
Abstract

Better Methods for Solving Parsimony and Compatibility

Maria Bonet: Mike Steel! Tandy Waxnowf and Shibu Yoosephs

Evolutionary tree reconstruction is a challenging problem
with important applications in Biology and Liiguistics. In
Biology, one of the most promising approaches to tree recon-
struction is to 6nd the “maximum parsimony” tree, while in
Liignistics, the use of the “m&mum compatibility” method
has been very useful. However, these problems are NP-hard,
and current approaches to solving these problems amount to
heuristic searches through the space of possible tree topolo-
gies (a search which can, on large trees, take months to
complete). In this paper, we present a new technique, Up-
timmnl l+ee Refinement, for reconstructing very large trees.
Our technique is motivated by recent experimental studies
which have shown that certain polynomial time methods re-
liably return contractions of the true tree. We study the use
of this technique in solving maximum parsimony and max-
imum compatibility and present both hardness results and
polynomial time algorithms.

l Universidad Politemica de Catalunya, Dept. Lenguages y Sist.
Informaticoa, Jordi Girona Salgado l-3, 03034 Barcelona. Emall:
bonet~lai.upoes. This work was done with support from ESPRIT
20244 ALCOhf-IT.

+Biomathematics Research Ckll-
tre, University of Canterbury, Christchurch, New Zealand. Em&b
m.stcel~math.canterbury.ac.nz. The author would like to thank
the Marsden Fund for supporting his research.

tDepartment of Computer and Information Science. University of
Pennsylvania. Emaib tandyOcentraLcis.upenn.edu. The au-
thor acknowledges the support of NSF through a Young Investiga-
tor award, CCR-9457800. a grant from the program in Linguistics,
SBR-9512092, a David and Lucile Packard Foundation Fellowship in
Science and Engineering, the Penn Research Foundation, and gener-
ous support from Paul Angello.

$DIMACS, Rutgers University, 96 Frelinghuysen Road. Piscat-
away, NJ 08854. Emaib yooseph~dimacs.rutgeutgeR.edu Thii
work was partly supported by a graduate fellowship from the Institute
for Research in Cognitive Science at the University of Pennsylvania
and also by a graduate fellowship from the Program in hlathemat-
its and hfolecular Biology at the University of California at Berkeley,
which is supported by the NSF under grant no. DhIS-9406348. Part of
this work was also supported by a DIhlACS postdoctoral fellowship.

P&ion to make digitayhard copies of all or part of this ma&al for
pmonal or classroom use is granted witbout fe,z provided t&U the wpia
are not mnde or distributed for profit or wmmrrcial advantage, the copy-
right notice, the title oftbe publication and its cia!e appear, and notice is
given that copyright is by permission oftbe ACM, Inc. To copy othenvise,
to republish, to post on servers or to rcdiiiute to Iii requires specific
permission and/or fee.
RECOMB 98 New York NY USA
Oop~Tigllt 1998 o-s9791-976-9l9S13..S5.00

1 Introduction

The task of the systematic biologist is to recover the order of
speciation events that gave rise to the observed species under
investigation. This order of speciation events is represented
in the topology of the evolutionary tree for the species. For
scient.i& as well as information-theoretic reasons, locating
the root, of the evolutionary tree is quite difficult (and even
impossible under certain models of evolution), so that the
primary objective of a phylogenetic method is the recovery
of the unmated version of the tree that gave rise to the taxa.

Many of the popular methods in phylogenetic tree recon-
struction attempt to solve W-hard optimization problems,
and are usually implemented as heuristic searches through
the space of different trees, M&mum parsimony, maximum
compatibility, and mam*mum likelihood are three such op-
timization problems which have been used in biology, but
polynomial time methods, such as neighbor-joining [30],
also exist. By assuming a model of how biomolecular se-
quences evolve, it is possible to explore the performance of
these methods. A recent result by Steel and TufEey [35]
showed that under a certain model of biomolecular sequence
evolution (which is less constrained than what is usually as-
sumed), maximum likelihood and maximum parsimony are
equivalent. On the other hand, there are conditions under
this general model in which these two methods (and indeed,
any method at all [34, 91) are inwnsistent (a method is
said to be inconsistent under a model of evolution if there
are some model trees in that model for which the probabil-
ity that the method will recover the correct tree topology
given infinite length sequences is not 1; see [15]). There
are conditions under which it is possible to guarantee that
the topology of the tree can be recovered (with arbitrarily
high probability, given long enough sequences), but these
conditions are unreasonable with respect to biomolecular
sequences, since they aSSu.me that the sites within the se-
quences evolve identically and independently (the iid as-
sumption). Under the iid assumption, however, it is known
that all “reasonable” distancebased methods are consistent,
that is, each will recover the correct topology given long
enough sequences (j13, 321). For this reason, some statis-
ticians and biologists prefer diitancf+based reconstruction
methods over parsimony-based methods.

However, heuristic methods for solving parsimony con-
tinue to be a major technique used by systematic biologists,
even for large trees (see, for example, 1271, reporting on a

40

parsimony based analysis of a 500 taxon dataset), despite its
computational difliculties and its incons’ktency under some
models of evolution [24, 151. Furthermore, both experi-
mental 129, 231 and analytical studies [13, 5, 3, 141 sug-
gest that the actual sequence length that suflices for the
wxious promising distance based methods to obtain (with
high probability) an accurate topology estimation may be
exceedingly large if the true tree contains significant diver-
gence, even under the Qd assumption. Consequently, al-
though distan~b~ed methods tend to be fast and are prov-
ably consistent under some models of biomolecular sequence
evolution, they may not obtain even approximately correct
reconstructions of the topology of the evolutionary tree, if
that evolutionary tree is very large and contains sign&ant
divergence. On the other hand, heuristic approaches for the
maximum parsimony problem have performed very well in
experimental studies, and often perform significantly bet-
ter than the best polynomial time distance-based methods,
such as neighbor-joining 1301 in reconstruct~mg very large
trees [21,29,28]. For this reason, many important data sets
are analyzed in biology using heuristic parsimony searches.
Unfortnnately these searches can last for months or longer
(see 1271) without necessarily finding the most parsimonious
tree(s). This is partly due to the fact that parsimony is NP-
hard to solve exactly 117,121, and also perhaps due to the
techniques (primarily branch-swapping) that have been used
to search the tree space. Obtaining faster and more accurate
methods for solving parsimony is an important objective in
phylogenetics.

Evolutionary studies in Historical Linguistics similarly
have the prrimary objective of recovering the topology of
the evolutionary tree, and here too the most effective op-
timization problem (the M&mum Compatibility problem)
is NP-hard to solve 17, 11, 311. However, computationally
expensive but exact algorithms exist for the Maximum Com-
patibility problem 11, 2,23, 221 (see [39] for a survey of re-
s&s related to maximum compatibility). The application of
these maximum compatibility algorithms to linguistic data
for the Indo-European family of languages has potentially
resolved conflicts that have troubled the historical l&u.&
tics community for centuries [338,40]. Further studies by the
researchers in this project have indicated that these current
algorithms are not fast enough to handle the more complex
data sets they are encountering in analyzing other langauge
&milks, such as Dmvid~an, and that faster algorithms for
the Maximum Compatibility problem (and the related prob-
lems that apply to polymorphic data 181) need to be devel-
oped (Tandy Wamow~ personal communication).

In this paper, we describe new methods for solving par-
simony and compatibility, and at the same time we present
a new general technique for tree reconstruction. Our meth-
ods and general technique are motivated by a recent exper-
imental study [23], which demonstrated that some fast tree
construction methods return with high frequency a contrac-
tion of the true tree (that is, the reconstructed tree can
be obtained from the true tree by contracting some set of
edges). Consequently, the true tree is a refinement of the
reconstructed tree. We pose and study the Optimal 2%x Re-
finement Problem, and consider this problem specikally for
the maximum parsimony and maximum compatibility opti-
mization criteria Although some of our results are negative,
showing that generally the optimal tree refinement problem
is NP-hard to solve, we also obtain algorithms which will be
eflicient for many of the cases that we may expect to find in
practice. We conclude with open problems.

2 Preliminary material

2.1 Definitions

Let T be a tied leaf-labelled tree, in which the leaves are
labelled by a set S of taxa (species, languages, etc.). Each
species in S is identified with a vector of length k over the
integers, so that S E Zk. Twill also be equipped with labels
in Zk for each of its internal nodes as well. Then the cost
of this internally labelled version of T (denoted by (T,L))
is the total number of times each site changes state in the
tree. Thii may also be calculated as

wst(T,L) = C H(e),
&E(T)

where H(e) is the Hamming distance between the endpoints
of e, i.e. H(e) =]{i : E; # yi}], where e = (z, y). The
parsimony swre of T is then the minimum of wst(T,L),
taken over alI internal labelliigs L of the nodes of T. The
problem of finding the tree with the lowest cost for a given
set of sequences which will label the leaves of the tree is the
ma&mum parsimony problem.

We now define the maximum compatibility problem. As
before, let T be a tree leaf-labelled by S, and let L be an
internal labelliig of the nodes of T, where all labels and
elements in S are drawn from Zk. Now consider a particular
site (index i), and let ri be the number of distinct values at
the leaves for this site. It should be clear that no matter
how the internal nodes of the tree are labelled in L, that the
tree T must contain at least ri - 1 edges on which the ith
site changes state between the endpoints. Any site i which
has the property that on (T, L) it changes exactly ri - 1
times is said to be compatible or convex on (T, L). A site
which is not compatible on T is said to be incompatible. The
number of such sites that are compatible on (T, L) is denoted
by wmpat(T,L). The compatibility score of T is then the
maximum of compat(T, L), as L ranges over all possible ways
of labelling the internal nodes of T. More generally, we will
say that a set C of characters is compatible if there exists
a tree T on which every character in C is compatible. If no
such tree exists, the set C is said to be incompatible.

Ifthe tree T is known, it is straightforward to solve both
of these optimization problems: that is, to find the best
labelling of the internal nodes of T. However, if T is not
known, then the problem is to find the best tree which
is optimal with respect to parsimony or with respect to
compatibility; unfortunately, each of these problems is NP-
hard. Worse, each is NP-hard even for binary (two-state)
sequences [ll, 121. (In the literature, the sites within the
sequences are referred to as “characters”, where a charac-
ter simply a function c mapping the taxa into the set of
character states. Thus, sites within DNA sequences cor-
respond to four-state characters, with the states being the
four nucleotides A,C, T, and G. More generally, we will let
characters be functions from S to 2, the set of integers.)

A tree Tl is said to be a refinement of tree 75, if TZ can
be obtained from TI by contracting some of the edges. As
discussed earlier, experimental studies have suggested that
some methods frequently return contractions of the true
tree. Thii motivates the following problems.

41

Optimal gkee ReEnement with respect to Parsimony:
(OTR-parsimony)
Input: A tree T which is leaf labelled by S (described by a
set C of characters).
Output: A refinement I” of T, such that the cost of T’ is
the least among all refinements of T.

Optimal T&s RefPnement with respect to Compati-
bility: (OTR-compatibility)
Input : A tree T which is Ieaf IabeIled by species from S
(described by a set C of characters).
Output : A ref%tement T’ of T, such that the compatibility
score of T’ is the largest among all refinements of T.

Throughout this paper, we will use the following nota-
tion for the parameters to the problem. We will let S de-
note the set of taxa (whether languages, biological species,
or genes), and we will let C denote the set of characters. We
will let k =]C] and n = IS], and we will use r to denote
the maximum number of states per character- We will use
d to denote the maximum degree of any node in T. Some
of these parameters may in general be expected to be small
on some of the data sets we examine. For example, in Bi-
ology, biomolecular data (such as DNA or RNA sequences)
are typically used to reconstruct trees, and for such data r
is typically 4. When the tree to be retied is significantly
resolved, then d may be quite small, and in general we may
expect d to be not particularly large. On the other hand,
k is the sequence length, and when using biomolecular SE+
quences k can be on the order of hundreds or thousands, and
n may take any number in a range between, say, 10 - 1,000.

A special case of the parsimony and compatibility opti-
mization problems is the perfect phyZogeny problem, which
asks whether a tree exists which has parsimony score c&-i-
1). Such a tree would have every character compatible,
and hence be optimal for both pars~hnony and compatibii-
ity. Thus, parsimony and compatibility are related in their
extreme case. A tree which satisfies this constraint is said
to be a perfect phylogeny. The perfect phylogeny problem is
NP-hard in general, but solvable in P for the various fked-
parameter versions of the problem (i.e. when r, k, or n is
fixed). (See [22,1, 2, 7,31, 251.)

2.2 Preliminary results on OTR-compatibility and OTR-
parsimony

Theorem 1 l OTR-parsimonv and OTR-wmpatibilitv
are solvable in p&nomial Ame when n is boundea~
and both are NP-hard when r = 2 if k, d, and n are
unbounded.

OTR-parsimony is also NP-hard for k = 1 if r,n and
d a~ unbounded.

The OTR-compatibility problem is NP-hard when both
r-24 mid>5 arejixed.

Proof We provide a brief sketch of the results in thii
theorem.

The M&mum Compatibility and Maximum Parsimony
problems are both NP-hard for bii characters (i.e. when
r = 2), so that OTR-parsimony and OTR-compatibility are
both NP-hard for r = 2 (we let T be the n-star). If n
is fixed, then both OTR-parsimony aud OTR-compatibility

become tractable, since an exhaustive search through all the
reffnements of the tree T combined with the computation
of the optimal labellmgs of the tree (using [16, 201) is a
polynomial time algorithm.

We now prove that OTR-parsimony is NP-hard for k =
1, when the degree of the tree, the number of states per
character, and the number of leaves, are all unbounded. The
proof is by a reduction from Vertex Cover which has been
shown to be NF-complete [18]. (In the vertex cover problem,
we have to decide if the given graph G = (V, E) has a subset
Vi c V of size I3 such that for all edges (a, b) E E, at least
oneofaorbisi.uVr.)

Let (G = (V,E),B) be an input to Vertex Cover. The
input to OTR-parsimony is defined as follows. We make
deg(v) copies of each vertex v in V, and these constitute
the species set S. We label these species by the pair (v, e),
so that e = (v,w) for some w. Thus, IS] = 2lEl. There is
one character c defined on S by c(v, e) = 21. Thus c has IV1
states. The topology of the tree T is as follows. T has an
internal node r with]E] neighbors, each labelled by an edge
from G. The node in T labelled by e is adjacent to (v,e)
and (w,e), where e = (v,w). Thus the tree T has 3]E] -I- 1
nodes: an inner node r, a middle ring for the edges from
G (called the ‘edge” vertices), and the outer ring of leaves,
two to each node in the middle ring. We can then show that
G has a Vertex Cover of size B if and only if we can refine
T so that the resultant tree T’ has a parsimony score of at
most B - 1 + /El.

We now prove that the version of OTR-compatibility for
r = 4 and d = 5 is NP-hard. The reduction is from the NP-
Complete problem, Ekact Cover by bSets [18]. (The input
to the Exact Cover bv 3-Sets uroblem consists of a set X =
{21,22, ...I z3q) and a set S = (Yr, Ys, .., Ym} where each
K E S is a three-element subset of X. The nroblem is to
de&de is there exist a subset S’ E S such that b%ssrYi = X
and IS’] = a.) We wilI consider the version of this problem
in which each element 2i E X appears in at most three
elements of S. This version is also known to be NP-complete
WI-

Let I be an instance of the Ekact Cover by bSets prob-
lem. We will construct an instance I’ of the OTR-compatibility
problem as follows: The tree T will have the topology as
shown in Figure 1.

Figure 1: TopoIogy of tree T

The idea is to have each element of X correspond to an
intend node of T. Thus T has 1x1, or 3q, internal nodes.
Each internal node vi (corresponding to eIement z:i E X)
has 3 leave incident on it. Thus the total number of species
iu I’ is 31x1, or 9q. We will use sits:, sf to denote the three
species adjacent to the internal node vi in T. Also, each
element of S will have a character that corresponds to it.
Thus we will have m characters in the character set of I’.
We will use C = {slyI is an element of S} to denote the set
of characters.

42

Each cl E C will be a4-state character with states 0, 1,2,3,
and is such that for each i, either cafe) = cl($) = cl($) =
3, or two of the species in the set {si, ST, $3 will have state
3 and the other species will have state 0,l or 2. We will
now describe how the states are assigned to the species.
Let I& = {zi,, 2i2,zj3}. Now, for all i $! (ir , ia, is}, set
cl,(si) = q (si) = c~,(s~) = 3. Let x;r also appear in Yl,
and Y&- We will describe how to set the character states
for the characters czr , cl2 and cls on the species sir, sh , sh.
Each of the three characters will have the state 3 on two
of the species and one of either O,l, or 2, whichever has
been unused before, on the third species. Without loss of
!Perality, assume that for yr, we have not used any of
the states 0,l or 2 earlier. Similarly, for q,, suppose we
have already used state 0 earlier and for c13, we have al-
ready used states 0 and 1 earlier for some species. For the
species s& , .& , sh , we will use states O,l, and 2 respec-
tively for cur, CI~, and c13- The setting will be as follows
: c&J = cz&l> = O,CZ&~) = 3,cf&r) = c&J =
1, Q&) = 3,c&r) = c&r) = 2,c&&) = 3.

We can show that the tree T has a refinement l” in which
q characters are compatible if and only if the instance I has
an exact cover, ie. there exist a subset S’ c S such that
UEEStYi = X and IS’] = 4. B

One of the results in Theorem 1 is the obvious simple
exhanstive search algorithm through all topologies. Since
we will use that algorithm in a later section, we give it here:

Algorithm f: Given T, simply examine each refinement
and compute its optimal labelling Using Fitch-Hart&n [16,
201. This uses O((2d - 3)!!)dh~(d-‘)nkr) time, for a tree
of height h, degree d, and having n 5 dh leaves, where
(2d-3)!!= (2d-3)[2d-5)(2d-7)...3.

3 OTR-parsimony

3.1 Basic terminology

In this section we present three other aIgoritbms for OTR-
parsimony. Algorithm 2 is an exact algorithm, Algorithm
3 is a 2-approximation, and Algorithm 4 is a Polynomial
Time Approximation Scheme (PTAS). All these algorithms
share a common structure and are based upon similar ideas,
although the PTAS draws from ideas in these algorithms
and uses Algorithm 1 to solve small problems exactly. We
will describe in some detail the method for Algorithm 2,
but due to space constraints, we will let the reader infer
the implementation details for the related algorithms and
the PTAS by analogy. Without loss of generality, we will
assume that the input to the OTR-parsiony problem is a
rooted tree. We begin with some terminology.

D&&ion 1 We &ZZ let [rlk denote the set ofk-tuples over
w,---, r}; thus each element of [r]” denotes a possible
Iabd for an internal node in a refinement T’, and the Ieaves
of T are Zabelkd by elements of [r]“. For x E V(T), we
denote by T, the subtree ofT rooted at x. Since T is rooted,
for T’ a refinement ofT we can define a mapping from V(T)
to V(T’) as follows. For each node v E V(T), let S, be the
set OJ lenves in T,; we then associate to v the node v’ E
V(T’) defined lzy v’ = Ica~I (S,). We will call this mapping

from V(T) to V(T’) the canonical mapping, and denote
by v’ the image of v in T’ under the canonical mapping.
Note Mat this natural mapping is injectiue. Given a node
v E V(T) with children VI, ~2,. . . , v, (p 5 d), let F+(v)
denote the minimal subtree of T’ containing the node set
Cv',(Pt1)',(212)1,-.-,(21p)'}.

3.2 Algorithm 2: Exact algorithm for OTR-parsimony

Algorithm 2: This algorithm uses dynamic programming
to compute an optimal refinement (with respect to parsi-
mony) for each subtree rooted at each node in T for each
possible label at the node. For each 3: E V(T), and for each
vector s E [rlkr we will compute a most parsimonious tree
T(x, s) and its parsimony score co&(x, s) := cost(T(q, s))
subject to the constraints that x’ (the image of z in T(z, s)
under the canonical mapping) is labelled s and T(x, s) is a
refinement of T,. This computation is made from the leaves
up-

Suppose we have computed T(x,s) and cost(x,s) for
each s E [rlk and each node x below a specific node y,
and we now wish to compute T(y, s) and cost(y, s) for each
s E [f-l'. Let yl,y2 , . . . , yp (where p 5 d) be the children
of y. We seek an unknown rooted tree T(y, s) refining Ty,
and a labelling L of T(y,s) by elements in [@ so as to
minimize the parsimony score. Given such a tree T(y,s)
and its optimal internal labelling L, we can define Foci+,
(see Definition 1) and the set A(y,s) of labels assigned to
the nodes in FTC,,,)(~) by L. It is clear that the parsi-
mony score of T(y,s) given L is the sum of the parsimony
score of FT(~,~)(~) given the labels in A(y,s), summed to-
gether with the parsimony costs of the p subtrees rooted
at (MI’, (~2)‘~ - . . , (v~)‘. Two observations about this cost
now follow. The parsimony score of F~c+~)(y) given A(y, s)
is simply the cost of a minimum sp anmng tree (MST) on
A(y, s), and the selection of labels for the (yi)’ can be made
arbitrarily within the set A(y,s). Hence, the parsimony
score of T(y,s) given the label set A(y,s) for FT(,,~)(~)
equals cost(MST(A(y, s)) + CiC1..., min{cost(y~, a) : a E

A(Y, 41.

Since the label set A(y,s) can be any subset of size at
most 2d - 2 within [r]“, it follows that cost(y, s) =

min~{cost(MST(A)) + c min{cost(yi, a) : a E A}},
i=l...p

where A ranges over the set of subsets of [r]’ of size at
most 2d - 2. Call these sets A local label sets. Note that
the values cost(yi, a) have already been computed, since we
proceed from the bottom up. This suggests the following
algorithm:
Stage 1: Initialize cost(y,a) = IX (or some large enough
value) for each u E [rlk and y E V(T). For all (2, y} c

[rlk, compute H(z,y). For all local label sets A compute a
minimum spanning tree MST(A) and its cost.
Stage 2: Proceeding from the leaves upward towards the
root, process each node v as follows:
IfvisaleafTHEN

cost(v, s) = 0 if v is labelled by s, else cost(v, s) = co
(or some large enough value)

43

T(v, s) = v

ELSE

For each local label set A and each y E V(T), de&e
Cost(y, A) to be the cost of the most parsimonious
refinement of T’ such that A(y,s) = A. We use the
discussion above to compute Cost& A). The MST
of A and the selection of labels so as to mimmise the
cost defines a refinement of (the unrooted form of) Ty,
which we denote by T&d). Note that the choice of
label for the root of T(y,d) can be any element in
A, without increasimg the parsimony score. For each
a E A, if Cost(y,A) < cost(y,a) then cost(y,a) t
Cost(y, A).

Stage 3: To compute the cost of the optimal refinement,
find the minimum of cost(root,z) where CC E [rlk. At the
end, given the optimal cost achievable for the entire tree T,
we back&a& to reconstruct one of the most parsimonious
trees.

Theorem 2 The optimal refinement of a tree with n leaves
labelled by elements of [r]’ and degree bound d can be wm-
puted in O(nrk(2d-2) + kr2k) time.

3.3 Algorithm 3: 2-Approximating OTR-Parsimony

We present a 2-a~proxlmation algorithm for OTR with run-
ning time O(nd+ +n2k). The theorem which shows that this
approximation algorithm achieves a Zapproximation ratio is
based upon results in [36], which we now summarize.

Assume T is rooted and semi-labelled by elements of
S E 2”. We now use some techniques and ideas, with ap-
propriate extensions to this problem, Tom [36]. We define
a lifted labelling of a tree T to be an assignment of labels to
the internal nodes of T such that for each node v in T, the
label for v is drawn (i.e. lifted) from the set of labels of its
children. (Our terminology dlfks from that in [36], in which
a lifted labelling is called a lifted tnz) Since in the OTR
problem, we simultaueously seek a refinement as well as a
labelliig, we now extend the definition of a lifted labelling
as follows. We say that T’ is a lifted labelled-refinement
of T if T’ refines T, and for each internal node v in T’, the
label for v is drawn from the labels of its children We now
return to the results in [36]:

Theorem 3 [l+om [36]]: For any tree T and any scoring
function on pairwise alignments which satisfies the triangle
inequality, there is a lifted labelling of cost no more #an
twice the cost of an optimal tree alignment.

Theorem 4 Let T be an arbitrary tree leaf-labelled by ele-
ments of]rJk. Then there eaists a lified labelled refinement
of T of cost at most twice the cost of the optimal refinement.

Proof. Note that the Hamming distance between two se-
quences is a scoring function on pairs of sequences, in which
deletions or insertions have a very large cost, and any sub-
stitution has the same cost as any other. Consequently, we

can apply Theorem 3. Let T’ be the optimal refinement for
T; hence, each node in T’ is labelled by elements of [rJk, aud
T’ refines T. If we consider T’ as a semi&belled tree, then
by Theorem 3, there exists a lifted labelliug of T’ yielding
a Zapproximation for the optimal tree alignment problem
on T. T’ with this lifted labelling of T’ is a lifted labelled
refinement of T with parsimony score at most twice that of
the optimal. 1

Thus, to Zapproximate the optimal refiuement of T, we
find an optimal lifted labelled refinement of T. A straight-
forward modification to Algorithm 2 gives an algorithm for
finding an optimal refinement of T which will consider only
labels from the original set S, and hence obtain a refinement
which is at least as good as the optimal lifted labelliig re-
finement of T. The only changes that need be considered
are the possible local label sets, since in this case A c 5’. A
straightforward analysis of the running time of this approach
shows the following:

Theorem 5 We can obtain a 2-apfmximation to the OTR-
parsimony problem in O(ndf’ + n k) time.

3.4 A PTAS:

It is also possible to modify the approximation scheme given
in [36] (and reanalyzed in [37]) to obtain an approximation
scheme for the OTR.-parsimony. Due to space constraints,
we provide the following brief description.

Definition 2 Let T be a rooted tree with leaves labelled by
finite sequences, and let X be a subset of V(T) containing
the leaves and the root of T. For v E X, a X-child of v
is a node w E X in the subtree of T rooted at v such that
the internal nodes on the path from v to w in T are not
also in X. A X-lifted labelling of T is a labelling of the
internal nodes of T such that the label for each node in X
is dmwn from its X-children. A b-family for a tree T
isasetV={Vo,I% ,..., V&-I} of subsets of V(T) such that
x:-nI$ = {root(T)}U&(T) V&j, i # j, where L(T) indicates
the leaves of T.

Theorem 6 Let V = {Va, VI,. . . , Vb-1) be a b-family for a
tree T, and let Ti be an optimal &lifted labelling of T. Then
xi eost(Ti) 5 (b + 2 - 3) wst(T’) where T’ is T equipped
wath an optimal internal labelling.

In [37], this theorem is proved for a particular bfamily, but
the proof goes through for arbitrary bfamiles as well. We
continue.

Definition 3 T’ is a X-lifted labelled refinement of T
if T rej3ae.s T and if the labelling of the internal nodes of
T’ is a X’-lifted labelling, where X’ is the image of X under
the canonical mapping.

Moreover,

Theorem 7 Let V = {Vo, &, . . . , Vb-1) be a b-family for T,
and let Ti be the optimal Vi-lifted refinement of T. Then

c cost(Ti) 5 (b + 2 - ;) wst(T*)
i

44

-.- _.------A.
_ .-c , .,“_ - y-z ,I_/.. :. -. : -. , -.c .._ -. ; , .*’ ..

where T’ is an optimal labelled refinement of T. Hence for
some i,

~sQ3 5 (I+ b 2 - 2) wst(T*). b2b

The proof is similar to that of Theorem 4 and uses Theorem
6.

This suggests a natural approach for achieving a (1+
1 - %)-appro.ximation ratio, iu which for fixed b, the op
t%na!2K-lifted labelled refinements are computed for each
i=o,1,2 ,..., b - 1, and the best one selected. As in the 2-
approximation algorithm, instead of computing an optimal
K-lifted labelled refinement of T, we will compute a labelled
refinement of T which is guaranteed to be at least as good as
a &lifted labelled refinement. We omit the details of how
the algorithm is performed but note that it follows along the
same lines as our Zappr&mation algorithm in modifying
the approximation scheme given in 1361. We obtain then:

Theorem 8 We can find a labelled refinement T’ of T such
that cost(T’) 5 (1-t 8 - &) wst(T’) in

O((2d - 3)!!) db/(d-l),db+2kTj

time, where T’ is an optimal refinement of T.

4 OTR-Compatibility

The maximum compatibility method, like parsimony, is not
a consistent estimator [Hi] of trees when the the iid as-
sumption is made (that is, there are some model trees for
which compatibility will not be con&tent). However, when
the data are such that most of the characters are compatible
on the true tree, then the maximum compatibility method
may recover the true tree. While such data sets may be
rare, they do exist in biology. For example, the 228 taxon
model tree in 1211, although derived from a parsimony-based
reconstruction of a tree from a biological dataset, generates
sequences in which almost all sites change at most once on
the tree (as discussed by Purvis and Quiche, in [26]), so that
the data has high compatibility scores. Consequently, ap-
proaches that are based upon solving compatibility may in
those (unusual) cases be appropriate. However, in Hiiori-
cal Lmguistics, it may be more typical to have such data, as
has been indicated in [38,40]. In fact, the maximum com-
patibility method and OTR-compatibility have been used to
resolve the evolutionary history of the Indo-European family
of languages [S]. Thus, in some types of biological data, and
in liuguistic data, we may expect that most of the charac-
ters will be compatible on the true tree, so that the number
t of characters which must be deleted in order for all the
remaining characters to be compatible on some tree will in
general be smalL IVe will call t the imperfection of the data
{since what remains fits a “perfect phylogeny”; see Section
2), and we will study the maximum compatibility problem
and the OTR-Compatibility problem in the context where
t is small as well as where d (the maximum degree in the
tree) is SmalL

There are particular statements we can make when the
characters are binary, because then the space of trees on
which the characters are compatible has a unique minimal
element with respect to refinement.

First, we define the character encoding of the tree T as
follows. Each edge e in the tree T defines a bipartition on the
leaves of T and hence can be described by a binary character
c+ The collection (c, : e E E(T)} is the character encoding
(or set of splits) of T, and is denoted by C(T). The following
lemma is part of the standard literature (see [19]):

Lemma 1 Let C be a collection of binary chamcters defined
on a set S. l%en there is a tree T on which every character
in C is compatible if and only if evey pair of characters in
C is compatible. Furthermore, given a set C of compatible
binay characters, there is a unique tree T satisfying C(T) =
C.

Now, consider the OTR-compatibility problem, in which
we are given a tree T and a set C of binary characters defined
on the leaves of T, and we wish to find a refinement of
T on which the maximum number of characters in C are
compatible. We will show we can solve OTR.-compatibility
on a tree T by solving Max Compatibility on a derived set
of characters.

Note the following:

Observation 1 Suppose that T’ is some refinement of T,
and that c E C is compatible on T’ (for some labelling L).
Then c is compatible with every character in C(T).

We have ah-eady shown that OTR-compatibility is NP- Consequently, we can preprocess the set C by deleting from
hard for unbounded degree trees with bii characters and C any character which is incompatible with some character
also for bounded degree trees with r 14. In the following in C(T). (Note that thii is not the same as deleting charac-
sections we will shone: ters which are incompatible on T.) This preprocessing can

1.

2.

3.

4.

4.1

OTR-compatibility is hard to approximate, even when
d is bounded.

OTR-compatibility on binary characters can be solved
in polynomial time for every fixed degree bound d. We
can also Zapproximate the miniium number of char-
acters which are not compatible on the optimal refine-
ment of the tree T in O(k2n) time, if all the characters
are binary.

The imperfection of a set of binary characters can be
Zapproximated in 0Il;“n) time, and can be solved ex-
actly in O(k2n + k23) time.

Maximum compatibility of r-state characters can be
solved in 0(22’ktf2n)

Preliminary material about binary character compat-
ibility

In the earlier discussion of compatibility, we stated that a
character c : S + 2 is ‘kompatible” (or ‘konvex”) on a tree
T leaf labelled by S if the internal nodes of the tree can each
be labelled by states for c so that c changes state exactly
r, - 1 times (where r, is the number of states c attains on
S), and a set C of characters is compatible if there exists
some tree 2’ on which all the characters in C are compatible.

45

be done in O(nk) time using an algorithm in 1191 for “tree
compatibility”. We will call the reduced set of characters
c’.

We will now prove the following:

Theorem 9 Let T be a tree with a set C of binary char-
acters defined on the 1e.aere.s of T. Let T’ be the optimal
refinement of T with respect to compatibility, and let C’ be
the chamcters in C which are compatible on T’. Then C’ fs
a maximum compatible subset of C', where C’ = {c E C : c
is compatible with eorergr chamcter in C(T)}. Conversely, if
C’ is a maximum compatible subset of c’, then the tree T’
defined by C(T’) = C(T) UC’ is an optimal rejnement of T
with respect to compatibility.

Proof We fkst prove that the size of a maximum com-
patible subset of c’ is a lower bound for the number of
characters in C compatible on an optimal refinement of T.
If C’ E C’ is a maximum carclmality subset of compati-
ble characters, then the set C’ U C(T) is a set of pairwise
compatible characters, and hence it is setwise compatible
by Lemma 1. Furthermore, there is a tree 2” defined by
C(T’) = C(T) U C’. T’ is a refinement of T and every char-
acter in C(T) U C’ is compatible on T’. Consequently, the
size of a maximum compatible set of characters in C’ is a
lower bound on the number of characters compatible on an
optimal refinement of T.

Now, suppose T’ is an optimal relinement of T, and that
C’ c C is the set of characters compatible on T’. By Ob-
servation 1, it follows that C’ C C’, and that C’ is a set
of compatible characters. Hence, the number of characters
from C compatible on an optimal refinement of T is a lower
bound on the size of a maximum compatible subset of C’.
Since both quantities are lower bounds of each other, they
are identical. 1

To summarize, when the set C only consists of binary
characters, then in O&n) preprocessing, we can reduce the
OTR-compatibility problem to the Max Compatibility prob-
lem on a derived set of bii characters.

4.2 Maximum compatibility and OTR-compatibility for bi-
nary characters

The result in Theorem 14 indicates that the OTR-compatibility
problem is hard, even to approximate, for bounded degree
trees when the set of characters is allowed to have an un-
bounded number of character states. The exact algorithm
for OTR-compatibility for P 1 3 state characters was not
potentially fast enough to be of general use except under un-
usual circumstances. However, when r = 2, then many prob-
lems related to maximum compatibility become tractable.
In this section we describe several of these results.

We now describe how to approximate the imperfection of
an optimal solution to the Max Compatibility problem for
biiy characters.

4.2.1 Approximating the imperfection of binary charac-
ters

Let C be a set of characters defined on a set S of taxa. We
begin with some definitions.

Given C and S, we will define the incompatibility
graph, Gc, as follows. The nodes of Gc are the elements of
C, and the edge (i, j) is in E(Gc) if and only if the charac-
ters i and j are incompatible. An independent set in a graph
G = (V, E) is a subset Vo c V such that for all nodes u, w
in V, (u,w) # E. A uerkx cover in G is a subset VI c V
such that for all edges (a, a) E E, at least one of a or b is
in VI. Consequently, the complement of an independent set
is a vertex cover, and vice-versa. Since painviie compatibil-
ity of binary characters suffices for setwise compatibility by
Lemma 1, the maximum independent set of Gc corresponds
to the maximum compatible subset of C. Consequently, if
we can find a maximum independent set in Go we will have
solved the Max Compatibility problem.

The maximum independent set problem is however very
hard to solve [6], but in the cases that we are interested in,
the imperfection is generally quite low (see the discussion in
the introduction). Consequently, the size of the maximum
independent set will in general be quite large, and conse-
quently the size of the miniium vertex cover (the comple-
ment to the maximum independent set) will be quite small.
There is also a very simple and fast 2-approximation algo-

‘rithm for finding the minimum vertex cover (see [lo]) which
we will use to obtain a Zapproximation algorithm for the
imperfection t. We now briefly describe the l-approximation
algorithm.

A greedy 2-approximation algorithm for the minimum ver-
tex cover A matching in a graph G = (V, E) is a subset
He c E such that no two edges in EO share an endpoint. It
follows that if VI is a vertex cover EO is a matching, then K,
contains at least one endpoint from each of the edges in Eo.
Consequently, the size of a minimum vertex cover is bounded
from below by the size of any matching. On the other hand,
if EO is a maximal matching (meaning there does not exist
any matching El which properly contains Eo), then the set
v’ which contains both endpoints of every edge is a vertex
cover (since its complement is an independent set), and its
cardinality is bounded from above by twice the size of a
minimum vertex cover. Obtaining a maximal matching in a
graph is a trivially easy problem - simply remove an edge
and both its endpoints from the graph, until there are no
remaining edges. The edges that have been removed consti-
tute a =w matching. This is an O(jV] + IEI) algorithm,
and it produces a P-approximate solution to the minimum
vertex cover.

Consequently, the following holds:

Theorem 10 The imperfection of a set of binary characters
can be 2-approximated in O(k%) time.

Proof We begin by constructing the incompatibility graph
Gc; thii takes O(k’n) time since pairwise compatibility
of two characters takes O(n) time. Then we use the 2-
approximation algorithm for the minimum vertex cover [lo],
which takes O(k*) time. The complement of the vertex cover
is then an independent set in Gc and hence denotes a set C’

46

of pairwise (and hence setwise) compatible characters, with
]C’] zJz-22t. 1

4.2.2 Solving Max Compatibility of binary characters

We now show how to solve the maximum compatibility prob-
lem for bmary characters.

We begin by coustruct~mg Gc, the incompatibility graph.
We then compute a 2-approximation to the imperfection us-
ing the above algorithm. This explicitly gives us a vertex
cover VO of size at most 2t, and furthermore VO ux~~ists of
both endpoints of p < t edges (this follows from the greedy
algorithm used to approximate the vertex cover). The com-
plement of Vo is an independent set, VI. Now, consider a
masimum independent set I in Gc. Let AI = In Vo. Note
that although many difberent I define the same AI, for each
set A s Vo there is a unique maximum such independent
set I(A) such that I(A) n VO = A. This I(A) is defined
by I(A) = AU (VI - I’(A)), where I’(A) denotes the neigh-
bors of A. Consequently, to find a maximum independent
set, we e amine all possible sets A c % and then in O(k’)
time per set A, we compute I(A). At the end, we return a
largest such set I(A). All we need to do is to compute how
many difkent sets A there are, and show we can list them
efhciently. There are only 3P sets A, since each A contains
at most one of the endpoints of each of the p edges used to
construct Vo. We do not have to keep track of more than
one set A at a time, so that this does not incur a cost in
terms of space.

Consequently, we have proven the following:

Theorem 11 The m&mum compatibility problem can be
solved in O(k2n+3’k2) time, where there are k binary char-
acters defined on n taxa, and ham-ng impe&&ion t.

We now address the final result regarding character com-
patibllity for binary characters, which is useful when t (the
imperfection) is not small enough to make the exact algo-
rithm feasible, but d (the maximum degree) is small enough
to use another technique. Once again, we note that no char-
acter which is incompatible with T will be compatible on
any refinement of T, and hence we preprocess the data by
deleting all such characters.

Let V be the set of internal nodes in T. Consider the
set E’ of edges of 2’ where each ei = (a,‘~) E E’ is such
that neither u nor v is a leaf Subdivide each edge ei =
(u, v) E E’, by adding a new node wi on ei (i.e. add edges
(~,wi),(‘~i,~)artd I~RIOV~ ('Lc,v)). Let T' be the resulting
labelled tree. Recall that each leafin T (and hence in T’) is a
species from S and hence each leaf is assigned a state for each
character. We now show how to &end the characters to
take values on the added nodes, wi. The deletion of the node
Wi from T’ creates two subtrees. For each character c, if
there are leaves in the two subtrees having the same state for
c, then we assign c(wi) to that shared state. If there are two
&&rent states which are shared between the two subtrees,
then c is not compatible on any refinement of T, and we
would have deleted c from the set. The final possibility is
that no state is shared between the two subtrees, in which
case we assign a new state to that node. In this way, we
have set states for each of the characters on each of the

newly introduced nodes, wi. We now show how this permits
us to solve O(n) independent Max Compatibility instances.

Let v be one of the internal nodes in T and let Sv be
(v} U I’(v) where I’(v) is the neighbors of v ln the new tree,
T’. It is then easy to see that for each character c E C, there
is at most one set S,, on which c is not constant (this is due to
the fact that the characters are all binary, and all characters
that are not compatible on any refinement of T have already
been eliminated). For this reason, the imperfection of the
set C (i.e. the number of characters which are incompatible
on some fixed optimal refinement of T) is precisely the sum,
over all internal nodes v E V(T), of the imperfection of
C on S,. This quantity can be estimated (either exactly or
approximately) by using the appropriate Max Compatibility
algorithm for binary characters.

We summa&e our results on binary characters as fol-
lows:

Theorem 12 The imperfection of the optimal refinement
can be 2-approximated in O(nk2) time. The OTR-compatibility
problem can be solved exactly in 0(3%k2) time, where q is
the mm-mum imperfection on any subproblem S,, and in
O(g(d)nk) time, where g(d) is the number of mated binary
trees on d nodes.

4.3 Max Compatibility and OTR-compatibility for P 2 3

We can show that approximating OTR-compatibility for a
bounded degree tree is as hard as approximating MAX Inde-
pendent set on graphs [4]. We begin with a result from [4]
on maximum independent set.

Theorem 13 [4] There is an E > 0 such that approximating
MAX Independent set within a factor n’ is NP-hard, where
n is the number of vertices in the input graph.

Theorem 14 Let T be a bounded degree tree with leaf set
S (described by a set C of k characters). Then there is an
E > 0 such that approzimating OTR-compatibility within a
factor k’ is NP-hard.

Proof. We will give a simple reduction from the Indepen-
dent Set problem.

Let G = (V, B) be the graph, with TZ nodes and m edges,
in the instance I of the Independent Set problem. We will
construct the instance I’ to the OTR-compatibility problem
as follows. The tree T ls given in Figure 2. Note that it has
degree bounded by 5.

m---m
Figure 2: Topology of tree T

T has m internal nodes, ur,~s, u,,,, where node ‘1~i
corresponds to edge ei E E. We will use s~,s:,s~ to de-
note the three species adjacent to the internal node Ui in

47

T. Let A denote the set of species. We wiiI define n char-
acters, Cl, c2, . ..‘. 6, where, the idea is that, character cj
COIT~S~OR~S to node vj E V. We ROW describe how the
character states are set for the species in A.

Let ei = (vj, vk) be an edge in E. Then, for aii I $ {j, k},
set cl(st) = ~(9;) = cl(sf) = 1. Also, set
Cj(St) = Cj(S:) = k,Cj(Sf) =j,
Ck(Sf)=C~(Sf)=j,C&$)=k.

We make the following easily proven claim.

Claim: The graph G has an independent set (vi*, Viz, Vi,)
if and only if the character set {c+, ci,, G,) can be made
compatible on some refinement of T.

Because of the nature of the reduction (i.e. an indepen-
dent set of s’ke p corresponds to a refinement of T with p
compatible characters and vice-versa), it can be seen that

approximating MAX OTR-compatibility for bounded degree
trees is at least as hard as approximating MAX Independent
set. I

We describe an algorithm to solve the OTR-compatibility
problem that runs in time exponential in the incompatibility
score t and r’. We make use of the 0(22’nk2) time algorithm
of [22] for finding perfect phylogenies.

Examine all subsets of characters, from largest to smah-
est, and find the first such subset Co such that CO is compat-
ible with T (that is, every character in Co is compatible on
some refinement of T). This is equivalent to testing whether
C(T) U CO has a perfect phylogeny, where C(T) is the char-
acter encoding of T. By the above, this can be tested in
O(Zzrk2n) time for each set Cc, for a total of 0(22rk’+2n)
time. Thus, we have:

Theorem 15 OTR-compatibility can be solved in O(22’k’+2n)
time.

Algorithm :
Begin
For each CO E C, where]Co] = k - t, do

l For each internaI v E T which has degree greater than
3, do:

1. Let I’(v) = PI(V) U Pa(v) where PI(V) consists of
all the neighbours of v which are leaves and Pa(v)
consists of ah the non-leaf neighbours of v. For
each uj E r2(v) add a new node wj on the edge
(v, uj)- Compute the labeiiing of wj SO a~ to make
every character in CO convex (each character must
contain every state that appears on both sides of
Wj)-

2. If some new node has a character that requires
more than one character state for that charac-
ter to be convex, then RETURN(Let S, =
PI(v) U {wj]q is a new node and wj is a neigh-
bor of v}. Use the algorithm of [22] to determine
if a perfect phylogeny exists for (S,, Co). If any
&CO) fails to have a perfect phylogeny then
RETURN(else RETuRN(yes).

Return (Yes) if and only if some CO returns (Yes).
End

The run time of the above algorithm is O(22’k’+2n) since
there are O(k’) subsets of size k - t, and for each subset Co
of this sire, we apply the perfect phylogeny algorithm to
each (S”, Co).

5 Discussion and conclusion

In this paper we have discussed the computational complex-
ity of solving the Optimal Tree Refinement problem with
respect to two optimization criteria, parsimony and wmpat-
ibiZity- This approach to tree reconstruction is motivated
by the empirical observation (see [ZS]) that certain meth-
ods are iikeiy to produce contractions of the true tree. This
suggests that that a two step process of evolutionary tree
reconstruction (first obtain a contraction of the tree, and
then refine the tree optimally) may produce more accurate
topologies than existing methods. This approach is espe-
cially appropriate when the optimization problem is hard to
solve. Although the resultant problems are likely to aiso be
hard to solve, narrowing the search space may in some cases
lead to easier subproblems, and hence better estimates of
the topology.

We have not addressed the problem of optimally refining
a tree with respect to maximum likelihood estimation, which
is potentiaiiy a very powerful tool, and we have aiso not
addressed the use of heuristics for solving OTR problems in
general. We leave these approaches for tree reconstruction
to later work.

References

PI R- AGAR-
WALA AND D. FERNAND%BACA, A Polynomial-time
Algorithm for the Perfect Phylogeny Problem when the
Number of Character States is Fixed, SIAM J. on Com-
puting, Vol. 23, No. 6, pp. 12161224, 1996.

[2] R. AGARWALA AND D. FERNANDEZ-BACA, Fast and
Simple Algorithms for Perfect Phylogeny and fiangu-
rating Colored Graphs, DIMACS Tech Report 94-51,
1994.

[3] A. A~IBAINIS, R. DESPER, M. FARACH, AND S. KAN-
NAN, Nearly tight bounds on the learnability of evolu-
tion, IEEE Symposium on Foundations of Computer
Science, 1997.

[4] S. ARORA, C. LUND, R. MOT~ANI, M. SUDAN, AND
M. SZEGEDY, Proof verification and intractability of ap-
proximation problems, Proc. 33rd IEEE Symp. on Foun-
dations of Computer Science, pp. 13-22, 1992.

[5] K. ATTESON, T%e performance of neighbor-joining al-
gorithms of phylogeny reconstruction, Computing and
Combinatorics, Third Annual International Confer-
ence, COCOON ‘97, Shanghai, China, August 1997
Proceedings. Lecture Notes in Computer Science, 1276,
Tao Jiang and D.T. Lee, (Eds.). Springer-Verlag,
Berlin, 1997,101-110.

[S] M. BELLARE AND M. SUDAN, Improved non-
approximability results, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Comput-
ing, (Montreal), ACM, pp. 184-193.

48

171

14

PI

PO1

WI

WI

1131

P41

1361

1171

11~1

WI

1201

1211

1221

1231

H. BODLAENDER, M. FELLOWS, AND T. WARNOW,
Two strikes against perfect phylogeny, In Proceedings
of the 19th IntemationaI Colloquium on Automata,
Langnages, and Programming, Springer Verlag, Lec-
ture Notes in Computer Science (1992), pp. 273-283.

h1. BONET, CA. PHILLIPS, T. WARNow, AND S.
YOOSEPH. Constnsct~ng enrolnrtionarfl trees in i!he pnzs-
ence of polymorphic characters, ACM Symposium on
the Theory of Computing, 1996. To appear In SIAM J.
Computing.

J. T. CHANG, Inconsistency of evobfonargr free topol-
ogy rswns&uction methods when substitution rates vary
across chamcters, Math. Biosci. 134 (1996), 189-215.

T. CORA~EN, C. LEISERSON, AND R. IEIVEST, Intmduc-
tion to Algorithms, MIT Press, 1990.

W. H. E. DAY AND D. SANKOFF, Computational com-
plexity of inferring phylogenies by compatibility, Syst.
Zod., Vol. 35, No. 2 (1986), pp- 224-229.

W.H.E. DAY 1983: Computationally dificult parsi-
mony problems in phylogenetic systematics, Journal of
Theoretical Biology, 103: 429-438.

P-L. ERDBS, M. STEEL, L. SZEKELEY, AND T.
WMOW- Inferring big treesfrom short squences. Pro-
ceedings of International Congress on Automata, Lan-
guages, and Programming 1997.

hI- FARACH AND S. UNAN (1996). Eficient ulgo-
rithms for invetiing evolution, Pmceedings of the ACM
Symposium on the Foundations of Computer Stience,
230-236.

J- FEL~FXSTEIN Cases in which parsimony or wmpat-
ibility methods will be positively misleading, Syst. Zool-
ogy, 27:401-410, 1978.

\?r. FITCH, Toward defining the course of evolution:
mhimsrm change for a specified tree topology, Syst.
Zool., 20:406-416, 1971.

L. R. FOULDS AND R,&. GRAHAI\I. 1982. The Steiner
Problem in Phylogeny is NP-Complete, Adv. Appl.
h’lath. 3, 43-49.

hl.R GAREY AND D.S. JOHNSON, Computers and In-
tractability : A guide to the theory ofNP-Completeness,
Iy-H. Freeman and Company, 1979.

D. GUSFIELD, Efficient algorithms for inferring evolu-
tionary trees, Nefxorks, 21 (1991), pp- 19-28.

J- A. HARTIGAN, Minimum mutation fits to a given
-tree, Biometrics 29, 1973, pp. 53-65.

D. HILLIS (1997). Inferring complex phyZogenies, Na-
ture, Vol. 383, pp- 130-131.

S. -NAN AND T. W’OW, Finding and enumemf-
ing alI peged phylogenies when the number of states is
@ed, SIAM J. on Computing (to appear). A prebmi-
nary version appeared in SODA ‘95.

S. KANNAN AND T. ?VARNOW. 1994. Infting Evo-
Zw!ionarg(History from DNA Squences, SIAM J. on
Computing, Vol. 23, No. 4, pp- 713-737. (A preliminary
version of this paper appeared at FOCS 1990.)

49

I241

i251

P61

[271

WI

PI

[301

[311

1321

1331

[341

[351

P61

[371

[381

PI

[461

J. KIM, General inconsistency conditions for maximum
parsimony: effects of bmnch lengths and increasing
numbers of taxa. Syst. Biol. 45(3): 363-374, 1996.

F. R. MCMORRIS, T. WARNOW, AND T. WIMER, 2%
angulating vertex colored graphs, SIAM journal of dis-
crete mathematics, Vol. 7, No. 2, pp. 296-306, 1993.

A. PURVIS AND D.L.J. QUICKE, Letter to the editor,
TREE 12(9):357-358, 1997.

K. RICE, M. DONOGHUE, AND R. OLMSTEAD, Analys-
ing large datasets: rbcL 500 revisited, Systematic Biol-
ogy, pp. 554-563, Vol. 46, No. 3, September 1997.

K. RICE, M. STEEL, T. WARNOW, AND S. YOOSEPH
(1997) Hybrid Dee Construction Methods, manuscript.

K. RICE AND T. WARNOW, Parsimony is Hard to Beat!,
Computing and Combinatorics, Third Annual Interna-
tional Conference, COCOON ‘97, Shanghai, China, Au-
gust 1997 Proceedings. Lecture Notes in Computer Sci-
ence, 1276, Tao Jiang and D.T. Lee, (Eds.). Springer-
Verlag, Berlin, 1997, 124-133.

N. SAITOU, AND M. NEI, The neighbor-joining method:
A new method for reconstructing phylogenetic trees.
Mol. Biol. Evol. 4:406-425, 1987.

M. A. STEEL, The complexity of reconstructing trees
from qualitative chamcters and subtrees, Journal of
Classiication, 9 (1992), pp. 91-116.

M.A. STEEL, Recovering a tree from the lenf coloura-
tions it genemtes under a Markov model, Appl. Math.
Lett., ‘7 (1994), 19-24.

M.A. STEEL, The complexity of reconstructing trees
fmm qualitative characters and subtrees, Journal of
Classiication, Vol. 9:91-116. 1992.

M. A. STEEL, L. A. SZI?KELY, AND M. D. HENDY, Re-
constructing trees when sequence sites evolve at vatiable
mte, J. Computational Biology 1(1994)(2), 153-163.

C. T~FFLEY AND M. STEEL, Links between maxi-
mum ltidih00d and maximum parsimony under a sim-
ple model of site substitution. Bulletin of Mathematical
Biology 59(3):581-607, 1997.

L. WANG, T. JIANG, AND E. LAWLER, Approximation
algorithms for tree alignment with a given phylogeny,
Algorithmica 16, 1996, pp. 302-315.

.L. WANG AND D. GUSFIELD, Improved approximation
algorithms for tree alignment, Journal of Algorithms,
25(2), pp. 255-273, November 1997.

T. WARNOW Mathematical approaches to wmpamtive
liriguistics. Proceedings of the National Academy of Sci-
ences, 1997, Vol. 94, pp 6585-6590.

T. WARNOW, Constructing phylogenetic trees eficiently
using compatibility criteria, New Zealand Journal of
Botany, 1993, Vol. 31: 239-248.

T. WARNOW, D. RINGE, AND A. TAYLOR, Reeon-
strutting the evolutionary history of natural languages,
Association for Computing Machinery and the Soci-
ety of Industrial and Applied Mathematics, Proceed-
ings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1996, pp. 314-322.

