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Abstract

We prove an exponential lower bound for tree-like Cut-
ting Planes refutationsof a set of clauses which has polyno-
mial size resolution refutations. Thisimpliesan exponential
separation between tree-like and dag-like proofs for both
Cutting Planesand resol ution; in both cases only super pol y-
nomial separationswere known before [30, 20, 10]. Inor-
der to prove this, we extend the lower bounds on the depth
of monotonecircuits of Razand McKenz e[ 26] to monotone
real circuits.

In the case of resolution, we further improve this result
by giving an exponential separation of tree-like resolution
from (dag-like) regular resolution proofs. In fact, the refu-
tation provided to give the upper bound respectsthestronger
restriction of being a Davis-Putnam resolution proof. This
extends the corresponding superpolynomial separation of
[30].

Finally, we prove an exponential separation between
Davis-Putnam resolution and unrestricted resolution
proofs; only a superpolynomial separation was previously
known [14].

1. Introduction

The motivation to work on the proof length of proposi-
tional proof systems comes from two sides. First, by the
work of Cook and Reckhow [12], we know that the claim
that for every propositiona proof system there is a class
of tautologies that requires superpolynomia proof size is
equivdlent to NP # co-NP. This connection explains
theinterest in devel oping combinatorial techniquesto prove
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lower bounds for different proof systems. The second mo-
tivation comes from the interest in studying efficiency is-
suesin Automated Theorem Proving. The questioniswhich
proof systems have efficient algorithmsto find proofs. The
most widely used proof system inimplementati onsisresol u-
tion or restrictions of resolution. What we will show inthis
paper isthat proving propositional proof complexity lower
boundshas something to say about the non-efficiency of var-
ious strategies for finding proofs.

Haken [17] was the first who proved exponentia lower
bounds for unrestricted resolution. Later Urquhart [29]
found another class of tautologies that require exponen-
tial size resolution proofs, and Chvatal and Szemerédi [8]
showed that in some sense, amost al classes of tautologies
requireexponentia sizeresol utionproofs(see[3, 4] forsim-
plified versions of these results). These exponentia lower
bounds are bad news for automated theorem provers, since
they mean that often the time used in finding proofswill be
exponentially long in the size of the tautology, given that
the shortest proofs are. The next question is what about the
classes of tautol ogi esthat have polynomial size proofs? Can
we find these proofs efficiently? [3, 9, 4] give weakly expo-
nential time (2°(™)) a gorithmsfor finding resol ution proofs.
But, can we do better? [19, 1] give weak evidence that the
answer is negative.

Formally, we say that a propositional proof system S is
automatizable, if there is an agorithm that for every tau-
tology F findsa proof of F' in S intime polynomia in the
length of the shortest proof of ' in S. The only proposi-
tional proof systemsthat we know are automatizable are al-
gebraic proof systems like Hilbert’s Nullstellensatz 2] and
Polynomia Caculus[9]. On the other hand bounded-depth
Frege proof systems are not automatizable, assuming fac-
toringishard [24, 7, 5]. Since Frege systems and Extended
Frege systems polynomially simul ates bounded-depth Frege
systems, they are also not automati zable under the same as-
sumptions.

A commonly used strategy for finding proofsisto reduce
the search space by defining restricted versions of resolution



that are till complete. One possibility isto restrict to proofs
that aretree-like, which would be agood strategy, given that
[3, 9, 4] have quasipolynomial agorithmsfor finding tree-
like proofs. Here we prove an exponentia separation be-
tween tree-like resol ution and resol ution, showing that find-
ing tree-likeresol ution proofscannot be an efficient strategy
for finding resolution proofs. Until now only superpolyno-
mial separationswere known [30, 10].

Many strategies for finding resolution proofs are de-
scribed in [28], but very little theoretical work has been
done until now. Goerdt [15, 14, 16] gave severa superpoly-
nomial separations between resolution and some restricted
versions of it. In particular, he gave a separation between
Davis-Putnam resolution and unrestricted resolution. We
improve this result by giving an exponentia separation be-
tween Davis-Putnam and unrestricted resolution, showing
that using the Davis-Putnam restriction isnot, in genera, a
good strategy for finding resolution proofs.

The Cutting Planes proof system (C'P) is a refutation
system based on manipulating integer linear inequalitiesfor
whichthetask of finding hard-to-provetautol ogiesissol ved.
[18] werethefirst to show such aresultintherestricted case
of C'P proofswhose underlying graphisatree. Pudlak [25]
and Cook and Haken [11] give genera circuit complexity
results from which a exponential lower boundsfor C'P fol-
low. Nothing is known about automatization of C'P proofs.
Since there is an exponential separation between C'P and
Resolution (C'P is more efficient) it would be nice to find
an efficient agorithm for finding C' P proofs. A question to
ask isif tryingto find tree-like C' P proofswould be an effi-
cient strategy for finding Cutting Planes proofs.

One of the authors [20] gave a superpolynomial separa-
tion between tree-like C' P and dag-like C' P (thiswas previ-
ously knownfor arestricted form of C'P from[6]). Herewe
improve that separation to exponential. This means again
that trying to find tree-like proofsis not a good strategy.

This exponential separation is a consegquence of extend-
ing the lower bounds of [26] to the case of real monotone
circuits. Asin [26] we provean £2(n¢) lower bound on the
depth of monotonereal circuits computing a certain mono-
tonefunction GEN,, in P. Thisalsoimpliesan Q(2"") lower
bound on the size of monotone real formulas computing
GEN,,. Thislatter result allows us to obtain an exponential
lower bound for the size of tree-like C'P proofs for a for-
mulaassociated to GEN,,, using the interpolation technique
of [23, 25].

The paper is organized as follows:. in Section 2 we give
basic definitions of the proof systems we consider. Section
3 hasthedefinitionsof monotonereal circuits, and the proof
of the depth separation for them, extending the results of
Raz and McKenzie. Section 4 gives the exponential sepa
rations between tree-like C'P and C' P, tree-like Resolution
and Resolution and tree-like C' P and bounded-depth Frege

systems, and aso the exponential separation between tree-
like resolution and regular resolution. Finally section 5 has
the exponentia separation between Davis-Putnam resolu-
tion and unrestricted Resolution.

2. TheProof Systems

Resolution is a refutation proof system for formulas in
CNF based on the following inference rule:

Cvz Dvz
CvD

A Resolution refutation for an inital set ¥ of clausesis a
derivation of theempty clause from X using the aboveinfer-
encerule. Several restrictionsof theresol ution proof system
areknown. Herewe consider thefollowingtwo: (1) thereg-
ular resolution system in which the proofs are restricted in
such away that any variable can be eliminated at most once
inany pathfromaninitial clauseto the empty clause; (2) the
Davis Putnam resol ution system in which the proofsarere-
stricted in such away that there existsa sequence of thevari-
ablessuchthat if avariable » iseliminated before avariable
y onany pathfroman initia clauseto theempty clause, then
x isbefore y inthe sequence.

Cutting Planes (C' P) isaproof system operatingwithlin-
ear inequalitiesof theform ZZ.EI a;x; > k, wherethe coef-
ficientsa; and k are integers. Therules of C'P are addition
of twoinequalities, multiplication of an inequality by a pos-
itiveinteger and thefollowing divisionrule:

2ier @iti 2 k
Dier T2 {%1 ’
where b isapositiveinteger that evenly dividesal a;, : € I.

A C P refutation of aset F of inequalitiesisaderivation
of 0 > 1 from theinequalitiesin £ and the axiomsz > 0
and —r > —1 for every variable z, usingtherulesof C'P. It
can be shown that a set of inequalities has a C' P-refutation
iff it hasno {0, 1}-solution.

Cutting Planes can be used as a refutation system for
propositional formulas in conjunctive norma form: note
that a clause \/; p xi v ;¢ 7; is satisfiable iff the in-
equaity > ;cpai — D ene; > 1 — |N|hasa{0,1}-
solution. It is aso well-known that C' P can simulate Res-
olution[13].

A proof system istree-like if the proofs are restricted so
that every linein a proof is used at most once as a premise
of an inference. Otherwise we will call it dag-like.

3. Monotone Real Circuits

A monotonereal circuit isacircuit of fan-in 2 computing
withreal numberswhere every gate computes a nondecreas-
ing rea function. This class of circuits was introduced by



Pudlak [25]. We require that monotonereal circuits output
0 or 1 on every input of zeroes and ones only, so that they
are a generalization of monotone boolean circuits. Rosen-
bloom [27] shows that they are strictly more powerful than
monotone boolean circuits.

The depth and size of amonotonereal circuit are defined
asusua, andwecadl it aformulaif every gate hasfan-out at
most 1.

For amonotone boolean function f, we denote by dg( f)
the minimal depth of a monotone rea circuit computing f,
and by sg(f) theminimal size of a monotone real formula
computing f.

The method of proving lower bounds on the depth of
monotone boolean circuits using communication complex-
ity was used by Karchmer and Wigderson [21] to give
an Q(log” n) lower bound on the monotone depth of st-
connectivity. Using the notion of real communication com-
plexity introduced by Krajicek [22], one of the authors[20]
showed the same lower bound for monotonereal circuits.

The monotone function GEN,, of »® inputst, ; ., 1 <
a,b, ¢ < nisdefined asfollows. For ¢ < n, we definethe
relationt ¢ (c isgenerated) recursively by

Fec iff c=1ortherearea,b <n
with Fa, Fbandt,, . =1.

Finaly GEN,,(#) = 1iff - n. From now on we will write
a,btcfort,; .= 1.

Recently, Raz and McKenzie [26] gave alower bound of
Q(n°) for somee > 0 on the depth of monotonebool ean cir-
cuits computing GEN,,. We show that their method applies
to monotone real circuits:

Theorem 1 For somee > 0 and sufficiently large n

dg(GEN,,) > Q(n) and sg(GEN,) > 2%
3.1. Real Communication Complexity

Let R C X xY x Z beamultifunction,i.e. for every pair
(x,y) € X xY,thereisaz € Z with(z,y,z) € R. A real
communication protocol for R isexecuted by two players I
and I'7, where I computesafunction f; : X x {0,1}* — R
and 7T computesafunction f;; : ¥V x {0,1}* — R. Given
inputsz € X, y € Y, the players generate a sequence w of
bitsas follows:

wo 1= A

w | wr0 i fr(e,wr) > frr(y, wi)
k1 = w1 dse

If thereisafunctiong : {0, 1}* — Z such that

Vee XVyeY (x,y,9(wy)) € R,

then we say that the protocol solves R in k rounds. The real
communication complexity C'Cr (R) isthe minima number
k such that thereis areal communication protocol solving
R ink rounds.

For anatural number n, let [n] denotetheset {1, ... ,n}.
Let f:{0,1}* — {0, 1} beamonotone boolean function,
let X := f~1(1)and Y := f~1(0), and let the multifunc-
tion Ry C X x Y x [n] be defined by

(z,y,i) e Ry iff zy=1andy; =0

The Karchmer-Wigderson game for f isdefined asfollows:
Player I receives an input « € X and Player IT an in-
put y € Y. They have to agree on a positioni € [n]
such that (z,y,¢) € R;. Sometimes we will say that R;
isthe Karchmer-Wigderson game for the function f. There
isareation between the real communication complexity of
Ry and the depth of amonotonereal circuit or thesize of a
monotone real formulacomputing f, similar to the boolean
case:

Lemma?2 (Krajitek [22]) Let f be a monotone boolean
function. Then

CCgr(Ry) < dg(f) and CCg(Ry) < logg/s se(f) -

For a proof see [22] or [20]. Hence to establish Theorem 1,
it suffices to prove:

Theorem 3 For some ¢ > 0 and sufficiently large n

CC]R(RGEN,L) Z Q(TLE)
3.2. DART games and structured protocols

Raz and McKenzie[26] introduced aspecia kindof com-
munication games, called DART games, and a special class
of communication protocols, the structured protocols, for
solving them.

For m,k € NN, the set of communication games
DART(m, k) is defined as follows:

e X = [m]*. That istheinputsfor the Player | are k-
tuplesof dements z; € [m].

e Y = ({0,1}™)*. Thatistheinputsforthe Player Il are
k-tuples of binary coloringsy; for [m].

e Fordl: = 1,... )k lete; = yl(l‘z) (Ie e; is
the x;-th bit in ;). The reation R(z,y,z) C X X
Y x Z defining the game, only dependsoney, ... , e
and z. This means that we can describe R(z, y, z) by
R((e1,... ep),2)

e R((e1,...,er),z) must be a DNF-Search-Problem.
This means that aways exists a tautology F'r defined
over thevariables ey, ..., e; such that 7 isthe set of
termsdefining Fr and R((e1, ... , ex), z) istrueif and
only if z € Z isthe satisfied term of Fg.



A structured protocol for a DART game is a communi-
cation protocol for solving the relation R, where player T
getsinput x € X, player 17 getsinputy € Y, and in
each round, player I reveals the vadue z; for some ¢, and
IT replieswith y; (#;). The structured communication com-
plexity of R € DART(m, k), denoted by SC(R), isthe
minima number of rounds in a structured protocol solving
R.

The main theorem of [26] showed that for suitablem and
k, the deterministic communication comlexity of a DART
game cannot be much smaller than that of a structured pro-
tocol. We shall show the same for its real communication
complexity. Obvioudly, a structured protocol solving R in
r rounds can be simulated by area communication proto-
col solving R inr - ([logm] + 1) rounds. Conversely, the
following holds:

Theorem 4 For every relation R € DART(m, k), where
m Z k14’
CCgr(R) > SC(R) - Q(logm)
To provethis, first we need some combinatoria notions
and results from [26]. Let A C [m]* and 1 < j < k. For
z € [m]*~1, let deg;(x, A) be the number of ¢ € [m] such

that (z1,...,2;_1,&, 2;,... ,25-1) € A. Then wedefine
Alj) = {z e mF 1, deg;(z, A) > 0}
AL
AVDEG;(A) = AT
MINDEG;(A) :xrenjg]deg](x ,A)
Thickness(A) := min MINDEG;(A).
1<5<k

The following lemmas about these notions were proved in
[26]:

Lemma5 Forevery A’ C Aand1 < j <k,

AVDEG;(A") > ||244|| AVDEG;(A) (1)
Thickness(A[j]) > Thickness(A) (2

Lemmab Ifforevery 1 < j < k, AVDEG;(4) > ém
for some( < 6 < 1, thenfor every o > 0 thereis A’ C A
with|4’| > (1 — «)| 4| and

1—«a)ém

Thick A > ( .
ickness(A") > FI+a-TIn( 1)

In particular, setting o = % and§ = 4m~ 11, we get
Corollary7 If m > k™ andforevery 1 < j < &k,
AVDEG;(A) > 4mis, thenthereis A’ C A with |A’| >
+|A| and Thickness(A) > mis,

For arelation R € DART(m, k), AC Xand B C VY, let
CCx(R, A, B) betherea communication complexity of R
restrictedto 4 x B.

Fix alaage m € N. A triple (R, A, B) is called an
(a, B, 0)-game if R € DART(m, k) for some k < m1s
with SC(R) > ¢, A C X with |4] > 27%X| and
Thickness(A) > m1i,and B C Y with|B| > 2-°|Y|.

Lemma8 For every o, 4,¢ > 0 with @ < m7 and every
(o, B, 0)-game (R, A, B),

1. ifforevery 1 < j < k, AVDEG;(A) > 8mTi, then
thereisan (o + 2, 5+ 1, ¢)-game (R/, A’, B) with

CCr(R', A" B") < CCg(R,A,B)—1.

2.if¢ > landforsomel < j < k, AVDEG;(A) <
8m1i, then thereisan (0 +3— %%%,64- 1,¢—1)-
game (R', A’, B') with

CCx(R, A',B') < CCx(R, A, B) .

To prove Theorem 3 from thelemma, we show that for every
(o, B, 0)-game (R, A, B),

logm 4)_a+6

CCR(R,A,B)ZE.( _Z .
(*)

42 3

The case o = 3 = 0 givesthe theorem.

For¢ = 0and 3 > m7, () istrivid, since the right
hand side gets negative for large m. We proceed induc-
tively: Let (R, A, B) bean («, 3, £)-game, and assume that
(*) holdsfor dl (o', 7, ¢')-games with ¢/ < ¢ and 3’ > 3.
For sake of contradiction, suppose that CCg(R, 4, B) <

‘. (l%jfzﬂ—g) — 248 Then either for every 1 < j < k,

AVDEG;(A) > 8m11, and Lemma8 givesan (a 42, 5+
1,¢)-game (R/, A’, B) with

CCx(R', A", B') < CCg(R,A,B)— 1<
<£.(logm é)_(a+2)+(6+1)

42 3 3 ’

orforsomel < j < k, AVDEG;(A) < 8m1is, then
Lemma 8 givesan (a + 3 — & g + 1 ¢ — 1)-game
(R', A, B') with

logm 4 a+
42 _5)_ 3

B logm 4 (04‘1‘3_ SE)+(B+ 1)
_(E_l)'( 42 _3) 3 ’

both contradicting the assumption.
Proof of Lemma 8: For part 1, we first show that
CCr(R,A,B) > 0. Assume otherwise, then there is

CCr(R, A", B') < (- (




aterm C, in the DNF tautology defining R that is satisfied
forevery (z,y) € A x B. Therefore y; (z;) is constant for
somel < j < k. If v denote the number of possiblevalues
of z; inelements of A, thenthisimpliesthat | B| < 2m*=7.
On the other hand, |B| > 2™*~#, hence it follows that
@ > ~, which isa contradiction since 3 < m7, whereas
AVDEG;(A) > 8mi7 impliesy > 8m1s.

Now let an optimal real communication protocol solving
R restrictedto A x B begiven. Fora € Aandb € B, let
pq @nd oy, bethereal numbersplayed by I and 77 inthefirst
round oninput a and b, respectively. W.l.0.g. we can assume
that these are | A| + | B| distinct real numbers.

Now consider a {0, 1}-matrix of size |A| x |B]| with
columns indexed by the p, and rows indexed by the o,
where the entry in position (p,, o) is the outcome of the
first round when these numbers are played. Then it is ob-
vious that either the upper right quadrant or the lower left
guadrant must form amonochromatic rectangle.

Hence there are A° C A and B’ C B with |A°]| >
1|4l and [B’| > 1|B] suchthat R restricted to A° x B’
can be solved in one round fewer than the origina proto-
col. By Lemma5 (1), AV DEG,(A°) > 4mis for every
1 < j < k, hence by Corollary 7 thereis A’ C A° with
|A'] > L1A4°] > L|A] and Thickness(A’) > mi. Thus
(R, A", B")isan (a+ 2,5 + 1, {)-game.

Part 2 isproved exactly likethe corresponding lemmain
[26], with the numbers dlightly adjusted. d

3.3. A DART game related to GEN,

The communication game PYRGEN(m, d) is defined as
follows:

Let Pyrg := {(i,7); 1 <j<i<d}. Weregard the
indices as e ements of Pyry, so that the inputsfor the two
players I and II are respectively sequences of elements
z;; € [mlandy;; € {0,1}™ with (4,j) € Pyrq, and
we picturethese as laid out in a pyramidal formwith (1, 1)
a thetopand (d, j), 1 < j < d and the bottom. The goal
of the gameisto find either an element colored O at the top
of the pyramid, or an element colored 1 at the bottom of the
pyramid, or an element colored 1 with the two elements be-
lowitcolored 0, i.e. tofindindices(:, j) suchthat oneof the
following holds:

1. z:_] =1and y1,1(l‘1,1) =0,or

2. yi,j($i,j) = 1 and yi+1,j($i+1,j) = 0 and

Yit1,j+1(Tig1,441) = 0,0
3. i=dand yd,j(l’d,j) =1.

Obviously, PYRGEN(m, d) isagame in DART(m, (‘}1)).

The following lower bound on the structured communica-
tion complexity of PYRGEN(im, d) was proved in [26]:

Lemma9 SC(PYRGEN(m,d)) > d.

Hence by Theorem 4, we get CCr(PYRGEN(m,d)) >
Q(dlogm) for m > d?s.

Thefollowinglemma showsthat thereal communication
complexity of PYRGEN(m, d) is bounded by the real com-
munication complexity of the Karchmer-Wigderson game
for GEN,, for asuitablen.

Lemmal0 For n :=m- (1) + 2,
CCgr(PYRGEN(m, d)) < CCgr(GEN,,).

Proof : We interpret the elements between 2and n — 1 as
triples (i, j, k), where (¢, j) € Pyrq and k € [m].

Now player I computes from hisinput z : Pyry — [m]
aninput, to GEN,, with GEN,, (#,,) = 1 by setting the fol-
lowing:

1, 1F aq g

a1, a1,1 Fn

forl <j<d

Aig1,j, @iy j+1 Fag;  for (i, j) € Pyrq_y
where a; ; = (i, j, #; ;). Thiscompletely determines ..

LikewisePlayer 11 computesfromhisinputy : Pyrgy —
(2["1) a coloring ¢ of the elements from [n] by setting
col(1) = 0, col(n) = Land col((i,j, k)) = yi ; (k). From
this, he computes an inputfy by setting a, b + c iff itisnot
the case that col(¢) = 1 and col(a) = col(b) = 0. Obvi-
ously GEN,, () = 0.

Playing the Karchmer-Wigderson game for GEN,, now
yiedsatriple(a, b, ¢)suchthat a, b - cint, anda, bt/ cin
t,. By definition of ,,, thismeans that col(a) = col(b) = 0
and col(c) = 1, and by definition of #,. one of the following
cases must hold:

e a=b=1andc = aq; forsome j < d. By definition
of col, yd,j(l’d,j) =1.

ec=nanda=10= a1 Inthiscase, y1,1(l‘1,1) =0.

® 4 = Qj41j, b = Ai41,5+1 and ¢ = a; ;. Then
we have y;j(z;;) = 1, ad yip1j(ip1;) =
Yit1,j+1(Tit15+1) = 0.

Ineither case, the players have solved PYRGEN(rm, d) with-
out any additional communication. d

Now the lower bound on C'Cr(PYRGEN(m,d)) ob-
tained from Lemma 9 and Theorem 4, together with
Lemma 10 immediately imply Theorem 3 with e = % by
taking m = d%%.

Let i bean input to GEN,,. We say that n is generated in
adepth-d pyramidal fashion by ¢ if thereis a mapping m :
Pyrq — [n]suchthat 1,1 F m(d, j) forevery j < d, m(i+
1,7),m(i+ 1,7+ 1) F m(i,j) forevery (i, j) € Pyrg—1



andm(1,1), m(1,1) - n (recédl that a, b - c meanst, ; . =
1).

Asthereductionin Lemma 10 producesonly inputsfrom
GEN,; (1) which havethe additional property that » isgen-
erated in a depth-d pyramida fashion, we can state the fol -
lowing strengthening of Theorem 1.

Corollary 11 Let n, d be as above. Every monotone real
formula that outputs 1 on every input to GEN,, for which n
is generated in a depth-d pyramidal fashion, and outputs0
on all inputswhere GEN,, is 0, hasto be of size Q(2"").

The other consequences drawn from Theorem 4 and
Lemma9in[26] apply to monotonereal circuitsaswell, e.g.
we just state without proof the following result:

Theorem 12 There are constants ¢, ¢ > 0 such that for ev-
ery functiond(n) < n¢, thereis a family of monotone func-
tions f,, : {0,1}™ — {0, 1} that can be computed by mono-
tone boolean circuits of size n®1) and depth d(n), but can-
not be computed by monotonereal circuits of depth lessthan
c-d(n).

The method also gives asimpler proof of the lower bounds
in[20], in the same way as [26] simplifiesthe lower bound
of [21].

4. Separation between tree-like and dag-like
versions of Resolution and Cutting Planes

Cutting Planes refutations are linked to monotone real
circuits by the following interpolation theorem due to
Pudlak:

Theorem 13 (Pudlak [25]) Let p, 7, 7 bedigoint vectors of
variables, andlet A(7, ¢) and B(f, ") be sets of inequalities
in the indicated variables such that the variables p either
have only nonnegative coefficients in A(f, ¢) or have only
nonpositive coefficientsin B(57, 7).

Supposethere isa CP refutation R of A(F, §) U B(F, 7).
Then there is a monotone real circuit C'(p) of size O(|R|)
such that for any vector @ € {0, 1}I71

C(a)
C(a)

0 — A(d,q) isunsatisfiable
1 — B(d,r) isunsatisfiable

Furthermore, if R istree-like, then C'(p) isa monotone real
formula.

We now define an unsatisfiable set of clauses related to
GEN,,. The variables p, ; . for a,b,c € [n] represent the
input to GEN,,. Variables ¢; ; , for (¢,j) € Pyrqanda €
[n] encode a pyramid where the element « isassigned to the
position (¢, j) by a certain mapping m : Pyrq — [n] (cf.
Corollary 7). Finaly thevariables r, for a € [n] represent

a coloring of the elements by 0, 1 such that 1 is colored O,
n iscolored 1 and the elements colored 0 are closed under
generation.

The sets of clauses Gen(p, §) and Col(p, 7) are defined
in Table 1. Obviously, if Gen(t, ¢) is stisfiable for afixed
vectori e {0, 1}"3, then n isgenerated in adepth-d pyrami-
dal fashion, and if C'ol(i, 7)) issatisfiable, then GEN(7) = 0.
Sincethe variables 7 occur only positively in Gen(F, ¢) and
only negatively in C'ol(, ), Theorem 13 is applicable, and
the formula obtained from this application satisfies the con-
ditionsof Corollary 11. Hence we can conclude:

Theorem 14 For somee > 0, tree-like C' P refutations of
the clauses Gen(f, §) U C'ol(f, 7) have to be of size 24"°).

Ontheother hand, there are polynomid sizedag-likeres-
olution refutations of these clauses.

Theorem 15 There are (dag-like) resolution refutations of
size n®) of the clauses Gen(, §) U Col(, 7).

As the proof is very similar to that of Theorem 18 below,
we omit it. The following corollary followsby thelast two
Theorems and well-known simul ation results:

Corollary 16 Theclauses Gen(p, §) U Col(p, ) exponen-
tially separate the following proof systems: Tree-like from
dag-like Resolution, tree-like Cutting Planes from dag-like
Cutting Planes and tree-like Cutting Planes from bounded-

depth Frege systems.

4.1. Separation of tree-like CP from regular
resolution

We now modify the clauses C'ol(p, 7), so that the mod-
ified clauses allow small regular resolutions, but in such a
way that the lower bound proof still applies. We replace
the variables r, by 7, ; p fora € [n],1 < ¢ < d and
D € {L, R}, giving the coloring of lement «, with auxil-
iary indices: being arow inthe pyramid and D distinguish-
ing whether an element isused as aleft or right predecessor
in the generation process.

The set RCol(p, 7) is defined in Table 2. Due to the
clauses (13) and (14), thevariables r, ; p are equivalent for
all values of the auxiliary indices 7, D. Hence a satisfying
assignment for RC'ol(, 7) till codes acoloring of [r] such
that elementsthat can be generated from 1 are colored 0, the
elements from which n can be generated are colored 1, and
the 0-colored elements are closed under generation. Hence
if RCol(t,7) is satisfiable, then GEN({) = 0.

Hence any interpolant for the clauses Gen(f,¢) U
RCol(p, 7) satisfies the assumptions of Corollary 11, and
we can conclude

Theorem 17 Tree-like CP refutations of the clauses
Gen(p, §) U RCol(p, 7) have to be of size 27",



\/ 4i,5,a

1<a<n

(jd,j,a VPila

61,1,a VPa,an

Qit1,j,aV G+1,j41,6V Qi,j,eV Pab,e
1

Tn

TaVThV pa,b,c VT

Table 1. The set Gen(p, §) is given by (3) - (6), and Col(p, ) by (7) - (9).

pl,l,a v fa,d,D

pa,a,n VTa1,D
Tait1l, LV Thi+1, RV Pab,eVTeiD

Tai,DV ra,i,D

Tai,DVTajD

for (Zaj) € Pyrd (3)
forl <j<danda € [n] 4
fora € [n] (5)
for (¢,j) € Pyrq_1 anda, b, c € [n] (6)
(7
8
fora,b,c € [n] ©)
forae[njand D € {L, R} (10)
forae[njand D € {L, R} (11)
for (i,j) € Pyrq—1, a,b,c € [n] (12)
and D € {L, R}
forl<i<dand D € {L, R} (13)
forl<i,j<dandD e {L,R} (14)

Table 2. The set of clauses RCol(p, 7).

Ontheother hand, we have thefollowing upper bound on
(dag-like) regular resolution refutations of these clauses:

Theorem 18 Thereare (dag-like) regular resol ution refuta-
tions of the clauses Gen(j, §) U RCol(, 7) of size n®(1).

Proof : First we resolve clauses (4) and (10) to get

dd,j,aV Ta,d,D (15)

forl < j<d,1<a<mnadD e {L,R}. Next we

resolve (5) and (11) to get
q1,1,aV Ta,1,D (16)

forl <a<nandD e {L, R}. Findly, from (6) and (12)
we obtain

Git1,j,aV G+1,j4+1,6V Gij,eV Tai+1,LV Thi+1,RY Tei D
(17)

forl<j<i<d 1<abe<nandDe{L, R}.

Now we want to derive g; ; o v 74,;, p fOr every (i, j) €
Pyrg,1 <a<nandD € {L, R}, byinductionon: down-
ward from d to 1. Theinductionbaseisjust (15).

For the inductive step, resolve (17) against the clauses

Git1j,aVTaitr, L AN Gig1 415V P it1,R

which we have by induction, to give
qit1,,aV Git1,j41,6V qij,cVTeiD

forevery 1 < a,b < n.

All of these are then resol ved against two i nstances of (3),
and we get thedesired ¢; j . v 7. ; p.

Finaly, wehaveinparticular ¢, 1 o v 74 1,7, Whichwere-
solve against (16) to get ¢; 1, for every ¢ < n. From these
and an instance of (3) we get the empty clause. d

A proof of the upper bound in Theorem 15 can be ob-
tained from this by simply omitting the auxiliary indices
from the variables , ; p. Notethat the refutation given in
the proof of Thm. 18 is actually a Davis-Putnam refutation:
It respects the following elimination order

P11 .- Pnnn
1,d,L T1,dR - TndL TndR
q1,d1 ---q91,dn ---4dd1 --- 4ddn

1,d-1,L ---Tnd-1,R 91,d—1,1 --- 4d—1,d—1,n

™MMai,L "11,R 11,1 --- 91 1n -



5. Lower bound for Davis-Putnam resolutions

Goerdt [14] givesasuperpolynomia separation of Davis-
Putnam resolution from unrestricted resolution. The lower
bound he gives is of the order nf(lcglosn) By gpplying
his method to a modification of the clauses Gen(p, ¢) U
Col(p, 7), we can improve the separation to exponential.

We modify the clauses Gen(g, ¢) in such a way as to
make small Davis-Putnam resolution refutations impossi-
ble, while still alowing for small unrestricted resolutions.
The lower bound is proved by a bottleneck counting argu-
ment similar to that used in [14], whichisbased ontheorig-
inal argument of [17].

Let d > 8 bedivisibleby 4 and let n = d3, and choose a
mapping 1« : [d] x [¢] — Pyry such that no element from
column ¢ ismapped to rowsbetween ; — 1 between:+1,i.e.
if u(i,7) = (7, 7)., then? ¢ {i — 1,7, + 1}, and such that
no two elements from the same column are mapped to the
same position, i.e. if j; # ja, then (i, j1) # p(é, j2). Such
mappings are easy to construct; note that we do not require
n to beinjective.

The set of clauses DPGen(p, ¢) isbuiltfrom Gen(p, §)
by adding additional literalsto some of the clauses (4) and
(6). Theclauses (4) for 1 < j < dand a < £ are replaced
by

Qi j1b v 4d,j,a Vv P1la (18)

for every b € [n], where (', j') = u(d, a). The clauses (6)
for (i,5) € Pyrq_1,a,b € [n]and 1 < ¢ < £ arereplaced
by

GitjreV Qit1,5,aV Git1,541,6V G5 5,cV Pa,b,e

(19)

for every e € [n], where (i, j') = pu(i,
remain unchanged.

¢). All other clauses

Proposition 19 Thereare(dag-like) unrestricted resolution

refutations of the clauses D PGen(p, ¢) U Col(p, 7) of size
nO).

Proof : First, fromtheclauses(18) and (3) derivetheorigina
clauses (4), and from (19) and (3) derive (6). Then apply the
refutations from the proof of Theorem 15, which of course
work for any valuesof n and d. d
Definition: A critical assignment « isgiven by

e acoloring col, € 2" such that col, (1) = 0 and
coly(n) = 1. The values «(r,) are assigned accord-
ingto coly(a).

e aset of triples G, C [n]® such that for no triple
(a,b,¢) € Gy, coly(a) = coly(b) = 0 and coly(c) =
1. Vaues a(p, »,.) are assigned according to G, .

e A position (i, jo) € Pyrq With a(g;,, j,...) = 0 for
every a € [n].

o A mapping my : Pyrg \ {ia, jo} — [n] such that

— every triangleisconsistent with G, , i.e. for every
(Zaj) € Pyrd—l such that (iOMjOz) % {(Za])a (Z+
Lj),(i4+1,j4+1)}

(moz(i + 1aj)a ma(i + 1aj+ 1)’ ma(iaj))

iIsinG,.

—if (e, Ja) £ (1,1), then
(mq(1,1),ma(1,1),n) € Gy.

- (1,1,mq(d,j)) € G, for every j such that
(d, ) # (ia; ja)-

Then O‘(qi,j,ma(i,j)) =1land a(qi,j,b) =0fordlob ;é
me(i, ), forevery (¢, §) # (ia, ja)-

A criticad assignment satisfies al clauses from

Col(p,7), and dl clauses from DPGen(f,§) except

for \/aE[n]

Theorem 20 (Dag-like) Davis-Putnam resolution refuta-
tions of the clauses DPGen(f, ) U Col(p, 7) haveto be of

sizeQ(2:"7).

Tiajo,a

Proof: Let an elimination order (zy,...,zy) be given,
where N = 3 + (“T')n + n is the number of vari-
ables, and a Davis-Putnam refutation R of DPGen(p, ¢) U
Col(p, ) respecting this eimination order be given. For
(4,j) € Pyrgands < N, let S(i,j5,s) :=
{a < % S Qija €421, ..., 2} } Let (ép,jo) denote the
unique position in Pyr; such that there isan index sq <
N with [S(ig, jo, s0)| = £, and for dl (i,j) # (io, jo),
|S(i, j,50)] < £. In other words, (i, jo) is the first po-
sition in Pyr, for which £ variables ¢;, ;, . Witha < £
are eliminated. Let {a, ..., ad} denote S(ig, jo, so). FoOr
echl < k < ¢ < let (ix, jr) denoteﬂ(zo,ak) and define
Ry =[]\ S(ix, jr, s0), i.e Ry istheset of thosea < £
for which ¢;, ;, . is diminated later than any ¢;, ;, ., for
1 < ¢ < 4. Notethat |Ry| > ¢ by definition of (i, jo)
and by thefirst requirement for /J

A critical assignment « isO-critical if (o, jo) = (40, jo)
and mq (4, ji) € Ry, and furthermore the following con-
ditionshold

L4 (ma(i0+1aj0)ama(i0+1aj0+1)aak) ¢ Goz IfZO 7& d
or (1,1,ap) ¢ Goifipg =d

o ifip, jo > 1,then (my (o, jo— 1), ap, ma(io — 1, jo—
1)) € G,

eifiyg > landj, <
1); moz(iO - 1a.70)) S Goz

io, then (ak,ma(iOajO +



forevery 1 <k < 2.
The next lemma shows that there are many O-critical as-
signments.

Lemma2l For every choice of pairwise distinct values
b, ... ,b% with b, € R, there isa O-critical assignment

OzWithma(ik,jk) = b for 1 < k < %
Proof : The assignment « is constructed as follows:

1. Iféy < d,thenvaluesim, (ip+1, jo) = ¢y andmq (io+
1,jo+1) = ¢, areassigned with £ < ¢1, ¢, < d.

2. For each (i,5) # (do,Jjo) for which no value
mey(i,j) has been assigned yet, ie (i,j) ¢
{(ilajl)a cee ’(i%aj%)a (io + 1aj0)a (io + 1,50+ 1)}'
assignavauen —id < my(i,j) < n—(i—1)d, such
that no value is assigned twice.

3. Put al triples occurring in the pyramid and
those required by the definition of 0-critica into
G4, and no others, i.e. (G, contains the triple
(mu(1,1),me(1,1),n), al triples (1,1, m.(d,j))
for (d,7) € Pyrq \ {(ia,jo)} and al triples
(moz(i + 1,j),ma(i + 1;.7 + 1),moz(i;j))
such that {(¢,7),(: + 1,7),(¢ + 1,7 + )} C
Pyrqg \ {(ia,ja)}, and for i > 1, @l triples
(ma(io,jo — 1),ak,ma(i0 —1,j0— 1)) |f_]0 > 1 and
(ar, mq(in, jo + 1), ma(io — 1, jo)) if jo < 0.

4. Color dl elementsinrowsi,,...,dby 0, and aso all
elements that are thereby forced to have color 0 by the
second clause in the definition of critical assignment,
i.eif (a,b,¢) € G, anda, b haveaready been colored
0,thenalsociscolored 0. Color all remaining elements
by 1.

To verify that « is O-critical, observe that the only elements
< g appearing in the pyramid are the by, so thisisthe only
way that the values a; can occur in the pyramid.. If i5 < d,
thenasn = d® > d?+d, theelementsc, , ¢, do not appear in
thepyramid anywhereelsebut at (ig+1, jo), (d0+1, jo+1),
hence notriple(eq, ¢z, ay) getsputinto G,,. If iy = d, then
ir # d forevery k, sonotriple(1,1, a;) getsputinto G,,.

The elements m,, (4y, jo — 1) and m,(éo, jo + 1), if de-
fined, cannot occur adjacent to any a;, and so the elements
me(ip — 1, jo — 1) and mq (ip — 1, jo) are not forced to be
colored 0, hence they get colored 1. Therefore everything
that is above these positionsin the pyramid gets colored 1
also, asindicated in Figure 1.

In particular, if m,(1,1) isdefined, it is colored 1, and
thusn iscolored 1. Hence « is critical, and by the remarks
above, O-criticd. O

Now we map O-critical assignmentsto certain clausesin
the proof. For a O-critical assignment «, let C, be the first
clausein R such that { a < £; ¢;,j,,0 OCCUrSINCy | =

Figure 1. the black dot indicates (i, j;).

[5]1 \ {ai,...,as} and o does not satisfy C,. This
clause exists because « determines a path through R from
Vi<acn Qio,jo,a tOtheempty clause such that « doesnot sat-
isfy any clause on that path. Thevariables ¢;, ;, « Witha <
¢ areeliminated dlong that path, and g, j,.a, , - - - Gio jo,aa/s
are the first among them in the elimination order. The fol-
lowinglemmashowsthat theclauses C', haveacertain com-
plexity, which implies that the mapping o — ', does not
map too many O-critical assignmentsto the same clause.

Lemma22 Let o be a O-critical assignment and b, =
ma(ik, jr). Thenfor every 1 < k < 4, theliteral ¢;, j, 5,
occursin C,.

Proof: Let « bethe assignment defined by o/ (g5, i, a5 ) =
1 and &'(z) := «(z) for al other variables z. As g;, j,.a,
does not occur in C',, o does not satisfy C', either. If 75 <
d, theonly clausefrom DPGen(p, ) U Col(p, ¥) that isnot
satisfied by o' is

Qir,jr,br ¥V Qio+1,jo,c1 V Qio+1,50+1,c2 V Qig,jo,ar ¥V Perca,an

wherec, := mqy(ip + 1, jo) @ad ca := myo(i0 + 1, jo + 1).
If ;g = d, thenthe only clause not satisfied by o' is

Qix,jr,bx ¥V Qio,jo,ax V P1,1,ak -

The first item in the definition of O-critical guarantees that
these clauses are not satisfied, and the other two make sure
that the other possible candidates, i.e. instances of (6) or (19)
with (4g, jo) at the bottom of thetriangle, are satisfied.

In both cases there is a path through R leading from the
clausein questionto C,,. The variablethat is eliminated in
thelast inference on that path must be oneof the ¢, , ;, ., for
1 << 4 Sinceby € Ry, thevariableg;, j, », islaterin
theelimination order, soit cannot be eliminated onthat path.
Hence theliteral g;, ;, », still occursin C,,. |

Now let o, 3 be two O-critical assignments such that
br = ma(in, jr) # ms(ip,ji) forsomel < k < 4,
so that 5(qi, . 5,) = 0. By Lemma 22, thelitera ¢;, ;,. »,
occursin C., therefore g satisfies C,, and hence Cs # C,.



By Lemma 21, there are at least %! distinct O-critical as-
signmentsthat differ in thevalues m,, (i, j3 ). Thus R con-

tainsat least 41 > (L)% = Q(257) different clauses of

theform C,, which proves the theorem. a
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