we can build a monotone circuit of sgze

O(m ~S6), for some clique separator function Qn,k. Here

m is the length of the refutation, and s is the maximum
absolute value that ~ ai,3Xi,j and ~ bi,jYi,j can take

throughout the refutation (the maximum is taken over ail

the formdas ~ at,jxi,j + ~ bi,jy,,j > c of the refutation,

and over all the O-1 truth assignments for x, y).

Proof We will give here a more general proof that dis-
regards the actual rules of inference, and only assumes
that they are all sound. We remark that for the actual
rules of inference of CP, one can prove that the circuit

is of size O(m . S4).

We build the circuit by levels, Each line (formula) in
the refutation gives rise to a different level of circuits.
At the level corresponding to line L, the circuit only
distinguishes pairs of cliques and cochques that in some
matrix represent ation falsify the line L. The last line
is O > 1. Since every pair of clique and coclique in
matrix represent ation falsifies it, the circuit at that level
will compute the clique function on all k-cliques and all
(k – 1)-cocliques.

For any line

L : ~ ai,jxi,j +
x bi,jyi,j > c

in the refutation, and any pair of integers (M, N) such

that M+ N < c, we will build a monotone circuit C~,~.

To build the circuits Cfi,~, we will use circuits Cfi,,N,

from previous levels. Let (~, J@ be a pair of truth as-

signments for the input variables e~,j (of the circuits that

we are building), such that ~ represents a k-clique, and

~ represents a (k – 1)-coclique. The circuits C’&,~ will

satisfy the following :

1. If some matrix representation (~, ~) of (~, ~)

satisfies ~ ai,jXi,j = M, and ~ bi,jYi,j = N then

C~,~ on input fi gives output 1 and C’~,~ on input

W gives output O.

It will be simpler to disregard circuits C&,~,

for Al, N that cannot be achieved as the sums

Zai,jXi,j = M and ~bi,j~,j = N.

2. The extra work that is needed to build all the cir-
cuits C&,~ (for all M, N), from all the circuits at

previous levels is 0(s6).

Clearly, for the last line, O <1, the circuit C~O will

compute the clique function on all k-cliques and all (k –

1)-cocliques, and the circuit size will be at most O(m .

0
Assume that L is the l-th formula in the refutation.

We will build the circuits C~,~ by induction on 1. Sup-

pose that for every line, L’, numbered <1 we have the
L’circuits c~l N! . We will now build the circuits for the

i-th line. ‘
Let L be ~ ai,jxi,~ +~ bi,lyi,j > C, and fix M, N such

that &f + N < c. We are going to divide the proof into
cases, depending if L is an axiom, or was derived from
previous formulas.

Case O: L is an axiom of the types 1 – 6.

i
T=the base case, and must occur for 1 = 1 . If

1is of the types 1 – 5, all pairs of clic~ue and coc ique

(~, ~), in any matrix representation, satisfy the line L,

and therefore the circuits C& N are trivial,

If L is of type 6, L is l–~l,i+l–zi,,j+ :l–yt,i+l–yt,j ?

1, or equivalently –Zl,~ – X1,)3 – yt,i - Y,i,j > –3. A pair

(~, @) of clique and coclique falsifies L (in one of their

matrix representations), iff i and j are in the clique and
also i and j are in the same partition in the coclique.
Then we define

Cb2,_~ = Q,j.

As required, Cfi2,_2 outputs 1 on all the cliques with

nodes i and j in the clique, and O on all the cocliques
for which i and j are in the same partition. We only need
one non trivial monotone circuit for L since M = –2,
N = –2 is the only pair of values such that M+N < –3,
that can be achieved.

Case 1: L was derived by a sound rule of inference
from L1, and L2.

Say L1 1S Edi,jxi,j + z es,jyi,j 2 CI and & is

~f~,jx$,j + X9:,jYi)j ? C2.
Let us first define two sets of pairs c)f integers: TM,

and TN. TM is defined by: (Ml, M2 ) E TM iff th~re
exists a clique such that in some matrix representation
.7

A,

Similarly, TN is defined by: (Nl, N2) E ‘TN iff there is a

coclique such that in some matrix representation ~,

~bi,jyi,j = N , ~ei,jyi,j = NI , ~gi,jyi,j = N2

As visual aid, we will form a rectangular grid with
the rows labeled with pairs (A41, M2) IE TM, and the
columns labeled with pairs (NI, IVQ) & TN. The ex-

istence of the entry ((MI, M2 ), (Nl, N2 )) in the grid
means that there exists a pair of clique and coclique

(F, @), with matrix representation (~, ~), such that

~ ai,jxi,j = M, x di,jxi,j = Ml, ~fi,jxi,j = M2,
~bi,jYi,J = N, ~ei~x,j = Nl, and ~~gi,jll,j = N2.

Since M + N < c, (X,?) falsifies L. Ely soundness of

the rule of inference used to derive L, (ii, 1’) has to ei-

ther falsify L1 or L2. Now, if (~, ~) falsifies L1 with

Ml + N1 < c1, by the induction hypothesis we have the

monotone circuit C%, ,~1, that on input ~ gives output
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1, and on input @ gives output O. Then in the entry

((?vfl, Mz), (NI, Nz)) of the grid we write C~l,N1. on

the other hand, if (~, ~) doesn’t falsify L:, then it falsi-
fies L2, with A4z + Nz < cz, by the induction hypothes$

we have the monotone circuit C~z, ~,, that on input V

outputs 1, and on input W outputs O. Then the position

((MI, A42), (NI, Nz)) in the grid gets the circuit C&,,~,.

With the visual aid of the grid, we can now describe

the monotone circuit C~,~ : In each row take the AND

of all the circuits (C~l ,~1”, or C~2,N2) in that row. After

doing that take the OR of all of those ANDs.

Let us show that C~,~ works. Suppose we have a

pair of truth assignments (~, W) where 7 represents a

clique and W represents a coclique, and for some matrix

representation (~, ~) of (~, W), ~ ai,j Xi,j = A4 and

x bi,j~,j = N. We need to show that C~,~ on input

~islandonfiis~:

To et 1 on input V we must get 1 in one of the AND-
fs, so t at the OR is 1. Let Ml be ~ di,jXi)?, and M2 be

~ fi,jXi,j. Then there is a row labeled with (Ml, Ma)

on the grid. Because each circuit in that row gives 1 on

~, their ANDs also gives 1 on F.

To get O on circuit C&,~ with input ~, all the ANDs

have to be O on W. Thus in every AND, there must be a

circuit that on @ is O. Let N1 be ~ ei,jYi,j, and N2 be

~ gi,~~,~. Then there is a column labeled with (Nl, N2)

on the grid. Because each circuit on that column gives

O on fi-, there is a circuit on each row that gives O on

W. Thus all the ANDs will be O on W.
Let us now check the extra work needed to build the

circuits C&,~ for all pairs (M, N). The grid we just

described is of size 0(s4). For a fixed pair (A4, N), we

compute 0(s4) ANDs and afterwards, 0(s2) ORs (we

assume the fanin of all the gates in the circuit is 2).

Also, there are 0(s2) possible pairs. So for all pairs

(M, N), the total extra work for L is 0(s’). ❑

Corollary 3 Let P be a Cutting Planes refutation of

~CLIQUEn,k, with k = n213. For every e < 1/3, if all

the coefficients in all the inequalities in P are smaller

than O(2n’ ), then the length of P is fl(2mC).

Corollary 4 For every ( < 1/3, the unary-
representation-size of any Cutting Planes refutation of

7CLIQUEn,k, with k = n2/3, is 0(2n’ )

4.2 A Separation between Frege Sys-
tems and GP*

The lower bounds given above show that Frege systems
are strictly stronger than CP*. This is because the
clique tautology has a polynomial size Frege proof. Let
us show this. We will do it by reducing ~CLIQUEn ,k

to the negation of the pigeonhole principle. Since Buss
[B] showed that the pigeonhole principle has polynomial

size Frege proofs, CLIQUE. ,k must also have polyno-

mial size Frege proofs.
Let us show now the reduction of ~CLIQUEn ,k to the

negation of the pigeonhole principle. For all i, 1< i < k,

and all j, 1 ~ j s (k – 1), we define

n

Pi,j = v(~i,~ A Vj,t)

1=1

For all i, 1< i < k, Pi,l VP;,2V . . vp~,(k-.l) is obtained

from clauses 1-5. And lPi,j V ~P/,j, for all i, 1, j are

obtained from clauses of type 6.

4.3 Bounds for Generalized Models

The above proof shows how to extract a monotone cir-
cuit from a proof, as long as the rules are sound, and

the formulas are small-weight threshold formulas. With
some modifications, this proof can be generalized to the
setting where formulas have small communication com-
plexity. The idea here is that the grid will now be par-
titioned into rectangles according to the communication
protocol. Because the protocol is short, the number of
rectangles is small, and therefore the final monotone cir-
cuit will have small size. This leads to our main theorem.

Theorem 5 Given any Inference refutation (see sec-

tion 2.2) of 7CLIQUE~,k, we can build a monotone

circuit of size ~ m 23D+1, for some claque separator
function Qn,k. Here m is the length of the refutation,

and D is an upper bound for the communication com-
plexity of all the formulas in the refutation.

Proof Again, we build the circuit by levels. At the level
corresponding to line L, the circuit only distinguishes
pairs of cliques and cocliques that in some matrix rep-
resent ation falsify the line L. The final formula in the
refutation is unsatisfiable. Since every pair of clique and
coclique in matrix representation falsifies i!, the circuit
at that level will compute the clique function on all k-
cliques and all (k – 1)-cocliques.

Give the variables z = {~i,j } to Player I, and the

variables y = {gi,j } to Player II. The communication

complexity of all the functions below is considered in
respect to this particular partition. The communication
complexity of any formula L in the proof (with respect

to this partition) is at most D. Let PL be one fixed
communication protocol for determining the truth value
of L (with communication complexity < D). For the last

line of the refutation which is unsatisfiable), take PL to
\be the trivial protoco .

Let H be the set of all boolean strings of length s D.
We will call H the set of all possible histories. For

the truth assignment ~, ~ (for the variables z, y), define

h~ (~, ~) E H to be the string communicated by PL on

~, ~. We call hL(~, ~); the history of (~, ~). Since
PL can be viewed also as a communication protocol for
the function hL, the communication complexity of the
function LL is at most D.

Clearly, the value of the history h = hL (~, ~) deter-

mines the value of the formula L on (~, ~). We denote

this value by L(h). L(h) is undefined if the history h
cannot be the commumcation strin of the protocol PL.

fIf L(h) is FALSE, we say that the istory h falsifies the

formula L. If L(h) is TRUE, we say that the history h

satisfies the formula L. For the last line-of-the refuta-

tion, since PL is the trivial protocol, hL (X, Y) is always

the empty string, and for the empty string h, L(h) is

FALSE (since the last line is unsatisfiable).
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For any line L in the refutation, and any history
h c H, which falsifies L, we will budd a monotone cir-

cuit C:. To build the circuits C’:, we will use circuits

C’~,’ from previous levels. Let (~, W) be a pair of truth

assignments for the input variables ei,j (of the circuits

that we are building), such that ~ represents a k-clique,

and @ represents a (k – 1)-coclique. The circuits C~

will satisfy the following :

1. If some matrix representation (~, ~) of (~, W)

satisfies h~ (~, ~) = h then C: on input ~ gives

output 1 and C: on input @ gives output O.

2. The extra work that needed to build all the circuits
C~ (for all h), from all the circuits at previous lev-

els, is at most 23D+l.

Clearly, for the last line of the refutation (which is

unsatisfiable), the circuit C: (for the empty string h)

will compute the clique function on all k-cliques and all
(k – 1)-cocliuues. and the circuit size will be at most\ / .,
m .23D+l.

Assume that L is the Lth formula in the refutation.
Again, we will build the circuits C~ by induction on 1.

S;ppose that for every line, L’, nu’rnbered <1 we have

the circuits C~,’ . We will now build the circuits for the

l-th line. As before we divide the proof into two cases:

Case O: L is an axiom of the types 1 – 6.
If =the types 1 – 5, all pairs of clique and coclique

(~, ~), in any matrix representation, satisfy the line L,

and therefore no circuit C: is needed.

If L is of type 6 then a pair (~, @) of clique and co-

clique falsifies L (in one of their matrix representations),
iff i and j are in the clique and also i and j are in the
same part of the coclique. Then we define for all h E H
that falsifies L :

C: = et,j

As required, C~ gives output 1 on all the cliques with

nodes i and j in the clique, and O on all the cocliques
for which i and j are in the same part.

Case 1: L was derived by a sound rule of inference
from L1, and L2.
The proof follows easily from the following lemma:

Lemma 6 Let RX be a set of truth assignments for x,
and RY a set of truth assignments for y. Assume that

euery (J?, ~) G Rx x Ry falsifies Ll and that in the

rectangle R = Rx x RY the function h defined as

has communication complexity d. Then there exists a
monotone circuit CR such that:

1. CR uses the cwcuits {C~/ }, {C:? } (for all h’), plus

2d – 1 extra gates. i.e. the extra work needed to

build CR is 2d – 1.

2. If some matrix representation (X, ?)+of (v, W)

satisjies (~, f) E R then CR on input V gives out-

put 1 and CR on input @ gives output O.

Proof The proof is by induction on d: For d = O,

~ is known at the beginning, i.e hl = hL, (~, ~) ,

hz = hL, (~, ~) are fixed on the rectamgle R. Since
the rectangle R falsifies L, and since L was derived by a
sound rule from L 1, L2, we know that either hl falsifies
L1, or hz falsifies L2. w.1.o.g, hl falsifies .L1. Then the
required circuit is

CR = C;;

Clearly (by the induction hypothesis for C~,’ ) if some

matrix representation (~, 3?) of (7, ti) satisfies

(~, ~) c R then C~; on input ~ gives output 1 and

C~l’ on input W gives output O.

For d >0 we look at the communication protocol for

h, in the rectangle R. We have two cases:
Case 1: Player I sends the first bit: Let RO be the subset
of Rx, where this bit is O, and let RI be the subset of
Rx where this bit is 1. The rectangles R. x RY, and
RI x Ry satisfy the induction hypothesis for d – 1.The
circuit CR in this case will be

CR = CRoxR. v CR, XRY

Clearly, by the induction hypothesis C1t works, and its

size is 2. (2d-1 – 1) + 1 = 2d – 1,, as rec~uired.
Case 2: Player II sends the first bit: Let R. be the subset
of RY, where this bit is O, and let RI be the subset of
RY where this bit is 1. The rectangles Rx x R., and
Rx x R1 satisfy the induction hypothesis for d – 1. The

circuit CR in this case will be

CR = CRxx Ro ACR. xR,

Clearly, by the induction hypothesis Clx works, and its

size is 2. (2d-1 – 1) + 1 = 2d – 1, as required. ❑

A standard argument shows that for a string h, the

set of pairs ~, ~, with the history hl, (~, ~ = h, is
kin fact a rectangle R = Rx x RY. Assume t at h fal-

sifies L. Since the communication complexity of the

function fi(~, ~) = (hL (~, ~), h~,(~?, ?)) is always
i“ “smaller than 2D, the con ltlons of the lemma are satis-

fied with d = 2D. Thus we can use the lemma to build

c:.
Since there are at most 2~+1 possible histories, the

extra work needed to build all the circuits C; is at most
2SD+1. ❑

Corollary 7 Let P be any Inference refutation of

7CLIQUEn,k, with k = n213. For e~~ery f < l/s, if

the commumcation complexity of every formula in P is

smaller than O(n’), then the length of P is Q(2n’).

Corollary 8 For every e < 1/3, If P is a Generalized
CP” refutation of ~CLIQUEn,k then iD must have swe

of Q(2@).

Our lower bound for CP* also holds if we add the
deduction rule:

Theorem 9 Let P be a refutation of -&’LIQUEn,k in

CP” wzth deduction. Then for every e .: 1/3, the length

of P 2s L?(2’’C).
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Proof The proof is by a reduction to the previous corol-
laries. Consider the following abstract system: The for-
mulas of the system are of the type p -+ L, where L is a
CP* formula, and p is a set of CP* formulas. The for-
mula P + L can be concluded from PI + L1, P2 + L2
iff any truth assignment that falsifies p ~ L also falsifies
either pl ~ L1 or p2 + L2 (i.e. any sound inference).
Clearly this general rule is stronger than the following
two simpler rules:

1. If L can be concluded from L1, Lz by any sound
rule then p + L can be concluded from p -+ L1,
p~L2.

2. for any CP* formula L, the formula p ~ O >1 can
be concluded from p V {L} -+ O ~ 1, p V FL} +
0>1.

Therefore this model can simulate CP* with deduc-
tion: We simulate the proofs in part two (of a CP* with

deduction proof ), by using inferences of type 1, and we
finally prove O ~ 1 using inferences of type 2. In the
simulation the set p will be the set of all the formulas
that we assume at some point. Given a proof in CP*
with deduction, we translate it into a proof in the new
system. If the tree of deductions in the original proof is

of size bigger than 0(2n’ ) then we are done. Otherwise,
since the tree is balanced, the size of the set p in each
formula in the translation will be smaller than O(n’).

Now the only thing to see is that this falls into the

%
cate ory of generalized CP*. To see this, one have to
see t at there is a short communication complexity pro-
tocol to decide whether p ~ L (soundness is clear by

definition). This is true, because there is a short proto-
col for each of the formulas in p. So the two players can
find out the value of each formula in p, and the value of
the formula L, and then decide on the value of p -+ L.

The communication complexity of this protocol is O(n”),

for any c < d < 1/3. ❑

5 Separation theorems

Informally, our version of the st-connectivity principle
states that if GC is a graph on n vertices, such that G.
consists of a single path of length 1 connecting vertex s
to vertex t,and if Gy is a graph such that the vertices

are partitioned into two sets (with s in one set and t in

the other), and all edges are present within each set, but
no edges are present between the sets, then there must
be an edge present in G= that is absent in GY. The

f
raph GZ is said to be a minterm of the st-connectivity
unction because GZ contains a path from s to t,but if

any ed e is taken away, this condition is violated. Sim-
%ilarly, t e graph GY is a maxterm of the st-connectivity

function because GY does not contain a path from s to
t,but if any edge is added, then there will be a path
from s to t.

We will formalize the negation of the st-connectivity
principle for length 1 on graphs with n vertices by the

propositional formula -&’TCONN~. The underlying

variables are x = {xi,j I 1 < i ~ 1, 1 < j ~ n}, and

Y = {Yi,j [ i = 1, 2, 1 ~ j s n}. The matrix z describes
the graph Gc in the following way: the variable zi,j is 1

if and only if j is the ith element on the path from s to
t.Similarly, y describes the graph Gv, where Yl,j is 1 H
vertex j is in set 1, and y2,j is 1 iff vertex j is m set 2.

The unsatisfiable formula 7STCONN~ is the con-

junction of the following clauses. The clauses in (l)- 4)
1describe the condition that z must be a matrix that e-

scribes a path of length 1 from vertex 1 (= s) to vertex

n (: t). The clauses in (5)-(7) say that y must be a

J
partltlon of the vertices 1, n] into two groups, where
vertex 1 is in roup 1 an vertex n is in group 2. The

tclauses in (8)- 9) say that if there is an edge from vertex
i to vertex ] in GZ, then i and j cannot be in different
groups in GY.

1.

2.

3.

4.

.5.

6.

7.

8.

9.

21,1; Zf,n

Vj=, $i,k for all i, 1< i <1

lzi,j V m~;,k for all i,j, k such that 1 ~ i ~ i, 1 ~

j,k<nandj+k

mz~,k V ~Xj,k for all i,j, k such that 1 ~ i,j ~ 1,

i#jandl~k<n —

Yl,l; Y2,71; =Y2,1; lYl,n

Yl,i v?J2,i for all i, 1< i ~ n

~yl,~ V lyz,~ for all i, 1< i < n

Txq,i v lXq+I,j v lYl,i v ~yz,j for all q, i, j such that
l~g~b–landl<i,j~n

lXq,i v ~xq+l,j v 7y2,i V ~yl,~ for all q, i, j such that
l~q~l–landl~i,j~n

The st-connectivity tautology described above will be
used to separate CP* from tree-like CP*, and also to
separate bounded-depth Frege from tree-like CP*. First

we will show that STCONN~ has short and natural
bounded-depth Frege proofs. Next we will show that

STCONN~ also has short proofs in CP*. This is not as
obvious as the bounded-depth Fre~e proof, but follows
along similar lines. Lastly, we derive lower bounds for

tree-like CP* proofs of STCONN~, using the method

in [IPU].

5.1 Bounded-depth Frege proofs of

STCONN:

Small size bounded-depth Frege refut a-

tions of lSTCONN~ are quite natural. First, for all
q, 1 ~ q ~ l–l, andalli, j, 1 ~ i,j ~ n, we obtain
from clauses 8 and 9 the formulas:

~~,i A ~q+l,j ~ ((Yl,i A Yl,j) v (Y2,i A Y2,j)).

These formulas express the fact that if there is a path of
length 1 from i to j in Go, then i and j must be in the
same group in GY. Now using these formulas, we can
derive the following formulas for all k, 1 < k ~ n, & # i,

k#j>

(zq,iA zq+l,/c A ~q+z,j) + ((~l,i A Yl,j) v (Yz,i A !h,j)).

The above formulas express the fact that if there is a
path of length 2 from i to j through vertex k in GZ, then
z’ and j must be in the same group in Gy. Combining

these formulas, we then obtain:

(~~,~A~q+z,jA( ~ ‘~+l,k)) ~ ((yl,iAyl,j)V(yz,i Ayz,j))
k=l
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From the above formula together with the initial

clause, V~_l Zq+l ,k (from 2), we can now derive

(~~,i A Xg+2)j) -+ ((Yl,i A Yl,j) V (Y2,i A Y2,j))

This formula expresses the fact that if there is a path of

length 2 from i to j in Gzz then i and j must be in the

same group in Gy. Repeating this argument 1 – 1 times,

we can eventually derive

(zI,~ A z~,n) + (y~,~ Ay~,n) V (y~,~ Ay~,n).

Using the initial clauses in 1, xl,1, zl,~, we then derive

(Yl,l A Yl,~) V (Y2,1 A Y2,~). But now it is easy to derive
false using the initial clauses from 5.

5.2 Small-weight non-tree-like CP
proofs of STCONN~

First we must convert the above clauses expressing

~STCONN~ into inequalities. Although these transla-
tions are simple, we describe them below.

1. Zl,l ~ 1; Zl,n >1

2. ~:slz~,k ~ 1 ‘or all ‘! 1 ~ i S i

3. 1 ~ Zi,j + Zi,Y for all i,j, k such that 1 ~ i ~ 1,

l~j,k~n,~+k

4. 1 ~ Z~,k + Zj,k for all i,j, k such that 1 S i,j < i,

l~k~nandi#j

5. yl,l ~ 1; y2,n ~ 1; o~ yz,l; 0> yl,n

6. yl,j + y2,i ~ 1 for all i such that 1< i ~ n

7. l>yl,~+yz,~foralli,l~i~n

8. 3 ~ Zg,i + z~+l,j + ul,i + Uz,j for all g,i, j, 1<9 S

Z–l, l<i, j<n

9. 3> Zq,i + Zq+l,j + y2,i + Yl,j for all q,i, j, 1<9 S

l–l, l~i, j~n

In addition to the above equations, we also have the
inequalities O ~ xi,j, O s yi,j, yi,j ~ 1 and Xi,j < 1 for

all variables in the formula.
We will now describe a small-weight Cutting Planes

refutation of the above inequalities. For each a, O ~ a ~
1, we will derive the inequalities:

3> X*,~ + X~+~,~ + yl,i + yz,~

for all q, i, k such that g + a ~ 1, 1 ~ ~, k ~ n. Further-

more, the size of these derivations wdl be polynomial,
and the wei hts will all be bounded by a polynomial.

!These formu aa intuitively express the fact that if i and
k are connected by a path of length a in G., then they
must be in the same set in GY. When a = 1 – 1, q = 1,

i=landk=n, we have

3 ~ *1,1 +Zl,n +yl,l +yz,n,

i
which contradicts clauses (1 and (5).

It is thus left to derive t e inequalities: 3 ~ z~,i +

r~+a,~+ yl,~+yz,~, for alla, 1 ~ q+a <1, 1< 2,k~ n.

The base case, when a = 1, are initial inequalities, so

there is nothing to prove. By the induction hypothesis,
we have small-weight, polynomial size derivations for:
3 ~ Z~)~ + z~+a,~ + yl,j + YZ,~, and for 3 > x~+a,k +
z~+a+l,j + yl,k + y2,j, for all 1 < k ~ n. Adding these

two formulas we obtain for each value of k:

6 ~ ~q,i + z~g+a,k + ~q+a+l,j + Yl)i + y2,k + yl,k + Y2,j

Now for each k, adding to the above the initial in-

equality, Yl,k + YZ,I+> 1, we obtain jfor each k (a):

5> hq+a,k + Z, where

Z = ~q,i + ~g+.+l,j’ + Yl,i + ‘Y2,j.

Now separately, we can derive (b): 4> Z from the initial
inequalities 1 > z~,i, 1 > z~+~+l,j, 1 ~ YI,i and 1 Z Y2,~.

Adding (a) and (b) and dividing by 2, we then obtain

for each k, 4> x~+a,k + Z. Adding these n equations

together, one for each k, we obtain

k=l

However, 1 S ~~_l zq+~,k is an initial inequality, and
thus we can add t~is and divide by n tc) obtain the de-
sired inequality 3.> Z.

The above derivation has polynomial siz~, and the
weights have size O(n). Note that our Cuttm Planes

fproof is not tree-like because the intermediate ormulas
talking about paths of len@h a must be u sed many times
in order to generate the mtermediate formulas talking
about paths of length a + 1.

5.3 Lower bounds for small-weight,

tree-like C’P proofs of STC’ONN~

In this section we will prove the following theorem.

Theorem 10 F’or- 1 = nliloo, any tree-like CP” refuta-

tion of -ISTCONN~ requires superpolynornial size.

The above theorem is an application of the method in
[IPU].

Corollary 11 Bounded-depth Frege cannot be
p-simulated by small-weight, tree-lzke Cutting Planes.

Corollary 12 Small-weight Cutting Planes cannot be
p-simulated by small-weight tree-like Cutting Planes.

We remark that it is already known that Cutting
Planes cannot be p-simulated by Bounded-depth Frege,
because the propositional pigeonhole principle has short
CP proofs, but requires exponential-size bounded-depth
Frege proofs. Actually, the short proof of the pigeonhole
principle is in tree-like CP*. This means that Bounded-
depth Frege and tree-like CP* are incomparable.

We will now describe the proof of theorem 10.
The communication complexity problem associated with

STCONN~ is as follows. Let ill. be the set of graphs
on n vertices that contain a Path of length 1 from s to
t and no other edges, and let A4V be the set of graphs

on n vertices that consist of a partition of the vertices
into two sets B* and Bt such that s E B., t E Bt, and
all edges within B~ and within Bt are present and no
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other edges are present. The communication complex-

\
ity problem, Findedge J, n) is: Player I is iven a graph

&Gz E h4Z, and Player I is given a graph ~ c MY, and

they want to find an ed e of GZ which is not present in
GY . f’Let C,(Findedge( , n)) denote the c-probabilistic

communication complexity of the game Findedge(l, n).

Lemma 13 Let P be a tree-like CP” refutation of

~STCONN~ with at most nk lines, for some con-

stant k. Then for e < 1/4, C6(Findedge(l, n)) <

O(log n(log log n)2).

Proof The proof is implicit in [IPU]. The
method described there implies that any CP proof

for -ISTCONN~ gives a probabilistic communication

protocol for the game Findedge(l, n), with complex-

ity O(log rn(log log(sn))2 ), where m is the length of the
proof, and s is an upper bound for the largest coefficient
involved. ❑

To complete the proof of the lower bound, we will need
the following lower bound due to Raz and Wigderson
[RW1] (see also [Raz], and [BL]).

Theorem 14 Let c < 1/4 and let 1 = nl/lOO. Then for

sufficiently large n, Ct(Findedge(l, n)) z Q((log rz)2).

Theorem 10 now follows from the above theorem and
the above lemma.

6 Conclusions

The proofs in this paper are actually instances of a more
general interpolation theorem for small-weight Cutting
Planes (this possibility was brought to our attention by

Jan Krajicek aa well as Russell Impagliazzo, and was re-
cently proved in [K]). This theorem states, roughly, that

if {Ai(~, v), ~i(~, z) \ i < q} are a set of unsatisfiable
clauses with a polynomial-size CP* refutation, and such
that: Ai(z, y) involve variables Z1, . . . Zn and yl, . . . yn

and Bt(x, z) involve variables Zl, . . . Zn and Z1, . . . Zn, then

there exists an “interpolant” formula, C(Z) such that:

C(x) is computable by a polynomial-size circuit, and

C(Z) outputs 1 whenever there exists a y such that all

of the clauses Ai (z, y) are true, and outputs O when-

ever there exists a z such that all of the clauses Bi (z, z)

are true. In special cases, the formula C(X can also be
1shown to be computable by a monotone po ynomial-size

circuit, as is the situation for the tautologies discussed
in this paper. This general interpolation theorem can be
proven using our method and moreover, it can be applied
to extend a result of Razborov [Razb2]. Namely, we can
show that a propositional statement expressing ‘[Satis-
fiability is not computable by polynomial-size boolean
circuits” requires large CP* proofs, assuming a stan-
dard cryptographic assumption.

One obvious open problem is to extend our lower
bound to the Cutting Planes proof system with unre-
stricted weights.
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