
Prometheus: A Methodology for Developing Intelligent Agents

Lin Padgham and Michael Winikoff

RMIT University, GPO Box 2476V, Melbourne, AUSTRALIA
Phone: +61 3 9925 2348

{linpa,winikoff }@cs.rmit.edu.au
http://www.cs.rmit.edu.au

Abstract. As agents gain acceptance as a technology there is a growing need
for practical methods for developing agent applications. This paper presents the
Prometheusmethodology, which has been developed over several years in col-
laboration with Agent Oriented Software. The methodology has been taught at
industry workshops and university courses. It has proven effective in assisting de-
velopers to design, document, and build agent systems. Prometheus differs from
existing methodologies in that it is a detailed and complete (start to end) method-
ology for developing intelligent agents which has evolved out of industrial and
pedagogical experience. This paper describes the process and the products of the
methodology illustrated by a running example.

1 Introduction

As agents are gaining acceptance as a technology and are being used, there is a growing
need for practical methods for developing agent applications. This paper presents the
Prometheus1 methodology for developing intelligent agent systems.

The methodology has been developed over the last several years in collaboration
with Agent Oriented Software2 (AOS). Our goal in developing Prometheus was to have
a process with associated deliverables which can be taught to industry practitioners and
undergraduate students who do not have a background in agents and which they can use
to develop intelligent agent systems. To this end Prometheus isdetailedandcomplete
in the sense of covering all activities required in developing intelligent agent systems.

Our claim is that Prometheus is developed in sufficient detail to be used by a non-
expert. Prometheus has been taught to an undergraduate class of (third year) students
who successfully designed and implemented agent systems using JACK. A second year
student over the summer vacation was given a description of the methodology and a
description of an agent application (in the area of Holonic Manufacturing). With only
(intentionally) limited support, the student was able to design and implement an agent
system to perform Holonic Manufacturing using a simulator of a manufacturing cell.

1 Prometheus was the wisest Titan. His name means “forethought” and he was able to foretell
the future. Prometheus is known as the protector and benefactor of man. He gave mankind a
number of gifts including fire. (http://www.greekmythology.com/)

2 http://www.agent-software.com



2

Unfortunately space limitations preclude a detailed comparison with the many ex-
isting methodologies. We simply note that Prometheus differs from existing method-
ologies [1–5,7–18, 22, 23, 25] in that it:

– Supports the development ofintelligentagents which use goals, beliefs, plans, and
events. By contrast, many other methodologies treat agents as “simple software
processes that interact with each other to meet an overall system goal” [6].

– Provides “start-to-end” support (from specification to detailed design and imple-
mentation) and adetailed process, along with design artifacts constructed and steps
for deriving artifacts.

– Evolved out of practical industrial and pedagogical experience, and has been used
by both industrial practitioners and by undergraduate students. By contrast, many
other methodologies have been used only by their creators and often only on small
(and unimplemented) examples.

– Provides hierarchical structuring mechanisms which allow design to be performed
at multiple levels of abstraction. Such mechanisms are crucial to the practicality of
the methodology on large designs.

– Uses an iterative process over software engineering phases rather than a linear “wa-
terfall” model. Although the phases are described in a sequential fashion in this
paper, the intention isnot to perform them purely in sequence.

– Provides (automatable) cross checking of design artifacts.

Of the properties above, perhaps the most contentious is the first: many existing method-
ologies intentionally do not support intelligent agents, rather, they aim for generality
and treat agents as black boxes. We believe that in this case, generality needs to be sac-
rificed in favour of usefulness. By specifically supporting the development of BDI-like
agents we are able to provide detailed processes and deliverables which are useful to
developers. Of course, this makes Prometheus less useful to those developing non-BDI-
like agents. However, note that the initial stages of the methodologyareappropriate for
the design of any kind of multi agent system.

Although none of these properties is unique in isolation, their combination is, to
the best of our knowledge, unique. We believe that these properties are all essential for
a practical methodology that is usable by non-experts and accordingly the design of
Prometheus was guided by these properties. Although Prometheus’ contribution is the
combination of these properties, this combination was achieved through careful design
of the methodology. It is not possible to easily construct a methodology which has the
above properties by combining methodologies that have some of them. For example,
given a methodology that provides automated support but does not support intelligent
agents and another methodology that supports intelligent agents but not provide au-
tomated cross-checking; it is not at all obvious how a hybrid methodology could be
created that supports both features.

The Prometheusmethodology consists of three phases. Thesystem specification
phasefocuses on identifying the basic functionalities of the system, along with inputs
(percepts), outputs (actions) and any important shared data sources. Thearchitectural
design phaseuses the outputs from the previous phase to determine which agents the
system will contain and how they will interact. Thedetailed design phaselooks at the
internals of each agent and how it will accomplish its tasks within the overall system.



3

actions and percepts

Use cases

Interaction
diagrams

Protocols

Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

agent
grouping

agent
acquaintance

shared
data

events

ÿ
þý
üû
úþ
ù�
ùþ
�û�
�

���
�ûý
þ�
ý�
�ü
ú�

ùþ
�û�
�
���
ýþ
�

��þ
�û�
û�ü
ýû
��

final design
artifact

intermediate
design tool

crosscheck

derives

Key

The rest of this paper describes the methodology using a running example: an on-
line bookstore that assists customers in finding and choosing books, manages deliveries,
stock, customer and supplier information, and does selective advertising based on in-
terests. Space limitations prevent us from describing in full detail all aspects of the
Prometheus methodology. However, we hope that an understanding of its structure and
some sense of its phases, deliverables, activities, and depth of detail can be gained.

2 System specification

Agent systems are typically situated in a changing and dynamic environment, which
can be affected, though not totally controlled by the agent system. One of the earliest
questions which must be answered is how the agent system is going to interact with
this environment. In line with [21] we call incoming information from the environment
“percepts”, and the mechanisms for affecting the environment “actions”.

As discussed in [24] it is important to distinguish between percepts and events: an
event is a significant occurrence for the agent system, whereas a percept is raw data
available to the agent system. Often percepts can require processing in order to identify
events that an agent can react to. For example, if a soccer playing robot’s camera shows
a ball where it is expected to be then this percept is not significant. However, if the ball
is seen where it is not expected then thisis significant.

Actions may also be complex, requiring significant design and development outside
the realm of the reasoning system. This is especially true when manipulation of physical
effectors is involved. We shall not address percept processing and actions any further
in this paper. Both can be done within the agent system (either in specific agents, or
distributed) or outside of the agent part of the system. If done within the agent part
of the system then the Prometheus methodology can be applied, otherwise existing
methodologies can be used.

The online bookstore has the percepts of customers visiting the website, selecting
items, placing orders (using forms), and receiving email from customers, delivery ser-
vices and book suppliers. Actions are bank transactions, sending email, and placing
delivery orders.



4

In parallel with discovering or specifying (which of these will depend on the situ-
ation) the percepts and actions the developer must start to describe what it is the agent
system should do in a broader sense - the functionalities3 of the system. For example,
in order to define the book store we may need to define functionalities such as“the
book store will provide a personalised interface to customers”and“the book store will
maintain its stock”. These functionalities start to give an understanding of the system -
some sense of its purpose.

It is important in defining functionalities that they be kept as narrow as possible,
dealing with a single aspect or goal of the system. If functionalities are too broad they
are likely to be less adequately specified leading to potential misunderstanding.

In defining a functionality it is important to also define the information that is re-
quired, and the information produced by it. The functionality descriptor produced con-
tains aname, a short natural languagedescription, a list of actions, a list of relevant
percepts, data usedandproduced and a brief description ofinteractions with other
functionalities. For example, the following describes thewelcomerfunctionality in the
online bookstore.
Welcomer: provides a customised response to the user when they log into the site.
Actions: provide link to status of existing orders, welcome by name, welcome as new
user, query enjoyment of recent purchases, indicate special offers relevant to interests.
Percepts:Customer accesses site.
Data access:Reads customer information, special offers, and customer interactions
data. Writes customer interactions data.
Interactions: No interactions with other functionalities.

While functionalities focus on particular aspects of the system,use case scenarios
give a more holistic view of the system. The basic idea is borrowed from object oriented
design. However, the use case scenarios are given slightly more structure.

The central part of a use case scenario in Prometheus is the sequence of steps de-
scribing an example of the system in operation. Each step is annotated with the name
of the functionality responsible, as well as information used or produced. These anno-
tations allow cross checking for consistency with the functionality descriptors.

The use case templates which we use contain anidentification number, a brief
natural languageoverview, an optional field calledcontext which indicates when this
scenario would happen, or the start point of the scenario, thescenario itself which is
a sequence of steps, a summary of all theinformation used in the various steps, and
a list of smallvariations. Because a scenario captures only one particular sequence of
steps it can be useful to indicate small variations with a brief description. Any major
variations should be a separate use case scenario.

3 Architectural design

The major decision to be made during the architectural design is which agents should
exist. We assign functionalities to agents by analysing the artifacts of the previous phase

3 A number of methodologies call these “roles”. We prefer to avoid overloading the term since
it has a similar, but non-identical, meaning in the context of teams of agents.



5

to suggest possible assignments of functionalities to agents. These are then evaluated
according to the traditional software engineering criteria of coherence and coupling.

The process of identifying agents by grouping functionalities involves analysing the
reasons for and against groupings of particular functionalities. If functionalities use the
same data it is an indication for grouping them, as is significant interaction between
them. Reasons against groupings may be clearly unrelated functionality or existence on
different hardware platforms. More generally, we seek to have agents which have strong
coherence and loose coupling.

It can be useful at this stage to draw a matrix having all functionalities on one axis
and the properties or relationships on the other axis. Specific properties and relation-
ships that are useful in deriving groupings of functionalities are whether two function-
alities arerelated, whether they areclearly unrelated, thedata used4 anddata produced
as well asinformation receivedfrom other functionalities and data that iswritten by two
(or more) functionalities. The last two columns can be derived from the information in
the previous columns.

In order to evaluate a potential grouping for coupling we use an agent acquaintance
diagram. This diagram simply links each agent with each other agent with which it inter-
acts. A design with fewer linkages is less highly coupled and therefore preferable. The
design for the book store depicted below (on the right) is reasonable, since it indicates
low coupling. A design which produced an acquaintance diagram where each agent
was linked to every other agent would be highly undesirable. Note that Prometheus
uses a consistent notation to depict agents, events, plans, capabilities, etc. This notation
is summarised below, on the left.

Capability

Data/
Belief

Agent

Plan

Event

shop
assistant

cashier

warehouse
manager

customer
relations

A simple heuristic for assessing coherence is whether an agent has a simple descrip-
tive name which encompasses all the functionalities without any conjunctions (“and”).
For example, the shop assistant agent combines the functionalities of visit manager,
client welcomer, query processor, pro-active helper, and customer DB manager; yet it
has a simple descriptive name.

Once a decision has been made as to which agents the system should contain it is
possible to start working out and describing some of the necessary information about
agents. The high level information about each agent is contained in the form of an
agent descriptor, similar to functionality descriptors. Questions which need to be re-
solved about agents at this stage include: How many agents of this type will there be
(singleton, a set number, or multiple based on dynamics of the system, e.g. one sales
assistant agent per customer)? What is the lifetime of the agent? If they are created or
destroyed during system operation (other than at start-up and shut-down), what triggers
this? Agent initialisation - what needs to be done? Agent demise - what needs to be

4 Both read(in the case of data stores) andreceived(in the case of events and messages).



6

done? What data does this agent need to keep track of? What events will this agent
react to?

Agent descriptors contain the above information plus thenameanddescription of
the agent, a brief description of ways in which itinteracts with other agents and a list
of the functionalities which are incorporated within this agent. For example consider
the following agent descriptor:
Name:Shop assistant agent
Description: greets customer, follows through site, assists with finding books
Cardinality: 1/customer. Instantiated on customer arrival at site
Functionalities included: visit manager, client welcomer, query processor, pro-active
helper, customer DB manager.
Reads data:user profile, client orders
Writes data: user profile
Interacts with: cashier (to pay for purchase); warehouse manager (to get price, avail-
ability and to hand over order for shipping)

Consistency checking should be done to ensure that agent descriptors are consistent
with the set of functionality descriptors which have been incorporated within the agent.
Particular items to check are the information, and the agent interactions. If a function-
ality is listed as interacting with another functionality, then this should translate into an
agent interaction, unless the two functionalities are incorporated within the same agent.

At this stage of the design it is important to identify whatevents(i.e. significant
occurrences) will be generated as a result of information from the environment (the
percepts), either directly or after processing. These are the things the agents will notice,
which will cause them to react in some way. A decision must be made as to which
agents will react to which events.

In order to accomplish the various aims of the system agents will also send messages
to each other. These must also be identified at this stage. It is also necessary to identify
what information fields will be carried in these messages, as this forms the interface
definition between the agents.

If the implementation platform does not provide specialised message types, these
must be specified precisely at this stage to enable modularity in the development of the
detailed design for the individual agents.

Shared data objects(if any) must also be identified at this stage. A good design
will minimise these, but there may be situations where it is reasonable to have shared
data objects. If multiple agents will be writing to shared data objects this will require
significant additional care for synchronisation (as agents operate concurrently with each
other). Often what at first appears to be a shared data object can be reconceptualised as
a data source managed by a single agent, with information provided to other agents
as they need it. Alternatively each agent may have its own version of the information,
without there being any need for a single centralised data object. Data objects should
be specified using traditional object oriented techniques.

Thesystem overview diagramties together the agents, events and shared data ob-
jects. It is arguably the single most important artifact of the entire design process, al-
though of course it cannot really be understood fully in isolation. A system overview
diagram for the running example is below. By viewing this diagram we obtain a general



7

understanding of how the system as a whole will function. Messages between agents
can include a reply, although this is not shown explicitly on the diagram. Looking fur-
ther at agent descriptors provides any additional detail needed to understand the high
level functioning of the system.

S.A.
W.M.

Ca
C.R.

arrival

browse
interest

buy avail.?

delivery

check

credit app.

stock in delay

order arr. deliv delay

cust. email

S.A. = shop assistant
W.M. = warehouse manager
C.R. = customer relations
Ca = cashier

stock
DB

cust.
DB

book req.

credit order

The final aspect of the architectural design is to specify fully theinteraction be-
tween agents. Interaction diagrams are used as an initial tool for doing this, while fully
specified interaction protocols are the final design artifact.

Interaction diagrams are borrowed directly from object oriented design, showing
interaction between agents rather than objects. One of the main processes for devel-
oping interaction diagrams is to take the use cases developed in the specification phase
and to build corresponding interaction diagrams. Wherever there is a step in the use case
which involves a functionality from a new agent there must be some interaction from
a previously involved agent to the newly participating agent. While it is not possible
to automatically derive the interaction diagrams from the use cases, substantial consis-
tency checking is possible. Figure 1 (left) shows an interaction diagram for a scenario
of buying a book at our electronic bookstore. It depicts the user requesting a particular
book from the sales assistant which checks the details with the warehouse then replies.
The user decides to buy the book and places an order; the sales assistant checks for
delivery options, confirms them with the user, checks the user’s credit card details with
the cashier, and then places the order and thanks the user. In addition to deriving inter-
action diagrams from use cases, each of the major environmental events should have an
associated interaction diagram.

Interaction diagrams, like use cases, give only a partial picture of the system’s be-
haviour. In order to have a precisely defined system we progress from interaction dia-
grams tointeraction protocols which define precisely which interaction sequences are
valid within the system.

Figure 1 (right) shows the protocol for the credit check portion of the interaction
diagram shown in figure 1 (left). Because protocols must show all variations they are
often larger than the corresponding interaction diagram and may need to be split into
smaller chunks. We use the AUML notation [18] to specify protocols,

Consistency checking should be done between protocols and interaction diagrams,
the system overview diagram, and use cases. With the appropriate tools, much of this
consistency checking can be automated.



8

Request book
Price+availability

ResponseResponse

Buy book
Delivery options?

Delivery info.
Delivery info.

Delivery choice

Card details

Card details request
Card details

Approval
Thanks Order

User Shop ass. Warehouse Cashier

Credit check request

Details request

Merchant Bank

x

Credit check request

Card details request

Card details

Approval

Rejection

Fig. 1. Example Interaction Diagram (left) and Protocol (right)

4 Detailed design

Detailed design focuses on developing the internal structure of each of the agents and
how it will achieve its tasks within the system. It is at this stage of the design that
the methodology becomes specific to agents that use user-defined plans, triggered by
goals or events, such as the various implementations of Belief, Desire, Intention (BDI)
systems (e.g. PRS, dMARS, JAM, or JACK). A number of details regarding the im-
plementation platform also become evident at this stage when looking at any particular
design. However, the principles are easily adapted to the specifics of whichever devel-
opment platform has been chosen, as long as it is within the broad general category of
agents which use plans and react to events.

The focus of the detailed design phase is on defining capabilities (modules within
the agent), internal events, plans and detailed data structures. A progressive refinement
process is used which begins by describing agents’ internals in terms of capabilities. The
internal structure of each capability is then described, optionally using or introducing
further capabilities. These are refined in turn until all capabilities have been defined. At
the bottom level capabilities are defined in terms of plans, events, and data.

The functionalities from the specification phase provide a good initial set ofcapa-
bilities, which can be further refined if desired. Sometimes there is also functionality
akin to “library routines” which is required in multiple places - either within multiple
agents, or within multiple capabilities within a single agent. Such functionality should
also be extracted into a capability which can then be included into other capabilities or
agents as required.

Capabilities are allowed to be nested within other capabilities and thus this model
allows for arbitrarily many layers within the detailed design, in order to achieve an
understandable complexity at each level.

Each capability should be described by a capability descriptor which contains in-
formation about the external interface to the capability - whicheventsareinputs and
which events areproduced by (as inputs to other capabilities). It also contains a natu-
ral languagedescription of the functionality, a unique descriptivename, information



9

regardinginteractions with other capabilities, orinclusionsof other capabilities, and
a reference todata read and written by the capability. We use structured capability
descriptor forms containing the above fields.

Theagent overview diagramprovides the top level view of the agent internals. It
is very similar in style to the system overview diagram, but instead of agents within a
system, it shows capabilities within an agent. This diagram shows the top level capabil-
ities of the agent and the event or task flow between these capabilities, as well as data
internal to the agent. By reading the relevant capability descriptors, together with the
diagram, it is possible to obtain a clear high level view of how the modules within the
agent will interact to achieve the overall tasks of the agent as described in the agent
descriptor from the architectural design.

The agent overview diagram below is for a warehouse manager agent in the elec-
tronic bookstore. This agent has the capabilities of tracking stock, placing orders for
new stock and organising delivery of books to clients.

Delivery
capability

Stock tracking
capability

Ordering
capability

avail?

delivery
request

book
sent

Stock in
delay

book
order

order
arrival

delivery
delay

delivery
info

Stock
DB

A further level of detail is provided by capability diagrams which take a single
capability and describe its internals. At the bottom level these will contain plans, with
events providing the connections between plans, just as they do between capabilities
and between agents. At intermediate levels they may contain nested capabilities or a
mixture of capabilities and plans. These diagrams are similar in style to the system
overview and agent overview diagram, although plans are constrained to have a single
incoming (triggering) event.

Just as the agent overview diagram should be checked for consistency with the sys-
tem overview (in terms of incoming and outgoing events), so each capability overview
diagram should be checked against its enclosing context - either the agent overview, or
another capability overview.

The final design artifacts required are the individual plan, event and data descriptors.
These descriptions provide the details necessary to move into implementation. Exactly
what are the appropriate details for these descriptors will depend on aspects of the
implementation platform. For example if the context in which a plan type is to be used
is split into two separate checks within the system being used (as is the case in JACK)
then it is appropriate to specify these separately in the descriptor. Fields regarding what
information an event carries assumes that events are composite objects able to carry
information, and so on.



10

The plan descriptors we use provide anidentifier , the triggering event type, the
plan stepsas well as a short natural languagedescription, a context specification in-
dicating when this plan should be used and a list ofdata read and written.

Event descriptors are used to fully specify all events, including those identified ear-
lier. The event descriptor should identify thepurpose of the event and anydata that
the event carries. We also indicate for each event whether it is expected to becovered
and whether it is expected to beunambiguous. An event iscoveredif there is always at
least one handling plan which is applicable; that is, for any situation, at least one of the
matching plans will have a true context condition. An event isunambiguousif there is
always atmostone handling plan which is applicable.

Data descriptors should specify the fields and methods of any classes used for data
storage within the system. If specialised data structures are provided for maintaining
beliefs, these should also be specified.

An additional artifact that is completed (and checked) at this point is thedata dic-
tionary . The data dictionary should be started at the beginning of the project and devel-
oped further at each stage. The data dictionary is important in ensuring consistent use
of names (for example, what is called “delivery info” in one place in the design should
not be called “deliv. information” elsewhere). One option is to organise the data dic-
tionary into separate sections for agents, capabilities, plans, events and data, organised
alphabetically within sections. The other option is to have a flat alphabetical structure.
With tool support multiple views (automatically generated) can be provided.

5 Discussion and conclusions

We have briefly described the key aspects of the Prometheus methodology. The method-
ology has been in use for several years and has been taught in industry workshops (most
recently at the Australian AI conference, 2001). The methodology has been in use for
several years as a teaching tool. The feedback we have received indicates that it provides
substantial guidance for the process of developing the design and for communicating
the design within a work group. With student projects it is abundantly clear that the
existence of the methodology is an enormous help in thinking about and deciding on
the design issues, as well as conveying the design decisions.

One of the advantages of this
methodology is the number of
places where automated tools can
be used for consistency checking
across the various artifacts of the
design process. For example, the
input and output events for an
agent must be the same on the
system overview diagram and on
the agent overview diagram. Agent
Oriented Software has constructed
a support tool for the methodology



11

that allows design diagrams to be drawn and generates corresponding skeleton code (in
JACK).

We are also investigating how some of the design artifacts, such as the protocol
definitions, and the capability diagrams, can be used for providing debugging and trac-
ing support within the implemented system [20]. Having a design methodology which
can be used through to testing and debugging is clearly advantageous in terms of an
integrated and complete methodology.

Other areas for future work include: clearer integration of goals as a first class con-
cept (currently goals are implicit in functionalities), extensions to the graphical notation
to allow percepts, actions, goals, and (some) sequencing information to be specified;
introduction of social concepts (teams, roles) and a clarification of the distinction be-
tween functionalities and roles; and investigating the commonalities and differences
with various extensions of UML to agents [18, 19]. Additionally, we intend to integrate
Prometheus with the agent concepts we have identified [24].

Acknowledgements:We would like to acknowledge the support of Agent Ori-
ented Software Pty. Ltd. and of the Australian Research Council (ARC) under grant
CO0106934. We would also like to thank James Harland and Jamie Curmi for com-
ments on drafts of this paper.

References

1. F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DESIRE: Modelling
multi-agent systems in a compositional formal framework.Int Journal of Cooperative Infor-
mation Systems, 6(1):67–94, 1997.

2. B. Burmeister. Models and methodology for agent-oriented analysis and design. Working
Notes of the KI’96 Workshop on AgentOriented Programming and Distributed Systems,
1996.

3. G. Bush, S. Cranefield, and M. Purvis. The Styx agent methodology. The Information
Science Discussion Paper Series 2001/02, Department of Information Science, University of
Otago, New Zealand., Jan. 2001. Available fromhttp://divcom.otago.ac.nz/infosci.

4. G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon, P. Kearney, J. Stark,
and P. Massonet. Agent oriented analysis using MESSAGE/UML. In M. Wooldridge,
P. Ciancarini, and G. Weiss, editors,Second International Workshop on Agent-Oriented Soft-
ware Engineering (AOSE-2001), pages 101–108, 2001.

5. A. Collinot, A. Drogoul, and P. Benhamou. Agent oriented design of a soccer robot team. In
Proceedings of ICMAS’96, 1996.

6. S. A. DeLoach. Analysis and design using MaSE and agentTool. InProceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001), 2001.

7. S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multiagent systems engineering.In-
ternational Journal of Software Engineering and Knowledge Engineering, 11(3):231–258,
2001.

8. A. Drogoul and J. Zucker. Methodological issues for designing multi-agent systems with ma-
chine learning techniques: Capitalizing experiences from the robocup challenge. Technical
Report LIP6 1998/041, Laboratoire d’Informatique de Paris 6, 1998.

9. M. Elammari and W. Lalonde. An agent-oriented methodology: High-level and intermediate
models. In G. Wagner and E. Yu, editors, Proc. of the 1st Int. Workshop. on Agent-Oriented
Information Systems., 1999.



12

10. N. Glaser. The CoMoMAS methodology and environment for multi-agent system devel-
opment. In C. Zhang and D. Lukose, editors,Multi-Agent Systems Methodologies and Ap-
plications, pages 1–16. Springer LNAI 1286, Aug. 1996. Second Australian Workshop on
Distributed Artificial Intelligence.

11. C. Iglesias, M. Garijo, and J. Gonz´alez. A survey of agent-oriented methodologies. In
J. Müller, M. P. Singh, and A. S. Rao, editors,Proceedings of the 5th International Workshop
on Intelligent Agents V : Agent Theories, Architectures, and Languages (ATAL-98), volume
1555, pages 317–330. Springer-Verlag: Heidelberg, Germany, 1999.

12. C. A. Iglesias, M. Garijo, J. C. Gonz´alez, and J. R. Velasco. Analysis and design of multia-
gent systems using MAS-commonKADS. InAgent Theories, Architectures, and Languages,
pages 313–327, 1997.

13. E. A. Kendall, M. T. Malkoun, and C. H. Jiang. A methodology for developing agent based
systems. In C. Zhang and D. Lukose, editors,First Australian Workshop on Distributed
Artificial Intelligence, 1995.

14. D. Kinny and M. Georgeff. Modelling and design of multi-agent systems. InIntelligent
Agents III: Proceedings of the Third International Workshop on Agent Theories, Architec-
tures, and Languages (ATAL-96). LNAI 1193. Springer-Verlag, 1996.

15. D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for systems of
BDI agents. In R. van Hoe, editor,Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, 1996.

16. J. Lind. A development method for multiagent systems. InCybernetics and Systems: Pro-
ceedings of the 15th European Meeting on Cybernetics and Systems Research, Symposium
“From Agent Theory to Agent Implementation”, 2000.

17. J. Mylopoulos, J. Castro, and M. Kolp. Tropos: Toward agent-oriented information systems
engineering. InSecond International Bi-Conference Workshop on Agent-Oriented Informa-
tion Systems (AOIS2000), June 2000.

18. J. Odell, H. Parunak, and B. Bauer. Extending UML for agents. InProceedings of the
Agent-Oriented Information Systems Workshop at the 17th National conference on Artificial
Intelligence., 2000.

19. M. Papasimeon and C. Heinze. Extending the UML for designing JACK agents. InProceed-
ings of the Australian Software Engineering Conference (ASWEC 01), Aug. 2001.

20. D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using de-
sign artifacts: The case of interaction protocols. To appear in the proceedings of the First
International Joint Conference on Autonomous Agents and Multi Agent Systems, 2002.

21. S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.
22. O. Shehory and A. Sturm. Evaluation of modeling techniques for agent-based systems. In

J. P. Müller, E. Andre, S. Sen, and C. Frasson, editors,Proceedings of the Fifth International
Conference on Autonomous Agents, pages 624–631. ACM Press, May 2001.

23. L. Z. Varga, N. R. Jennings, and D. Cockburn. Integrating intelligent systems into a cooper-
ating community for electricity distribution management.Int Journal of Expert Systems with
Applications, 7(4):563–579, 1994.

24. M. Winikoff, L. Padgham, and J. Harland. Simplifying the development of intelligent agents.
In M. Stumptner, D. Corbett, and M. Brooks, editors,AI2001: Advances in Artificial Intelli-
gence. 14th Australian Joint Conference on Artificial Intelligence, pages 555–568. Springer,
LNAI 2256, Dec. 2001.

25. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-oriented anal-
ysis and design.Autonomous Agents and Multi-Agent Systems, 3(3), 2000.


