On the Automatizability of Resolution
and Related Propositional Proof Systems*

Albert Atserias and Maria Luisa Bonet

Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya, Barcelona
C/Jordi Girona Salgado, 1-3, Edif. C6.
08034 Barcelona - Spain.

Tel: +34 93 401 69 94
Fax: 434 93 401 70 14

atserias,bonet }@lsi.upc.es
{ : P

Abstract. We analyse the possibility that a system that simulates Res-
olution is automatizable. We call this notion ”weak automatizability”.
We prove that Resolution is weakly automatizable if and only if Res(2)
has feasible interpolation. In order to prove this theorem, we show that
Res(2) has polynomial-size proofs of the reflection principle of Resolution
(and of any Res(k)), which is a version of consistency. We also show that
Resolution proofs of its own reflection principle require slightly subexpo-
nential size. This gives a better lower bound for the monotone interpola-
tion of Res(2) and a better separation from Resolution as a byproduct.
Finally, the techniques for proving these results give us a new complex-
ity measure for Resolution that refines the width of Ben-Sasson and
Wigderson. The new measure and techniques suggest a new algorithm
to find Resolution refutations, and a way to obtain a large class of exam-
ples that have small Resolution refutations but require relatively large
width. This answers a question of Alekhnovich and Razborov related to
whether Resolution is automatizable in quasipolynomial-time.

* Partially supported by CICYT TIC2001-1577-C03-02, ALCOM-FT IST-99-14186
and HA2000-41.

2 Albert Atserias and Maria Luisa Bonet

1 Introduction

In several areas of Computer Science there has been important efforts in studying
algorithms for satisfiability, despite the problem is NP-complete, and also in
studying the complementary problem of verifying tautologies.

By the theorem of Cook and Reckhow [14], there is strong evidence that for
every propositional proof system there is a class of tautologies whose shortest
proofs are super-polynomial in the size of the tautologies. From this we con-
clude that given a propositional proof system S, there will not be an algorithm
that will produce S-proofs of a tautology in time polynomial in the size of the
tautology. This is because in some cases we might require exponential time just
to write down the proof. Considering this limitation of proof systems, Bonet,
Pitassi and Raz [12] proposed the following definition. A propositional proof
system S is automatizable if there exists an algorithm that, given a tautology,
it produces an S-proof of it in time polynomial in the size of the smallest S-
proof of the tautology. The idea behind this definition is that if short S-proofs
exist, an automatization algorithm for S should find them quickly. In the sequel
of papers [24,13,9] it was proved that no proof system that simulates AC°-
Frege is automatizable, unless some widely accepted cryptographic conjecture
is violated. Later, Alekhnovich and Razborov [1] proved that Resolution is not
automatizable under a reasonable assumption in parameterized complexity. The
drawback of this result is that it is weaker than the others in the sense that we
do not know whether a system that simulates Resolution can be automatizable.
This problem suggests the following definition. We say that a proof system § is
weakly automatizable if there is a proof system that polynomially simulates S
and is automatizable. At this point it is still open whether Resolution is weakly
automatizable.

In this paper we characterize the question of whether Resolution is weakly
automatizable as whether the extension of Resolution Res(2) (or Res(k) for
k constant) has feasible interpolation. This notion will be defined in Section
4. Let us say for the moment, that Resolution, Cutting Planes, Relativized
Bounded Arithmetic, Polynomial Calculus, Lovasz-Schrijver and Nullstellensatz
have feasible interpolation (see [20, 12,26, 15,22,30,29,27]). On the other hand,
the stronger system Frege, and any system that simulates AC?-Frege do not have
feasible interpolation under a cryptographic conjecture. To obtain this character-
ization we show that Res(2) has polynomial-size proofs of the reflection principle
of Resolution, which is a form of consistency saying that if a CNF formula is
satisfiable, then it does not have a Resolution refutation. We also show that
Resolution requires almost exponential size to prove its own reflection princi-
ple. As a corollary we get an almost exponential lower bound for the monotone
interpolation of Res(2) improving over the quasipolynomial lower bound in [4].

Despite the discouraging results in [1] mentioned before, there is still some
effort put in finding good algorithms for proof systems such as Resolution. The
first implementations were variants of the Davis-Putnam procedure [18,17] for
testing unsatisfiability that consists of either producing a tree-like Resolution
refutation (if one exists), or giving a satisfying assignment. For various versions

On the Automatizability of Resolution 3

of this algorithm, one can prove that is it not an automatization procedure even
for tree-like Resolution. A better algorithm for finding tree-like Resolution refu-
tations was proposed by Beame and Pitassi [5]. They give an algorithm that
works in time quasipolynomial in the size of the smallest proof of the tautol-
ogy. So tree-like Resolution is automatizable in quasipolynomial time, but the
algorithm is not a good automatization procedure for general Resolution (see
[10,6,11]). A more efficient algorithm is the one of Ben-Sasson and Wigderson
based on the width of a refutation. This algorithm weakly automatizes tree-like
Resolution in quasipolynomial time and automatizes Resolution in subexponen-
tial time. On the other hand, Bonet and Galesi gave a class of tautologies for
which the algorithm will take subexponential time to finish, matching the up-
per bound. Using the techniques introduced in this paper, we show that this
is not an isolated example. We describe a method to produce tautologies that
have small Resolution refutations but require relatively large width, answering an
open problem of Alekhnovich and Razborov [1]. As they claim, this is a necessary
step towards proving that Resolution is not automatizable in quasipolynomial-
time. Our techniques also suggest a new complexity measure for Resolution that
refines the width of Ben-Sasson and Wigderson, and that gives rise to a new
algorithm to find Resolution refutations.

2 Definitions

Resolution is a refutational proof system for CNF formulas, that is, conjunctions
of clauses. The system has one inference rule, the resolution rule:

Avl —lVvB
AV B

where [is a literal, and A and B are clauses. The refutation finishes with the
empty clause. The size of a Resolution refutation is the number of clauses in it.
The system tree-like Resolution requires that each clause is used at most once
in the proof. When this restriction is not fulfilled, we say that the refutation is
in DAG form.

Following [7] the width of a refutation IT is defined as the maximum number
of literals of the clauses appearing in IT. The main result in [7] is a relation
between the size and the width of Resolution refutations. They show that if a
set of 3-clauses has a tree-like Resolution refutation of size S, then it has a
Resolution refutation of width log Sr. Similarly, if it has a Resolution refutation
of size Sg, then it has a Resolution refutation of width O(y/nlog Sg). Ben-Sasson
and Wigderson used this size-width trade-off to obtain an algorithm that finds
Resolution refutations. It consists in deriving all posible clauses of increasing
width until the empty clause is found. The time of the algorithm is n©(*) where
w is the minimal width of a Resolution refutation of the initial set of clauses.
Notice that the space used by the algorithm can only be bounded by n°) since
all derivable clauses of width v < w are needed to obtain the clauses of width w.
Recall that the minimal width w is at most log St in the tree-like case, where

4 Albert Atserias and Maria Luisa Bonet

St is the minimal tree-like size to refute the initial set of clauses. Therefore, the
algorithm takes time Sg(bgn) in this case. Also, the minimal width w is at most
vnlog Sk in the general case, where Sg is the minimal size to refute the set of
clauses in general Resolution. This gives an n®(V"1985%) hound on the running
time.

A k-term is a conjunction of up to k literals. A k-disjunction is an (un-
bounded fan-in) disjunction of k-terms. The refutation system Res(k), defined
by Krajicek [23], works with k-disjunctions. There are three inference rules in
Res(k): Weakening, A-Introduction, and Cut.

A AVlL BV(aA...AlL) AV(iA...AL) BV=lV...V-l,
AV B AVBYV (1 A...AL) AV B

Here A and B are k-disjunctions and the [;’s are literals. As usual, if [is a
literal, =/ denotes the oposite literal. We also allow the axioms [V —l. Observe
that Res(1) is equivalent to Resolution since the axioms and the weakening rule
are easy to eliminate in this case. The size of a Res(k) refutation is the number
of k-disjunctions in it. As in Resolution, the tree-like version of Res(k) requires
each k-disjunction in the proof to be used only once.

3 Some Simple Lemmas and a New Measure

For every set of literals l1,...,l; we define a new variable z;,
...Al;. The following clauses define z, ;. :

....l, meaning I; A

=z, VI forevery i€ {1,...,s} (1)
—|11V...V—'ls vzll,...,ls (2)
Let C be a set of clauses on the variables v1,..., v,. For every integer k£ > 0, we

define Cy as the union of C with all the defining clauses for the variables z;, ;.
for all s < k.

Lemma 1. If the set of clauses C has a Res(k) refutation of size S, then Cy has
a Resolution refutation of size O(kS). Furthermore, if the Res(k) refutation is
tree-like, then the Resolution refutation is also tree-like.

Proof of Lemma 1I: Let IT be a Res(k) refutation of size S. To get a Resolution
refutation of Cg, we will first get a clause for each k-disjunction of II. The
translation consists in substituting each conjunction Iy A... Al; for s < kina
clause of IT by z;,,.. ;.. Also we have to make sure that we can make this new
sequence of clauses into a Resolution refutation so that if IT is tree-like, then the
new refutation will also be. We have the following cases:

Case 1: In IT we have the step:

CV(IL A NL) DV=ly V... V=l
CcvD

On the Automatizability of Resolution 5

The corresponding clauses in the translation will be: C'V 2, ..., D'V=liV...V

=ls and C'V D'. To get a tree-like proof of C'V D’ from the two other ones, first

obtain —z;, . ;, V D' in a tree-like way from D'V =l; V...V =l and the clauses

=zy,,..1, V0. Finally resolve —z;, . ; VD' with C'V 2., to get C'V D',
Case 2: In IT we have the step:

Cvly DV(laA...Al)
CVDV (LA AL)

The corresponding clauses in the translation will be: C' V Iy, D'V z,,.. ;. and
C'VD'V 2z, . 1,. Notice that there is a tree-like proof of =y V =z, ... ;. V21,1,
from the clauses of Cx. Using this clause and the translation of the premises, we
get CI V DI V 2117.“713.

Case 3: The Weakening rule turns into a weakening rule for Resolution which
can be eliminated easily.

At this point we have obtained a Resolution refutation of Cy that may use
axioms of the type [V —l. These can be eliminated easily too. O

Lemma 2. If the set of clauses Cyx has a Resolution refutation of size S, then C
has a Res(k) refutation of size O(kS). Furthermore, if the Resolution refutation
is tree-like, then the Res(k) refutation is also tree-like.

Proof: We first change each clause of the Resolution refutation by a k-disjunction
of Res(k) by translating z;, ... i, by i A...Al; and =z, g, by =1 V...V =l,. At
this point the rules of the Resolution refutation turn into valid rules of Res(k).

Now we only need to produce proofs of the defining clauses of the z variables
in Res(k) to finish the simulation. The clauses —z;, .. ;, VI; get translated into
=l1 V...V =l VI, which is a weakening of the axiom l; V —=/;. The clause
Sl V..Vl Vg, gets translated into —l; V...V =l V (I AL .. Aly) which
can be proved form the axioms [; V =/; using the rule for the introduction of the
A. O

The next lemmas are essentially Proposition 1.1 and 1.2 of [21].

Lemma 3. Any Resolution refutation of width k and size S can be translated

into a tree-like Res(k) refutation of size O(kS).

Proof sketch: Let II be a Resolution refutation of width & and size S. Every non-
initial clause C' of IT is derived from two other clauses, say C7 and C3. Note that
the k-disjunction =C4 V =Cy V C, where —=(}; is the conjunction of the negated
literals of Cj, has a very simple tree-like Res(k) proof. The rest of the proof goes
as in [21]. O

Lemma 4. ([21, 25, 19]) Any tree-like Res(k) refutation of size S can be trans-
lated into a Resolution refutation of size O(S?)

These lemmas suggest a refinement of the width mesure that we discuss next.
Following [7], for an unsatisfiable set of clauses C, let w(C) be the minimal width

6 Albert Atserias and Maria Luisa Bonet

of the Resolution refutations of C. We define k(C) to be the minimal k such that
C has a tree-like Res(k) refutation of size n*, where n is the number of variables
of C. We will prove that k(C) is at most linear in w(C), and that in some cases,
k(C) is significantly smaller than w(C).

Lemma 5. k(C) = O(w(C)).

Proof: Let w = w(C). Then C has a Resolution refutation of size n°(®) and width
w since there are less than n®(®) clauses of width at most w and each clause
needs to be derived only once since we are in the dag-like case. By Lemma 3, C
a tree-like Res(w) refutation of size O(wn®®)). Taking k = O(w), we see that
k(C) =0(w(C)). O

Lemma 6. There are sets of 3-clauses F,, such that k(F,) = O(1) but w(F,) =
2(logn/loglogn).

Proof: Let F, be the set of 3-clauses E-PH P, where m’ = logm/loglogm. Let
n be the number of variables of E-P H P[,. Dantchev and Riis [16] proved that F,
has tree-like Resolution refutations of size 20(m"108m") which in this case is n®(1),
Therefore, k(F,) = O(1). On the other hand, a standard width lower bound
argument proves that w(F,) = £2(m’) which in this case is 2(logn/loglogn).
O

These Lemmas give rise to an algorithm to find Resolution refutations that
improves the width algorithm of Ben-Sasson and Wigderson. Due to space lim-
itations, we omit the precise description of this algorithm (see [3] instead). In
a nutshell, the algorithm consists in using the algorithm of Beame and Pitassi
[5] to find tree-like Resolution refutations of Cy of size n* for increasing val-
ues of k until one is found. By Lemma 6, this algorithm improves Ben-Sasson
and Wigderson in terms of space usage, and by Lemma 5 its running time is
never worse for sets of clauses with relatively small (subexponential) Resolution
refutations.

4 Reflection Principles and Weak Automatizability

Let S be a refutational proof system. Following Razborov [30] (see also [28]),
let REF(S) be the set of pairs (C,m), where C is a CNF formula that has an
S-refutation of size m. Furthermore, let SAT™ be the set of pairs (C, m) where
C is a satisfiable CNF. Observe that when m is given in unary, both REF(S)
and SAT* are in the complexity class NP. Pudlak called (REF(S), SAT*) the
canonical NP-pair of S. Note also that REF(S)NSAT* = @ since S is supposed
to refute unsatisfiable CNF formulas only. Interestingly enough, there is a tight
connection between the complexity of the canonical NP-pair of § and the weak
automatizability of S. Namely, Pudlak [28] showed that S is weakly automatiz-
able if and only if the canonical NP-pair of § is polynomially separable, which
means that a polynomial-time algorithm returns 0 on every input from REF(S)
and returns 1 on every input from SAT™. We will use this connection later.

On the Automatizability of Resolution 7

The disjointness of the canonical NP-pair for a proof system &S is often ex-
pressible as a contradictory set of clauses. Suppose that one is able to write
down a CNF formula SAT;(z, z) meaning that “z encodes a truth assignment
that satisfies the CNF encoded by z. The CNF is of size r and the underly-
ing variables are vy,...,v,”. Similarly, suppose that one is able to write down
a CNF formula REFr’fm(m, y) meaning that “y encodes an S-refutation of the
CNF encoded by z. The size of the refutation is m, the size of the CNF is r,
and the underlying variables are vq,...,v,”. Under these two assumptions, the
disjointness of the canonical NP-pair for § is expressible by the contradictions
REF}, (y,2) NSAT (2, z). This collection of CNF formulas is referred to as the
Reflection Principle of 8. Notice that REF]?, (y,z) A SAT(x,z) is a form of
consistency of S. ‘

We turn next to the concept of Feasible Interpolation introduced by Krajicek
[22] (see also [12,26]). Suppose that Ag(z,yo) A A1(z, y1) is a contradictory CNF
formula, where z, yo, and y; are disjoint sets of variables. Note that for every
given truth assignment a for the variables z, one of the formulas Ag(a, yo) or
A1(a, y1) must be contradictory by itself. We say that a proof system S has the
Interpolation Property in time T' = T'(m) if there exists an algorithm that, given
a truth assignment a for the common variables z, returns an i € {0, 1} such that
A;(a,y;) is contradictory, and the running time is bounded by T(m) where m is
the minimal size of an S-refutation of Ag(z, yo) A A1(z, y1). Whenever T(m) is
a polynomial, we say that & has Feasible Interpolation.

The following result by Pudlak connects feasible interpolation with the re-
flection principle and weak automatizability.

Theorem 1. [28] If the reflection principle for S has polynomial-size refutations
in a proof system that has the feasible interpolation, then the canonical NP-pair
for 8 is polynomially separable, and therefore S is weakly automatizable.

For the rest of this section, we will need a concrete encoding of the reflection
principle for Resolution. We start with the encoding of SAT} (z, z). The encoding
of the set of clauses by the variables in z is as follows. There are variables z. ; ;
for every e € {0,1}, i € {1,...,n} and j € {1,...,7}. The meaning of z¢; ; is
that the literal v; appears in clause j, while the meaning of z;;; is that the
literal —v; appears in clause j.

The encoding of the truth assignment a € {0, 1}" by the variables z is as fol-
lows. There are variables z; for every 1 € {1,...,n}, and 2. ; ; for every e € {0, 1},
ie{l,...,n+ 1} and j € {1,...,r}. The meaning of z; is that variable v; is
assigned true under the truth assignment. The meaning of zg ; ; is that clause j is
satisfied by the truth assignment due to a literal among vy, —vq, ..., v;_1, 7v;_1.
Similarly, the meaning of zy; ; is that clause j is satisfied by the truth assign-
ment due to a literal among vy, -y, ..., v;_1, 7v;_1, v;. We formalize this as a
set of clauses as follows:

—20,1,j (3) 20,n+1,5 (4)
20,6, V "o, V zi V g (5) 21,6, V x5 V 2z V Sz g, (6)
20,6, V To,i,j V 721,45 (7) 21,65 V 21,5 V 20,641, (8)

8 Albert Atserias and Maria Luisa Bonet

The encoding of REF,, (z,y) is also quite standard. The encoding of the
set of clauses by the variables in T is as before. The encoding of the Resolution
refutation by the variables in ¥ is as follows. There are variables y. ; ; for every
e€{0,1}, 7€ {l,...,n}, and j € {1,...,m}. The meaning of yo; ; is that the
literal v; appears in clause j of the refutation. Similarly, the meaning of y1; ;
is that the literal —v; appears in clause j of the refutation. There are variables
p;x and g; x for every j € {1,...,m} and k € {r,...,m}. The meaning of p;
(of ¢;,) is that clause C) was obtained from clause C; and some other clause,
and C; contains the resolved variable positively (negatively). Finally, there are
variables w; x for every ¢ € {1,...,n} and k € {r,..., m}. The meaning of w; x
is that clause C} was obtained by resolving upon v;. We formalize this by the
following set of clauses:

ey iV Yeyi 9) “Ye,i,m (10)
“Y0,5,7 VY TWYLi,j (11) PLeY .. Vpr_ 1k (12)
qEV .V Qro1k (13) —pik vV TGk (14)
“Pjk V TPk (15) =gk V Gk (16)
—pjk V owi g V Yo (17) g5V Wik V Y (18)
Pk V Wik VY WeiiV Yeik (19) =Gk V Wik V T Ye iV Yeik (20)
wyg V...V w,g (21) —wi g V Wy g (22)

Notice that this encoding has the appropriate form for the monotone interpola-
tion theorem.

Theorem 2. The reflection principle for Resolution SAT (z,z) AREF]!,, (x,y)
has Res(2) refutations of size (nr + nm)°(1),

Proof: The goal is to get the following 2-disjunction

n

Dy = v (Yo,ik AN 2i) V (Y150 N 2i)
i=1

for every k € {1,...,m}. The empty clause will follow by resolving D,, with
(10). We distinguish two cases: k¥ < r and r < k < m. Since the case k < r is
easier but long, we leave it to Appendix A.

For the case » < k < m, we show how to derive Dy from Dy,..., Dg_1. First,
we derive —p; r V =¢qik V Di. From (18) and (11) we get —qix V ~wqgr V —o,q,i-
Resolving with D; on yg 4,1 Wwe get

n

=ik V ok V (Y100 Az) V \ (Woia Az) V (yia Aozi). (23)
=1

i#q
A cut with 2, V =z on Y1 41 A 24 gives

n

~quk V "ok V 22g V \[(Wo,00 Azi) V (it A—z). (24)
=1

i#q

On the Automatizability of Resolution 9

Let ¢’ # ¢. A cut with zy V —zgr on yo,q11 A 2y gives

1 V ek V 2 V2 V (Y1,g Azg) VN (o0 Azi) V (g Azi). (25)
i#q,q

From (20) and (22) we get —q;x V —wg.x V =¥o,¢',1 V Yo,q' k- Resolving with (24)
on Yo 41 N 2z gives

=k V = Wa iV 22 Vo, k V (Urg i Amzg)V) (Moia Az V (yrin A-zi). (26)
i£q,q’

An introduction of conjunction between (25) and (26) gives

LRV T We kY zgV (Yo,q0k AN Zgt)V (Y1,g0 0 Az) V V (Yo,ia N2i) V (Yr,i0 A zi).
i£q,q’
(27)
From (20) and (22) we also get =g 5 V —wgx V Y141 V Y1,4',5- Repeating the
same procedure we get

=1k V ~We sV 2gV (Yo,00k Azg)V (g sk Azg)V) (W00 A2i) V (Y10 A=zi).

i#q,q
(28)
Now, repeating this two-step procedure for every ¢’ # ¢, we get
“qE V we i V zg V v (Yo,ik AN zi) V (Y160 A 7). (29)

iZq

A dual argument yould yield —=p; x V-wg i V 24 V \/#q(yo’i,k Az)V (1,06 A zi).
A cut with (29) on z, gives =p; Vg KV —wg i V \/#q(yo,i,k Azi)V (y1,i,6 A 2i).
Weakening gives then —p; 1 V=g 1 V—wg.x V Dy. Resolving with (21) gives —p; xV
=q1,5 V D. Coming to the end, we resolve this with (12) to get p;x V —¢gix V Dg.
Then resolve it with (14) to get —¢; 5 V Dg, and resolve it with (13) to get Dj.
O

An immediate consequence of Theorems 2 and 1 is that if Res(2) has feasible
interpolation, then Resolution is weakly automatizable. The reverse implication
holds too.

Theorem 3. Resolution is weakly automatizable if and only if Res(2) has fea-
sible interpolation.

Proof: Suppose Resolution is weakly automatizable. Then by Corollary 10 in [28],
the NP-pair of resolution is polynomially separable. We claim that the canonical
pair of Res(2) is also polynomially separable. Here is the separation algorithm:
Given a set of clauses C and a number S, we build C; and run the separation
algorithm for the canonical pair of Resolution on Cy and ¢ - 25, where ¢ is the
hidden constant in Lemma 1. For the correctness, note that if C has a Res(2)
refutation of size S, then Cs has a Resolution refutation of size ¢-25 by Lemma 1,

10 Albert Atserias and Maria Luisa Bonet

and the separation algorithm for the canonical pair of Resolution will return 0
on it. On the other hand, if C is satisfiable, so is C2 and the separation algorithm
for Resolution will return 1 on it. Now, for the feasible interpolation of Res(2),
consider the following algorithm. Let Ag(z,y) A A1(z, z) be a contradictory set
of clauses with a Res(2) refutation IT of size S. Given a truth assignment a for
the variables z, run the separation algorithm for the canonical pair of Res(2) on
inputs Ag(a, y) and S. For the correctness, observe that if A;(a, z) is satisfiable,
say by z = b, then IT|,=, .= is a Res(2) refutation of Ag(a,y) of size at most S
and the separation algorithm will return 0 on it. On the other hand, if Ag(a, y)
is satisfiable, the separation algorithm will return 1, which is correct. If both are
unsatisfiable, any answer is fine. O

The previous theorem works for any k constant. If & = log n, then we get that
if Resolution is weakly automatizable then Res(log) has feasible interpolation
in quasipolynomial time. The positive interpretation of these results is that to
show that Resolution is weakly automatizable, then we only have to prove that
Res(2) has feasible interpolation. The negative interpretation is that to show
that resolution is not weakly automatizable we only have to prove that Res(log)
doesn’t have feasible interpolation in quasipolynomial time.

Tt is not clear whether Res(2) has feasible interpolation. We know, however,
that Res(2) does not have monotone feasible interpolation (see [4] and Corollary 1
in this paper). On the other hand, tree-like Res(2) has feasible interpolation (even
monotone) since Resolution polynomially simulates it by Lemma 4.

A natural question to ask is whether the reflection principle for Resolution
has Resolution refutations of moderate size. Since Resolution has feasible inter-
polation, a positive answer would imply that Resolution is weakly automatizable
by theorem 1. Unfortunately, as the next theorem shows, this will not happen.
The proof of this result uses an idea due to Pudlak.

Theorem 4. For some choice of n, v, and m of the order of a quasipolyno-
mial s°(°8%) on the parameter s, every Resolution refutation of REF!, (z,y) A
SAT] (z, z) requires size at least 29(:1),

Proof: Suppose for contradiction that there is a Resolution refutation of size
S = 206" Let k = s'/2 and let COLg(p,q) be the CNF formula expressing
that ¢ encodes a k-coloring of the graph on s nodes encoded by {p;;}. An
explicit definition is the following: For every i € {1,..., s}, there is a clause of
the form \/fﬁz1 qii; and for every 4,5 € {1,...,s} with ¢ # jand l € {1,...,k},
there is a clause of the form —g;; V —=¢;; V —=p;;. Obviously, if G is k-colorable,
then COLk(G, q) is satisfiable, and if G' contains a 2k-clique, then COLg(G, q)
is unsatisfiable. More importantly, if G contains a 2k-clique, then the clauses of
PHP,?’“ are contained in COLg(G, q). Now, for every graph G on s nodes, let
F(G) be the clauses COLg(G, q) together with all clauses defining the extension
variables for the conjunctions of up to clogk literals on the g-variables. Here, ¢
is a constant so that the k?(°8%) upper bound on PHPZ* of [25] can be done
in Res(clog k). From its very definition and Lemma 1, if G contains a 2k-clique,

On the Automatizability of Resolution 11

then F(G) has a Resolution refutation of size k©O(ogk) Finally, for every graph
G, let z(G) be the encoding of the formula F(G). With all this notation, we are
ready for the argument.

In the following, let n be the number of variables of F(G), let r be the
number of clauses of F(G), and let m = kOUogk) By assumption, the formulas
REF],, (z(G),y) A SAT (z(G),) have Resolution refutations of size at most
S. Let C' be the monotone circuit that interpolates these formulas given z(G).
The size of C is S°(1). Moreover, if G is k-colorable, then SAT?(x(G),z) is
satisfiable, and C' must return 0 on z(G). Also, if G contains a 2k-clique, then
REF,, (x(G),y) is satisfiable, and C' must return 1 on z(G). Now, an anti-
monotone circuit for separating 2k-cliques from k-colorings can be built as fol-
lows: given a graph G, build the formula z(G) (anti-monotonically, see below for
details), and apply the monotone circuit given by the monotone interpolation.

The size of this circuit is 20(51/4), and this contradicts Theorem 3.11 of Alon and
Boppana [2].

It remains to show how to build an anti-monotone circuit that, on input
G = {puv}, produces outputs of the form z. ; ; that correspond to the encoding

of F(G) in terms of the z-variables.

— Clauses of the type \/f:1 qii: Let ¢ be the numbering of this clause in F(G).
Then, its encoding in terms of the z-variables is produced by plugging the
constant 1 to the outputs 1 g, ¢, ..., %1,4,,:- The rest of outputs of clause ¢
get plugged the constant 0.

— Clauses of the type —¢;; V =¢;; V —p;;: Let ¢ be the numbering of this clause
in F(G). The encoding is xo,q¢,,,t = 1, Z0,q;1,t = 1, %0,p;;,c = —P;; and the rest
are zero. Notice that this encoding is anti-monotone in the p;;’s. Notice also
that the encoded F(G) contains some p-variables (and not only g-variables
as the reader might have expected) but this will not be a problem since the
main properties of F((G) are preserved as we show below.

— Finally, the clauses defining the conjunctions of up to clogk literals are
independent of GG since only the g-variables are relevant here. Therefore, the
encoding is done as in the first case.

The reader can easily verify that when G contains a 2k-clique, the encoded
formula contains the clauses of PHP,fk and the definitions of the conjunctions
up to clogk literals. Therefore REF(z(G),y) is satisfiable given that PH P2k
has a small Res(clogk) refutation. Similarly, if G' is k-colorable, the formula
SAT(x(G), z) is satisfiable by setting z,,, = p;; and ¢; = 1 if and only if node
i gets color [. Therefore, the main properties of F(G) are preserved, and the
theorem follows. O

An immediate corollary of the last two results is that Res(2) is exponen-
tially more powerful than resolution. In fact, the proof shows a lower bound for
the monotone interpolation of Res(2) improving over the quasipolynomial lower

bound in [4].

12 Albert Atserias and Maria Luisa Bonet

Corollary 1. Monotone circuits that interpolate Res(2) refutations require size
22(s'") on Res(2) refutations of size s©(1085),

Theorem 4 is in sharp contrast with the fact that an appropriate encoding
of the reflection principle for Res(2) has polynomial-size proofs in Res(2). This
encoding incorporates new z-variables for the truth values of conjunctions of
two literals, and new y-variables encoding the presence of conjunctions in the 2-
disjunctions of the proof. The resulting formula preserves the form of the feasible
interpolation. We leave the tedious details to the interested reader.

Theorem 5. The reflection principle for Res(2) has Res(2) refutations of size
(n?r + mr)°0) . More strongly, the reflection principle for Res(k) has Res(2)
refutations of size (n*r + mr)o(l),

We observe that there is a version of the reflection principle for Resolution
that has polynomial-size proofs in Resolution. Namely, let C be the CNF formula
SAT (2, 2z) NREF},,(y, z). Then, Cz has polynomial-size Resolution refutations
by Lemma 1 and Theorem 2. However, this does not imply the weak automatiz-
ability of Resolution since the set of clauses does not have the appropriate form
for the feasible interpolation theorem.

5 Short Proofs that Require Large Width

Bonet and Galesi [11] gave an example of a CNF expressed in constant width,
with small Resolution refutations, and requiring relatively large width (square
root of the number of variables). This showed that the size-width trade-off of
Ben-Sasson and Wigderson could not be improved. Also it showed that the
algorithm of Ben-Sasson and Wigderson for finding Resolution refutations could
perform very badly in the worst case. This is because their example requires
large width, and the algorithm would take almost exponential time, while we
know that there is a polynomial size Resolution refutation.

Alekhnovich and Razborov [1] posed the question of whether more of these
examples could be found. They say this is a necessary first step for showing
that Resolution is not automatizable in quasipolynomial-time. Here we give a
way of producing such bad examples for the algorithm. Basically the idea is
finding CNFs that require sufficiently high width in Resolution, but that have
polynomial size Res(k) refutations for small &, say k& < logn. Then the example
consists of adding to the formula the clauses defining the extension variables for
all the conjunctions of at most k literals. Below we ilustrate this technique by
giving a large class of examples that have small Resolution refutations, require
large width. Moreover, deciding whether a formula is in the class is hard (no
polynomial-time algorithm is known).

Let G = (U UV, E) be a bipartite graph on the sets U and V of cardinality
m and n respectively, where m > n. The G-PH P, defined by Ben-Sasson and
Wigderson [7], states that there is no matching from U into V. For every edge

On the Automatizability of Resolution 13

(u,v) € E, let z,,, be a propositional variable meaning that u is mapped to v.
The principle is then formalized as the conjunction of the following clauses:

Typ, VooV, €U Ng(u)={vy,...,v.}
Ty VZTuw vEV, uyu' € Ng(v), u#u.

Here, N¢ (w) denotes the set of neighbors of w in G. Note that if G has left-degree
at most d, then the width of the initial clauses is bounded by d.

Ben-Sasson and Wigderson proved that whenever GG is expanding in a sense
defined next, every Resolution refutation of G-PH P]® must contain a clause
with many literals. We observe that this result is not unique to Resolution and
holds in a more general setting. Before we state the precise result, let us recall
the definition of expansion:

Definition 1. [7] Let G = (U UV, E) be a bipartite graph where |U| = m, and
|V| =n. ForU' C U, the boundary of U, denoted by dU’, is the set of vertices in
V' that have exzactly one neighbor in U’; that is, 0U' = {v € V : |[N(v)NU’| = 1}.
We say that G is (m,n,r, f)-expanding if every subset U' C U of size at most r
is such that |OU’| > f - |U'|.

The proof of the following statement is the same as in [7] for Resolution.

Theorem 6. [7] Let S be a sound refutation system with all rules having fan-in
at most two. Then, if G is (m, n, r, f)-ezpanding, every S-refutation of G-PH P}
must contain a formula that involves at least rf[2 distinct literals.

Now, for every bipartite graph G with m > 2n, let C(G) be the set of clauses
defining G-PH P together with the clauses defining all the conjunctions up to
clogn literals, where ¢ is a large constant.

Theorem 7. Let G be an (m,n, 2(n/logm), %log m)-ezpander with m > 2n
and left-degree at most logm. Then (i) C(G) has initial width logm, (ii} any
Resolution refutation of C(G) requires width at least £2(n/logn), and (iii) C(G)

has polynomial-size Resolution refutations.

Proof: Part (i) is obvious. For (ii), suppose for contradiction that C(G) has a
Resolution refutation of width w = o(n/logn). Then, by the proof of Lemma 2,
G-PHP]" has a Res(clogn) refutation in which every (clogn)-disjunction in-
volves at most welogn = o(n) literals. This contradicts Theorem 6. For (iii),
recall that PH P has a Res(clogn) refutation of size n®(1°8") by [25] since
m > 2n. Now, setting to zero the appropriate variables of PHP]", we get a
Res(clogn) refutation of G-PH P of the same size. By Lemma 1, C(G) has a
Resolution refutation of roughly the same size, which is polynomial in the size
of the formula. O

Tt is known that deciding whether a bipartite graph is an expander (for a
slightly different definition than ours) is coNP-complete [8]. Although we have
not checked the details, we suspect that deciding whether a bipartite graph

14 Albert Atserias and Maria Luisa Bonet

is an (m,n,r, f)-expander in the sense of Definition 1 is also coNP-complete.
However, we should note that the class of formulas {C(G) : G expander, m > 2n}
is contained in {C(G) : G bipartite, m > 2n} which is decidable in polynomial-
time, and that all formulas of this class have short Resolution refutations that
are easy to find. This is so because the proof of PH P2?™ in [25] is given explicitely.

6 Conclusions and Open Problems

We showed that the new measure k(C) introduced in section 3 is a refinement of
the width w(C). Actually, we believe that a careful analysis in Lemma 5 could
even show that £(C) < w(C) + 1 for sets of clauses C with sufficiently many
variables. On the other hand, we proved a logarithmic gap between k(C) and
w(C) for a concrete class of 3-clauses C,. We do not know if a larger gap is
possible.

It is surprising that the weak pigeonhole principle PH P2?" has short Res-
olution proofs when encoded with the clauses defining the extension variables.
This suggests that to prove Resolution lower bounds that are robust, one should
prove Res(k) lower bounds for relatively large k. In fact, at this point the only
robust lower bounds we know are the ones for AC?-Frege.

Of course, it remains open whether Resolution is weakly automatizable, or
automatizable in quasipolynomial-time.

Acknowledgement. We are grateful to Pavel Pudldk for stimulating discussions on
the idea of Theorem 4.

References

1. M. Alekhnovich and A. A. Razborov. Resolution is not automatizable unless W[P]
is tractable. In 42nd Annual IEEE Symposium on Foundations of Computer Sci-
ence, 2001.

2. N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7:1-22, 1987.

3. A. Atserias and M. L. Bonet. On the automatizability of resolution and related
propositional proof systems. ECCC TR02-010, 2002.

4. A. Atserias, M. L. Bonet, and J. L. Esteban. Lower bounds for the weak pigeon-
hole principle and random formulas beyond resolution. Accepted for publication
in Information and Computation. A preliminary version appeared in ICALP’01,
Lecture Notes in Computer Science 2076, Springer, pages 1005-1016., 2001.

5. P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In
87th Annual IEFE Symposium on Foundations of Computer Science, pages 274—
282, 1996.

6. E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-optimal separation of
general and tree-like resolution. To appear, 2002.

7. E. Ben-Sasson and A. Wigderson. Short proofs are narrow-resolution made simple.

J. ACM, 48(2):149-169, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

On the Automatizability of Resolution 15

M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis.
The complexity of testing whether a graph is a superconcentrator. Information
Processing Letter, 13:164-167, 1981.

M. L. Bonet, C. Domingo, R. Gavalda, A. Maciel, and T. Pitassi. Non-
automatizability of bounded-depth Frege proofs. In 14th IEEE Conference in
Computational Complexity, pages 15-23, 1999. Accepted for publication in the
Journal of Computational Complexity.

M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. On the relative complex-
ity of resolution refinements and cutting planes proof systems. SIAM Journal of
Computing, 30(5):1462-1484, 2000. A preliminary version appeared in FOCS’98.
M. L. Bonet and N. Galesi. Optimality of size-width trade-offs for resolution.
Journal of Computational Complexity, 2001. To appear. A preliminary version
appeared in FOCS’99.

M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with
small coefficients. Journal of Symbolic Logic, 62(3):708-728, 1997. A preliminary
version appeared in STOC’95.

M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for
Frege systems. STAM Journal of Computing, 29(6):1939-1967, 2000. A preliminary
version appeared in FOCS’97.

S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36-50, 1979.

S. A. Cook and A. Haken. An exponential lower bound for the size of monotone
real circuits. Journal of Computer and System Sciences, 58:326-335, 1999.

S. Dantchev and S. Riis. Tree resolution proofs of the weak pigeon-hole principle.
In 16th IEEE Conference in Computational Complezity, pages 69-75, 2001.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394-397, 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory.
J. ACM, 7:201-215, 1960.

J. L. Esteban, N. Galesi, and J. Messner. Personal communication. Manuscript,
2001.

R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds for tree-like
cutting planes proofs. In 9th IEEE Symposium on Logic in Computer Science,
pages 220-228, 1994.

J. Krajicek. Lower bounds to the size of constant-depth propositional proofs.
Journal of Symbolic Logic, 39(1):73-86, 1994.

J. Krajicek. Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. Journal of Symbolic Logic, 62:457-486,
1997.

J. Krajicek. On the weak pigeonhole principle. To appear in Fundamenta Mathe-
matice, 2000.

J. Krajicek and P. Pudldk. Some consequences of cryptographical conjectures for
s3 and ef. Information and Computation, 140(1):82-94, 1998.

A. Maciel, T. Pitassi, and A. R. Woods. A new proof of the weak pigeonhole
principle. In 32nd Annual ACM Symposium on the Theory of Computing, 2000.
P. Pudlak. Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic, 62(3):981-998, 1997.

P. Pudldk. On the complexity of the propositional calculus. In Sets and Proofs,
Invited Papers from Logic Colloquium 97, pages 197-218. Cambridge University
Press, 1999.

16 Albert Atserias and Maria Luisa Bonet

28. P. Pudldk. On reducibility and symmetry of disjoint NP-pairs. In 26th Inter-
national Symposium on Mathematical Foundations of Computer Science, Lecture
Notes in Computer Science, pages 621-632. Springer-Verlag, 2001.

29. P. Pudldk and J. Sgall. Algebraic models of computation and interpolation for
algebraic proof systems. In P. W. Beame and S. R. Buss, editors, Proof Complexity
and Feasible Arithmetic, volume 39 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 279-296. American Mathematical Society,
1998.

30. A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments

of bounded arithmetic. Izvestiya of the RAN, 1995.

A Appendix: Deriving Dy

We consider the case k& < r. We will derive Dy by successive steps as follows.
Let ng be the following 2-disjunction

n
D;k = 20,9k V V(yo,i,k Azi) V (yik A —zi),
i=q

and let D;k be the following 2-disjunction

n

Dyy = 2108V (Yrak A2V (Woik Azi) V (yrik A 0z:).
i=q+1

Observe that D2+1,k is simply zon41,x which is the clause (4) in SAT? (T, Z).
We obtain D;—l,k from Dg,k as follows. Cut Dg,k with (8) and (6) on zg 4% to
get

n
Z17q_15k v ILq_Lk v V(y07i5k /\ ZZ) v (y17i7k /\ ﬁzi)’ (30)
i=q
and
n
Z1,q-1,6 V TT1g-1k V TZg-1 V V(yo,i,k A zi) V (Y16 A —2i),s (31)
i=q

respectively. A cut between (30) and (31) on 21 4—1,x gives

n
21,91,k V T2g-1 V V(yo,i,k A zi) V (y1ik A —zi). (32)
i:q

On the other hand, a cut between (30) and (9) on 21 4_1,% gives

n
21g-1 YV Y1,g-10 V N o,k A zi) V (1,6 A —21), (33)

On the Automatizability of Resolution

17

Finally, an introduction of conjunction between (32) and (33) on —z,_; and
Y1,q9—1,k Gives D;_Lk as claimed. Next, we show how to get ng from D;k. Cut

D;k with (7) and (5) on 21,4, to get

n
20,06 V 20,06V (U106 Azg) VO (Woik Azi) V (i A —2),
i=q+1
and

n

20,0 V 20,0 V 20 V (Wrak Azg) V) (Woik Azi) V (i A —zi),
i=q+1

respectively. A cut between (34) and (35) on zo,q,x gives

n

20,0k V 2g V (1,06 A=2g) VN (Wo,ik A 2i) V (1,06 A —2)
i=q+1

On the other hand, a cut between (34) and (9) on zo,q,x gives

n

20,06 V Y0,0 V (Y108 A72) VN (o, A z0) V (ynie A =zi).
i=q+1

(34)

(35)

(37)

Finally, an introduction of conjunction between (36) and (37) on z; and yo,q.x

gives Dg i as desired.
,

We have shown how to obtain D(f‘k. In order to obtain Dy, we only need to

cut DY, with (3) on zq,1,k-

