K-nearest neighbours

Javier Béjar

LSI - FIB

Term 2012/2013
1 Non Parametric Learning

2 K-nearest neighbours
 - K-nn Algorithm
 - K-nn Regression
 - Advantages and drawbacks
 - Application
1 Non Parametric Learning

2 K-nearest neighbours
 - K-nn Algorithm
 - K-nn Regression
 - Advantages and drawbacks
 - Application
In the models that we have seen, we select a hypothesis space and adjust a fixed set of parameters with the training data \(h_\alpha(x) \).

We assume that the parameters \(\alpha \) summarize the training and we can forget about it.

This methods are called parametric models.

When we have a small amount of data it makes sense to have a small set of parameters and to constraint the complexity of the model (avoiding overfitting).
When we have a large quantity of data, overfitting is less an issue.

If data shows that the hypothesis has to be complex, we can try to adjust to that complexity.

A **non parametric** model is one that cannot be characterized by a fixed set of parameters.

A family of non parametric models is **Instance Based Learning**.
Instance Based Learning

- Instance based learning is based on the memorization of the dataset.
- The number of parameters is unbounded and grows with the size of the data.
- There is not a model associated to the learned concepts.
- The classification is obtained by looking into the memorized examples.
- The cost of the learning process is 0, all the cost is in the computation of the prediction.
- This kind learning is also known as **lazy learning**.
Non Parametric Learning

K-nearest neighbours
- K-nn Algorithm
- K-nn Regression
- Advantages and drawbacks
- Application
K-nearest neighbours uses the local neighborhood to obtain a prediction.

The K memorized examples more similar to the one that is being classified are retrieved.

A distance function is needed to compare the examples similarity:

- Euclidean distance: $d(x_j, x_k) = \sqrt{\sum_i (x_{j,i} - x_{k,i})^2}$
- Mahnattan distance: $d(x_j, x_k) = \sum_i |x_{j,i} - x_{k,i}|$

This means that if we change the distance function, we change how examples are classified.
K-nearest neighbours - hypothesis space (1 neighbour)
K-nearest neighbours - Algorithm

- **Training**: Store all the examples
- **Prediction**: $h(x_{\text{new}})$
 - Let be x_1, \ldots, x_k the k more similar examples to x_{new}
 - $h(x_{\text{new}}) = \text{combine_predictions}(x_1, \ldots, x_k)$

- The parameters of the algorithm are the number k of neighbours and the procedure for combining the predictions of the k examples
- The value of k has to be adjusted (crossvalidation)
 - We can overfit (k too low)
 - We can underfit (k too high)
Looking for neighbours

- Looking for the K-nearest examples for a new example can be expensive
- The straightforward algorithm has a cost $O(n \log(k))$, not good if the dataset is large
- We can use indexing with \textit{k-d trees} (multidimensional binary search trees)
 - They are good only if we have around 2^{dim} examples, so not good for high dimensionality
- We can use \textit{locality sensitive hashing} (approximate k-nn)
 - Examples are inserted in multiple hash tables that use hash functions that with high probability put together examples that are close
 - We retrieve from all the hash tables the examples that are in the bin of the query example
 - We compute the k-nn only with these examples
There are different possibilities for computing the class from the k nearest neighbours

- Majority vote
- Distance weighted vote
 - Inverse of the distance
 - Inverse of the square of the distance
 - Kernel functions (gaussian kernel, tricube kernel, ...)

Once we use weights for the prediction we can relax the constraint of using only k neighbours

1. We can use k examples (local model)
2. We can use all examples (global model)
K-nearest neighbours - Regression

- We can extend this method from classification to regression
- Instead of combining the discrete predictions of k-neighbours we have to combine continuous predictions
- This predictions can be obtained in different ways:
 - Simple interpolation
 - Averaging
 - Local linear regression
 - Local weighted regression
- The time complexity of the prediction will depend on the method
K-nearest neighbours - Regression

Simple interpolation

K-nn averaging
K-nearest neighbours - Regression (linear)

- K-nn linear regression fits the best line between the neighbors
- A linear regression problem has to be solved for each query (least squares regression)
Local weighted regression uses a function to weight the contribution of the neighbours depending on the distance, this is done using a kernel function.

Kernel functions have a width parameter that determines the decay of the weight (it has to be adjusted):
- Too narrow \Rightarrow overfitting
- Too wide \Rightarrow underfitting

A weighted linear regression problem has to be solved for each query (gradient descent search).
K-nearest neighbours - Regression (LWR)
K-nearest neighbours - Advantages

- The cost of the learning process is zero
- No assumptions about the characteristics of the concepts to learn have to be done
- Complex concepts can be learned by local approximation using simple procedures
K-nearest neighbours - Drawbacks

- The model can not be interpreted (there is no description of the learned concepts)
- It is computationally expensive to find the k nearest neighbours when the dataset is very large
- Performance depends on the number of dimensions that we have (curse of dimensionality) \Rightarrow Attribute Selection
The Curse of dimensionality

- The more dimensions we have, the more examples we need to approximate a hypothesis.
- The number of examples that we have in a volume of space decreases exponentially with the number of dimensions.
- This is specially bad for k-nearest neighbors.
 - If the number of dimensions is very high the nearest neighbours can be very far away.
Optical Character Recognition

- OCR capital letters
- 14 Attributes (All continuous)
- Attributes: horizontal position of box, vertical position of box, width of box, height of box, total num on pixels, mean x of on pixels in box, ...
- 20000 instances
- 26 classes (A-Z)
- Validation: 10 fold cross validation
Optical Character Recognition: Models

- K-nn 1 (Euclidean distance, weighted): accuracy 96.0%
- K-nn 5 (Manhattan distance, weighted): accuracy 95.9%
- K-nn 1 (Correlation distance, weighted): accuracy 95.1%