
Package ‘knnflex’
April 17, 2009

Type Package

Title A more flexible KNN

Version 1.1.1

Depends R (>= 2.4.0)

Date 2007-02-01

Author Atina Dunlap Brooks

Maintainer ORPHANED

Description A KNN implementaion which allows continuous responses, the specification of the
distance used to calculate nearest neighbors (euclidean, binary, etc.), the aggregation method
used to summarize repsonse (majority class, mean, etc.) and the method of handling ties (all,
random selection, etc.).

License GPL

Repository CRAN

Date/Publication 2009-02-23 11:00:57

R topics documented:

knnflex-package . 2
classprob . 3
knn.dist . 4
knn.predict . 6
knn.probability . 9
majority . 11

Index 12

1

2 knnflex-package

knnflex-package A more flexible KNN

Description

A K-Nearest Neighbor (KNN) implementation which allows the specification of the distance used
to calculate nearest neighbors (euclidean, binary, etc.), the aggregation method used to summarize
response (majority class, mean, etc.) and the method of handling ties (all, random selection, etc.).
Additionally, responses are not limited to classes, but can be continuous.

Note

This work was funded by the National Institutes of Health through the NIH Roadmap for Medical
Research, Grant 1 P20 HG003900-01. Information on the Molecular Libraries Roadmap Initiative
can be obtained from http://nihroadmap.nih.gov/molecularlibraries/.

Author(s)

Atina Dunlap Brooks

See Also

knn

Examples

a quick classification example
x1 <- c(rnorm(20,mean=1),rnorm(20,mean=5))
x2 <- c(rnorm(20,mean=5),rnorm(20,mean=1))
x <- cbind(x1,x2)
y <- c(rep(1,20),rep(0,20))
train <- sample(1:40,30)
plot the training cases
plot(x1[train],x2[train],col=y[train]+1,xlab="x1",ylab="x2")
predict the other cases
test <- (1:40)[-train]
kdist <- knn.dist(x)
preds <- knn.predict(train,test,y,kdist,k=3,agg.meth="majority")
add the predictions to the plot
points(x1[test],x2[test],col=as.integer(preds)+1,pch="+")
display the confusion matrix
table(y[test],preds)

the iris example used by knn(class)
library(class)
data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))

http://nihroadmap.nih.gov/molecularlibraries/

classprob 3

how to get predictions from knn(class)
pred<-knn(train, test, cl, k = 3)
display the confusion matrix
table(pred,cl)

how to get predictions with knn.dist and knn.predict
x <- rbind(train,test)
kdist <- knn.dist(x)
pred <- knn.predict(1:75, 76:150, cl, kdist, k=3)
display the confusion matrix
table(pred,cl)

note any small differences are a result of both methods
breaking ties in majority class randomly

5-fold cross-validation to select k for above example
fold <- sample(1:5,75,replace=TRUE)
cvpred <- matrix(NA,nrow=75,ncol=10)
for (k in 1:10)
for (i in 1:5)
cvpred[which(fold==i),k] <- knn.predict(train=which(fold!=i),test=which(fold==i),cl,kdist,k=k)

display misclassification rates for k=1:10
apply(cvpred,2,function(x) sum(cl!=x))

classprob Determines the prevalence of each class

Description

A function which determines the prevalence or probability for each class of a vector (treated as
factor).

Usage

classprob(x)

Arguments

x a one dimensional vector

Details

This function treats the input vector as a factor and determines the probability for each level (class)
of the factor. The order of the returned probabilities is the order of the levels command, which
defaults to numeric or alphabetic order.

Value

A vector whose length is equal to the number of levels in the input. The order is numerically or
alphabetically increasing. Note the factors may have levels which are not present in the vector, see
examples for details.

4 knn.dist

Author(s)

Atina Dunlap Brooks

See Also

majority factor

Examples

#calculate probbilities
x <- sample(c("a","b","c","d","e"), 10, replace=TRUE)
classprob(x)
#label the probabilities
levels(as.factor(x))

#to see levels which aren't represnted in the vector
x<-as.factor(c('a','a','a','b','b','c'))
levels(x)
#now remove the 'c'
x<-x[1:5]
#but 'c' is still a level
levels(x)
#and the probability is calculated for it
classprob(x)

knn.dist Calculates the distances to be used for KNN predictions

Description

The distances to be used for K-Nearest Neighbor (KNN) predictions are calculated and returned as
a symmetric matrix. Distances are calculated by dist.

Usage

knn.dist(x, dist.meth = "euclidean", p = 2)

Arguments

x the entire dataset, the rows (cases) to be used for training and testing.

dist.meth the distance to be used in calculating the neighbors. Any method valid in func-
tion dist is valid.

p the power of the Minkowski distance.

knn.dist 5

Details

This function calculates the distances to be used by knn.predict. Distances are calculated
between all cases. In the traditional scenario (a fixed n training cases, m disjoint test cases) this
method will calculate more distances than required for prediction. For example, distances between
training cases are not needed, but are calculated anyway. However, performance testing has shown
that in most cases it is still faster to simply calculate all distances, even when many will not be used.

The advantage to calculating distances in a separate step prior to prediction, is that these calculations
only need to be performed once. So, for example, cross-validation to select k can be performed on
many values of k, with different cross-validation splits, all using a single run of knn.dist.

The default method for calculating distances is the "euclidean" distance, which is the method used
by the knn function from the class package. Alternative methods may be used here. Any method
valid for the the function dist is valid here. The parameter p may be specified with the Minkowski
distance to use the p norm as the distance method.

Value

a square symmetric matrix whose dimensions are the number of rows in the original data. The
diagonal contains zeros, the off diagonal entries will be >= 0.

Note

For the traditional scenario, classification using the Euclidean distance on a fixed set of train-
ing cases and a fixed set of test cases, the method knn is ideal. The functions knn.dist and
knn.predict are intend to be used when something beyond the traditional case is desired. For
example, prediction on a continuous y (non-classification), cross-validation for the selection of k,
or the use of an alternate distance method are all possible with this package.

Author(s)

Atina Dunlap Brooks

See Also

knn.predict, dist, knn

Examples

#a quick classification example
a quick classification example
x1 <- c(rnorm(20,mean=1),rnorm(20,mean=5))
x2 <- c(rnorm(20,mean=5),rnorm(20,mean=1))
x <- cbind(x1,x2)
y <- c(rep(1,20),rep(0,20))
train <- sample(1:40,30)
plot the training cases
plot(x1[train],x2[train],col=y[train]+1,xlab="x1",ylab="x2")
predict the other cases
test <- (1:40)[-train]
kdist <- knn.dist(x)

6 knn.predict

preds <- knn.predict(train,test,y,kdist,k=3,agg.meth="majority")
add the predictions to the plot
points(x1[test],x2[test],col=as.integer(preds)+1,pch="+")
display the confusion matrix
table(y[test],preds)

the iris example used by knn(class)
library(class)
data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
how to get predictions from knn(class)
pred<-knn(train, test, cl, k = 3)
display the confusion matrix
table(pred,cl)

how to get predictions with knn.dist and knn.predict
x <- rbind(train,test)
kdist <- knn.dist(x)
pred <- knn.predict(1:75, 76:150, cl, kdist, k=3)
display the confusion matrix
table(pred,cl)

note any small differences are a result of both methods
breaking ties in majority class randomly

5-fold cross-validation to select k for above example
fold <- sample(1:5,75,replace=TRUE)
cvpred <- matrix(NA,nrow=75,ncol=10)
for (k in 1:10)
for (i in 1:5)
cvpred[which(fold==i),k] <- knn.predict(train=which(fold!=i),test=which(fold==i),cl,kdist,k=k)

display misclassification rates for k=1:10
apply(cvpred,2,function(x) sum(cl!=x))

knn.predict KNN prediction routine using pre-calculated distances

Description

K-Nearest Neighbor prediction method which uses the distances calculated by knn.dist.

Usage

knn.predict(train, test, y, dist.matrix, k = 1, agg.meth = if (is.factor(y)) "majority" else "mean", ties.meth = "min")

knn.predict 7

Arguments

train indexes which specify the rows of x provided to knn.dist to be used in mak-
ing the predictions

test indexes which specify the rows of x provided to knn.dist to make predictions
for

y responses, see details below

dist.matrix the output from a call to knn.dist

k the number of nearest neighbors to consider

agg.meth method to combine responses of the nearest neighbors, defaults to "majority"
for classification and "mean" for continuous responses

ties.meth method to handle ties for the kth neighbor, the default is "min" which uses all
ties, alternatives include "max" which uses none if there are ties for the k-th
nearest neighbor, "random" which selects among the ties randomly and "first"
which uses the ties in their order in the data

Details

Predictions are calculated for each test case by aggregating the responses of the k-nearest neighbors
among the training cases. k may be specified to be any positive integer less than the number of
training cases, but is generally between 1 and 10.

The indexes for the training and test cases are in reference to the order of the entire data set as it
was passed to knn.dist.

Only responses for the training cases are used. The responses provided in y may be those for the
entire data set (test and training cases), or just for the training cases.

The aggregation may be any named function. By default, classification (factored responses) will
use the "majority" class function and non-factored responses will use "mean". Other options to
consider include "min", "max" and "median".

The ties are handled using the rank function. Further information may be found by examining the
ties.method there.

Value

a vector of predictions whose length is the number of test cases.

Note

For the traditional scenario, classification using the Euclidean distance on a fixed set of train-
ing cases and a fixed set of test cases, the method knn is ideal. The functions knn.dist and
knn.predict are intend to be used when something beyond the traditional case is desired. For
example, prediction on a continuous y (non-classification), cross-validation for the selection of k,
or the use of an alternate distance method are well handled.

Author(s)

Atina Dunlap Brooks

8 knn.predict

See Also

knn.dist, dist, knn

Examples

a quick classification example
x1 <- c(rnorm(20,mean=1),rnorm(20,mean=5))
x2 <- c(rnorm(20,mean=5),rnorm(20,mean=1))
x <- cbind(x1,x2)
y <- c(rep(1,20),rep(0,20))
train <- sample(1:40,30)
plot the training cases
plot(x1[train],x2[train],col=y[train]+1,xlab="x1",ylab="x2")
predict the other cases
test <- (1:40)[-train]
kdist <- knn.dist(x)
preds <- knn.predict(train,test,y,kdist,k=3,agg.meth="majority")
add the predictions to the plot
points(x1[test],x2[test],col=as.integer(preds)+1,pch="+")
display the confusion matrix
table(y[test],preds)

the iris example used by knn(class)
library(class)
data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
how to get predictions from knn(class)
pred<-knn(train, test, cl, k = 3)
display the confusion matrix
table(pred,cl)

how to get predictions with knn.dist and knn.predict
x <- rbind(train,test)
kdist <- knn.dist(x)
pred <- knn.predict(1:75, 76:150, cl, kdist, k=3)
display the confusion matrix
table(pred,cl)

note any small differences are a result of both methods
breaking ties in majority class randomly

5-fold cross-validation to select k for above example
fold <- sample(1:5,75,replace=TRUE)
cvpred <- matrix(NA,nrow=75,ncol=10)
for (k in 1:10)
for (i in 1:5)
cvpred[which(fold==i),k] <- knn.predict(train=which(fold!=i),test=which(fold==i),cl,kdist,k=k)

display misclassification rates for k=1:10
apply(cvpred,2,function(x) sum(cl!=x))

knn.probability 9

knn.probability KNN prediction probability routine using pre-calculated distances

Description

K-Nearest Neighbor prediction probability method which uses the distances calculated by knn.dist.
For predictions (not probabilities) see knn.predict.

Usage

knn.probability(train, test, y, dist.matrix, k = 1, ties.meth = "min")

Arguments

train indexes which specify the rows of x provided to knn.dist to be used in mak-
ing the predictions

test indexes which specify the rows of x provided to knn.dist to make predictions
for

y responses, see details below

dist.matrix the output from a call to knn.dist

k the number of nearest neighbors to consider

ties.meth method to handle ties for the kth neighbor, the default is "min" which uses all
ties, alternatives include "max" which uses none if there are ties for the k-th
nearest neighbor, "random" which selects among the ties randomly and "first"
which uses the ties in their order in the data

Details

Prediction probabilities are calculated for each test case by aggregating the responses of the k-
nearest neighbors among the training cases and using the classprob. k may be specified to be
any positive integer less than the number of training cases, but is generally between 1 and 10.

The indexes for the training and test cases are in reference to the order of the entire data set as it
was passed to knn.dist.

Only responses for the training cases are used. The responses provided in y may be those for the
entire data set (test and training cases), or just for the training cases.

The ties are handled using the rank function. Further information may be found by examining the
ties.method there.

Value

a matirx of prediction probabilities whose number of columns is the number of test cases and the
number of rows is the number of levels in the responses.

10 knn.probability

Note

For the traditional scenario, classification using the Euclidean distance on a fixed set of train-
ing cases and a fixed set of test cases, the method knn is ideal. The functions knn.dist and
knn.predict are intend to be used when something beyond the traditional case is desired. For
example, prediction on a continuous y (non-classification), cross-validation for the selection of k,
or the use of an alternate distance method are well handled.

Author(s)

Atina Dunlap Brooks

See Also

knn.dist, knn.predict, knn

Examples

the iris example used by knn(class)
library(class)
data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
how to get predictions from knn(class)
pred <- knn(train, test, cl, k = 3, prob=TRUE)
display the confusion matrix
table(pred,cl)
view probabilities (only the highest probability is returned)
attr(pred,"prob")

how to get predictions with knn.dist and knn.predict
x <- rbind(train,test)
kdist <- knn.dist(x)
pred <- knn.predict(1:75, 76:150, cl, kdist, k=3)
display the confusion matrix
table(pred,cl)
view probabilities (all class probabilities are returned)
knn.probability(1:75, 76:150, cl, kdist, k=3)

to compare probabilites, rounding done for display purposes
p1 <- knn(train, test, cl, k = 3, prob=TRUE)
p2 <- round(knn.probability(1:75, 76:150, cl, kdist, k=3), digits=2)
table(round(attr(p1,"prob"), digits=2), apply(p2,2,max))

note any small differences in predictions are a result of
both methods breaking ties in majority class randomly

majority 11

majority Determines majority class

Description

A function which determines the majority class of a vector (treated as factor).

Usage

majority(x)

Arguments

x a one dimensional vector

Details

This function treats the input vector as a factor and determines which level (class) of the factor is
present most often. If two or more levels tie for majority then a random selection is made among
the ties.

Value

The factor level which occurs most often in x.

Author(s)

Atina Dunlap Brooks

See Also

factor

Examples

x <- sample(c("a","b","c","d","e"), 10, replace=TRUE)
majority(x)

Index

∗Topic methods
knn.dist, 4
knn.predict, 6
knn.probability, 8

∗Topic package
knnflex-package, 1

∗Topic utilities
classprob, 3
majority, 10

classprob, 3, 9

dist, 4, 5, 7

factor, 3, 11

knn, 2, 5, 7, 9
knn.dist, 4, 5–9
knn.predict, 4, 5, 6, 7–9
knn.probability, 8
knnflex-package, 1

levels, 3

majority, 3, 10

rank, 7, 9

12

	knnflex-package
	classprob
	knn.dist
	knn.predict
	knn.probability
	majority
	Index

