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Abstract

We show that an LK proof of size m of a monotone sequent (a sequent that contains only
formulas in the basis A, V) can be turned into a proof containing only monotone formulas of size
m@Uo8™) qnd with the number of proof lines polynomial inm. Also we show that some interesting
special cases, namely the functional and the onto versions of PHP and a version of the Matching
Principle, have polynomial size monotone proofs. We prove that LK is polynomially bounded if
and only if its monotone fragment is.

1 Introduction

The main subject of proof complexity is the study of the lengths of proofs in propositional calculus.
The ultimate goal is to prove that in no proof system the lengths of proofs can be bounded by
a polynomial, which would prove NP # coNP, cf. [6]. Similarly as in other areas of complexity
theory, we are able to prove exponential lower bounds only for very restricted proof systems.
The most known is the exponential lower bound for propositional Resolution [7]. Using a different
method, the so called feasible interpolation, one can reduce proving a lower bound for Resolution to
the well-known exponential lower bounds on monotone boolean circuits [9, 11]. Thus it is natural
to look for more relations between monotone computations and propositional proof systems, in
particular, to look for a proof system that would correspond to monotone boolean circuits. The
most obvious idea is to restrict some proof systems that use all boolean formulas only to monotone
formulas. Recall that a monotone formula is a formula in the basis {V,A}. Since no monotone

*This work was done while the author was supported by the CUR, Generalitat de Catalunya, through grant 1999F1
00532. The work was also partially supported by ALCOM-FT, IST-99-14186.

'"This work was done while the author was a member of the School of Mathematics of the Institute for Advanced
Study (Princeton) supported by the NSF grant n. CCR-9987845. Partially supported by Spanish grant TIC2001-
1577-C03-02 and by CSERC Canadian funds

!This work was done while the author was a member of the Institute for Advanced Study, Princeton, supported
by a grant of the State of New Jersey. Partially supported by grant A1019901 of the Academy of Sciences of the
Czech Republic and by project LNOOAQ56 of the Ministry of Education of the Czech Republic.



formula is a tautology, one cannot use to this end proof systems in which the proof steps consist
of single formulas. In proof theory the most used system is the sequent calculus LK. In sequent
calculus a proof line, called a sequent, consists of two sequences of formulas separated by . The
meaning is that the conjunction of the first set implies the disjunction of the second set. Now
the restriction to sequents that contain only monotone formulas is very natural. One can express
almost all the studied tautologies as monotone sequents. Further motivation for this calculus is
given by the fact that it can be viewed as an extension of resolution and as a subsystem of the
intuitionistic propositional calculus (see [3]).

The study of the propositional monotone sequent calculus (MLK) was proposed in [12]. As there
are monotone functions that can be computed by monotone circuits of exponential size only, while
they can be computed by polynomial size circuits if negation is allowed [15], it was conjectured
that a similar gap should be between proof systems that do not use negation and those that do.
Contrary to this expectation we show that the gap is at most quasipolynomial. More precisely, a
general proof of size m of a monotone sequent can be transformed into a monotone proof of size at
most m@(°8™)  Furthermore, if one counts only the number of proof lines, then our simulation is
polynomial. Our proof uses an idea from circuit complexity, the so called slice functions (see [17]).
These are monotone functions such that, for some k, the value of the function is 0 on all inputs with
less than & ones and it is 1 on all inputs with more than & ones. For such functions their circuit
complexity does not depend essentially on whether we use negations or not. While slice functions
are very special monotone boolean functions, we apply the idea to arbitrary monotone sequents.

We also show that in some special cases the simulation is in fact polynomial. We consider two
well-known variants of the pigeonhole principle (PHP). The Onto PHP (OPHP) states that there is
no one-to-one correspondence from a set of n+ 1 elements onto a set of n elements. The Functional
PHP (FPHP) states that there is no one-to-one function from a set of n + 1 elements into a set of
n elements (a correspondence differs from a function in that each element may have more than one
image in the former, but not in the latter). All three principles PHP, OPHP, and FPHP, have been
used, often interchangeably, in the literature. As a matter of fact, Cook and Reckhow considered
the FPHP in their original paper. We show that for proofs of OPHP and FPHP the monotone
simulation of LK proofs is polynomial. Thus, using a result of Buss [4] that (all versions of) PHP
have polynomial proofs in the sequent calculus, we get also polynomial size monotone proofs of the
two versions of PHP. Finally, we consider the monotone formulation of the Matching Principle that
appears in [10] and get polynomial size monotone proofs as well.

Using our technique we derive the following interesting result: MLK is polynomially bounded
if and only if LK is. Recall that a system is called polynomially bounded if there is a polynomial
bound to the minimal proof of every tautology. Thus, our result says that proving that MLK is not
polynomially bounded is as hard as the same for LK, and consequently as for any Frege system [6].

The paper is structured as follows. In Section 2 we define the sequent calculus LK and its
monotone restriction MLK. In Section 3 we show that MLK quasipolynomially simulates LK on
monotone sequents. Section 4 is devoted to show polynomial size MLK proofs for some restricted
versions of the Pigeonhole Principle and the Matching principle. In Section 5 we prove that MLK
is polynomially bounded if and only if LK is. In the last section we conclude with some open
problems.

2 Monotone Calculus

All our propositional formulas are over the basis {0,1,A,V,—~}. We will assume some familiarity
with the propositional fragment of the Gentzen sequent calculus LK as defined, e.g., in the book



by Takeuti [14]. By an abuse of notation we use LK for the propositional fragment, as we do not
consider other than propositional proofs (this concerns also other notation). For completeness, we
present the rules and axioms of LK. For formulas ¢ and %, and sequences of formulas ', ', A,

and A’:

Axioms:

ke OFDI TF1
Left Structural Rules

Lo, 0, AET" T 0,0, AFT rer’
Lo, AFTY Lo, o, AFTY o, T'FIV

Right Structural Rules

I'eT,o,0, A T'ET, 0,0, A I'+T
I"ET,p, A I'er,d, 0, A T'ET,p

Cut Rule
A oI"FA

T,T'F A, A

Left Logical Rules

0,0, TFA o, TFA ¢ T'FA  TFeA
(eAY),TFA  (eVe),I,T'FA AN  —pTFA

Right Logical Rules

A o0 TEAo TVEA Y T,okA
THEA (VYY) L IVEAA (pAY) THA -

As usual, a proof in LK is a sequence of sequents, or lines, of the form I' F A each of which
is either an initial axiom, or has been obtained by a rule of LK from two previous lines in the
sequence. The sequence constitutes a proof of the last sequent. When we restrict the proofs in such
a way that each derived sequent can be used only once as a premise in a rule of the proof, we say
that the system is tree-like.

The size of a formula ¢, denoted by ||, is the overall number of symbols used in it. The size of
the proof is the sum of the sizes of the formulas in it.

The Monotone Sequent Calculus (MLK) is the subsystem of LK in which all formulas are
positive; that is, all formulas are over the monotone basis {A,V}, thus the negation rules are
prohibited. Note that there are no monotone formulas that are tautologies (except for the truth
constant 1), so the concept of a monotone true statement makes sense only in the sequent calculus.
On the other hand most of the studied tautologies can easily be presented as monotone sequents.
A typical example is the Pigeonhole Principle which can be encoded as a monotone sequent in the
following form:

n+l n n  n+l

PHP; Y = A \/pi; bV V ik Apig)-
i=1 5=1 k=1 l-,'];‘:'l
i#]



3 Monotone simulation of LK

The key idea to prove that negations are powerless to compute k-slice boolean functions fi is as
follows. Prove that in a De Morgan circuit (a circuit over the basis {A, Vv, =} with all negations in
front of the variables) we can replace every negated variable —z; by a polynomial size monotone
circuit C}, called the pseudocomplement of x; with respect to fi, which is equivalent to —z; on all
inputs with exactly k ones (see [17]).

We use this idea to obtain MLK simulations of LK. First, we define a system, LK-De Morgan,
in which negations are applied only to variables. Then, we show that in proving monotone sequents,
LK-De Morgan efficiently simulates LK. Finally we prove that whenever we know how to replace
negated variables by monotone formulas (the pseudocomplements), then LK-De Morgan proofs of
monotone sequents can be easily transformed into MLK proofs (Theorem 1).

This last result will be then be used: (1) to give monotone simulations of LK by proving that
we can always define quasipolynomial size pseudocomplement formulas for any negated variable
(subsection 3.2), and (2) to give polynomial size MLK proofs of some specific classes of monotone
tautologies for which we can improve the size of the pseudocomplements to a polynomial (Section
4).

3.1 De Morgan Sequent Calculus

We say that a formula is in De Morgan normal form if all the negations occur in front of the
variables. For every formula ¢, let p(¢) be a formula in De Morgan normal form that is equivalent
to ¢. Observe that p(¢) is uniformly obtained from ¢ by pushing the negations to the atoms
according to the De Morgan rules. Observe that p(——¢) = p(¢), and that the size of p(¢) is linear
in the size of ¢.

We define LK-De Morgan to be the subsystem of LK in which all formulas are in De Morgan
normal form; that is, all formulas have the negations pushed down to the atoms, and the negation
rules are only allowed over variables.

Lemma 1 The sequents - p(¢), p(—¢) and p(¢), p(—¢) b have tree-like LK-De Morgan proofs of
size O(|¢]?).

Proof: The proof is by induction on the structure of . If ¢ is atomic, say z, then the sequents
F 2, -2 and x, -z | are derivable in one step from the axiom z - z. Suppose next that ¢ is of the
form ¢ A 6. By induction hypothesis, the sequents - p(1), p(—%) and - p(6), p(—8) have tree-like
LK-De Morgan proofs of size quadratic in the sizes of ¢ and 8 respectively. By means of weakening
we derive - p(¥), p(=¢),p(—0) and F p(8), p(—=9), p(—#). Right A-introduction followed by right
V-introduction gives - p(v) A p(8), p(—) V p(—8). The size of the proof is clearly quadratic in
the size of . The sequent p(¥)) A p(8),p(—) V p(—0) F is derived similarly. When ¢ is of the
form 1 V 6 reason dually. Finally, suppose that ¢ is of the form —. By induction hypothesis, the
sequent - p(v), p(—1) has a tree-like LK-De Morgan proof of size quadratic in the size of 3. Since
p(—=—) = p(v), we immediately have a tree-like LK-De Morgan proof of F p(—t), p(—=—) of the
same size. Reason similarly for the sequent p(—%), p(——) . O

Theorem 1 Let ¥ and T' be sequences of formulas. If ¥ F T' has a tree-like LK-proof of size S,
then p(X) b p(T) has a tree-like LK-De Morgan proof of size O(S?).

Proof: Suppose that ¥ = I' has a tree-like LK-proof P of size S. By induction on P, for each
sequent X' F I in P we obtain an LK-De Morgan proof of p(X) - p(I''). Observe that the only



LK rules that do not preserve the De Morgan restriction are the two negation rules. For each right

—-introduction rule in P of the form
Yook T

we simulate the inference

p(X), p(e) - p(T)

p(X) F p(=¢), p(I")
in the new proof by means of a cut with - p(¢), p(—¢), which can be derived in O(|¢|?) steps
according to Lemma 1. Similarly, each left —-introduction rule in P is replaced by an inference

involving a cut with p(¢), p(—p) . The size of the new proof is clearly O(S?). O

Theorem 2 Let X and I' be sequences of monotone formulas with all variables within xq,...,x,.
Suppose that for every i € {1,...,n} there exists a monotone formula @; such that the sequents
Yz, el and X, @, x; T have tree-like MLK-proofs of size at most R. Then, if X = 1" has a
tree-like LK-proof of size S, then it has a tree-like MLK-proof of size O(S%+ RS?).

Proof: Suppose that ¥ - T' has a tree-like LK-proof of size S. Since ¥ and I' are sequences of
monotone formulas, we have that p(X) = ¥ and p(I') = I'. Therefore, by Theorem 1, the sequent
¥ kT has a tree-like LK-De Morgan proof P of size O(S?). Consider the following transformation
on P. First, add X to the left of each sequent and T' to the right of each sequent by weakening on
the axioms. Then, replace each occurrence of —z; in P by ¢;. It remains to see how to simulate
the rules of —-introduction. Counsider such an application in P

E/, ZT; F FI
Y }— Ty, I.

We need to simulate the inference
3, % 4, F T
Y8, TV T

This is straightforward: derive ¥ F x;, ¢;, ', cut on z;, and apply some structural rules. The

simulation of a left —-introduction rule is symmetrical by means of a cut with ¥, ¢;, z; F I'. The
size of the new proof is clearly O(S* + RS?). O

3.2 Using Threshold Formulas to Simulate LK

Recall the following definitions from [2].

For every n and k € {0,...,n}, let TH} : {0,1}" — {0,1} be the boolean function such that
TH?(ay,...,a,) = 1if and only if -5 a; > k, for every (ay,...,a,) € {0,1}". Each TH? is called
a threshold function.

The threshold functions are central in the monotone simulation of non monotone circuits com-
puting slice functions. First they can be computed by polynomial size monotone circuits (see [16]).
Moreover it is possible to show (see [17]) that TH?™'(a1,...@i—1, @it1, .- ., a,) is the pseudocom-
plement of x; with respect to computations of the k-slice function over n variables.

We follow a similar approach to prove a monotone simulation of non monotone proofs. Consider
the definition of monotone threshold formulas: th{(z) := 1, th{(z) := =, thj (z) := 0 for every & > 1,
and for every n > 1 and k > 0, define the formula

@y mn) = N O (@0 2pa) AR (g, 20)
(.5)€ELy;



where I = {(i,7):0<i<n/2,0<j<n-n/2, i+j >k} and n/2is an abbreviation for |n/2].
It is straightforward to prove that thi(zy,...,2,) computes the boolean function TH}. On the
other hand, it is easy to prove, by induction on n, that the size of thi (z1,...,2,) is bounded by
nOlogn)

We use the threshold formulas to define the pseudocomplement formulas in the sequent calculus
in a way similar to the circuits simulation. The main property we prove (see Lemma 5) says
that, when exactly k& among all the variables are true, the formula thj (z1,...,2;/0,...,2,) is the
pseudocomplement of x;. Since we prove this property for each k = 1,.. ., n, it follows that we can
always replace a negated variable by a monotone formula.

We start by giving some preliminary properties of the threshold formulas. Recall that if ¢
and 1 are formulas and z is a variable, the notation ¢(z/v) stands for the formula that results of
replacing every occurrence of x (if any) in ¢ by .

Lemma 2 ([2]) If ¢ is a monotone formula, the sequents (i) ¢ b z,¢(2/0), (i) ¢(z/1),z F ¢
have tree-like MLK-proofs of size O(|p]?).

Lemma 3 ([2]) For every n, m, and | with 0 < m < n and 0 <1 < n, the sequent

thy (21, ..., 21/0,...,2,) Fthy (z1,...,2/1, ... 2)

has tree-like MLK-proofs with n®") lines and size n®(o8")

The polynomial bound on the number of proof lines is not stated explicitly in [2], but an easy
inspection of the proof gives it. The next lemma easily follows from the definitions of the threshold
formulas.

Lemma 4 For every n and k with k > n, the sequents

(i) thi(z1,...,2,) F, and
(17) Fthi(z1, ..., 2)

have tree-like MLK proofs with n®1) lines and size n©(ogn)

For k and ¢ with 0 < k£ < m and 1 <7 < n, the k-pseudocomplement of z; is, by definition, the
monotone formula thf (z1,...,2;/0,...,2,). The next Lemma guarantees that the hypothesis of
Theorem 2 hold for any of the k-pseudocomplement formulas and any monotone sequent X - I' with
variables within z1,..., 2, such that 3 contains thy (z1,...,zy,) and T' contains thi ,(z1,...,z5).

Lemma 5 For every k and ¢ with 0 < k <n and 1 < i< n the sequents:

(1) thy(zy,...,z0) Fthp (z, .. 2n), th (21, ..., 2:/0, ... 20), @5
(i) wi, thi(z1, ..., 2:/0,. .., 2n), thy(z1,.. ., 2n) Fthi (z1,...,20)
have tree-like MLK-proofs with n°(") lines and size n®o8m),

Proof: The first sequent follows from right weakening on Lemma 2 (i). For the second, from
Lemma 2 (ii) we have z;,thy,  (z1,...,2;/1,...,2,) F thf,  (#1,...,2,). Moreover, Lemma 3
gives thy (z1,...,2;/0,...,2,) F thy(z1,...,2;/1,...,2,). The sequent in (ii) is obtained by
cutting and then adding thi(z1,...,2,) by left weakening. O



Theorem 3 Let X FT' be a monotone sequent with n variables. If ¥ F T' has an LK-proof of size
S, then S F T has a tree-like MLK-proof with SO0 lines and size SO0 . nOUogn)

Proof: By Theorem 2 and the well known result that tree-like LK polynomially simulates LK [8],
it will be sufficient to simulate tree-like LK-De Morgan proofs by tree-like MLK proofs. Let P
be a tree-like LK-De Morgan proof of ¥ F T' of size §. By the previous lemma and Theorem
2, for each £ € {0,...,n} we obtain tree-like MLK proofs of the sequents thi(zy,...,2,),X F
L, thy, (z1,...,2,) each one with SO(M) lines and size §O(1) . nOUogn), Finally, n consecutive cuts
give us a proof of the sequent thy(zy,...,2,), X F I',thy ;(21,...,2,) from which we obtain the
theorem using Lemma 4. O

Corollary 1 Tree-like MLK quasipolynomially simulates LK on monotone sequents. In particular,
tree-like MLK quasipolynomially simulates MLK.

Notice that the proof of Theorem 3 shows that the number of lines of the resulting MLK proof
is polynomial in n and the number of lines of the original LK proof. This observation reveals that
any proof of a superpolynomial gap between LK and MLK, if any, should focus on size and not on
the number of lines.

Finally, since every MLK-proof can be polynomially simulated by a proof in the intuitionistic
calculus JK (see [3]) we get the following.

Corollary 2 The intuitionistic calculus JK quasipolynomially simulates LK on monotone sequents.

Note, however, that this is unlikely for intuitionistically valid nonmonotone sequents, see [5].

4 Pigeonhole and Matching Principles

The Pigeonhole Principle states that if n + 1 pigeons go into n holes, then there is some hole with
more than one pigeon sitting in it. Recall its definition as a monotone sequent in Section 2. We
consider two well-known variants of this principle. The Onto PHP, denoted OPHP, requires the
mapping to be onto the set of holes. The Functional PHP, denoted FPHP, requires the mapping
to send every pigeon to exactly one hole. Their propositional formulations as monotone sequents
are as follows:

n+l n n n+l n n+l
OPHP* = A \/ pis A AV pist V V (pik Apsg)-
i=1 j=1 7=11=1 k=1 ig=1
t#]
n+l n n n+l n+l n
FPHPZ"‘I = A v Dij F v v (pi,k, /\p]’k) V v v (pk,i /\pk,])
i=1 j=1 k=1 i,ij:jl k=1 zlj:il

Using Corollary 1 and Buss’ polynomial size LK proofs of the PHP?*! we give another proof
of the main result of [2].

Theorem 4 ([2]) PHP*! has MLK-proofs of size quasipolynomial in n.

We can improve this result showing that the principles OPHP, FPHP and a Perfect Matching
Principle PM that we introduce later admit polynomial size MLK-proofs.

Theorem 5 FPHP"t!' and OPHP?t' have tree-like MLK-proofs of size polynomial in n.



Proof: Buss proved that PHP”*! has a Frege proof of size polynomial in n, and therefore, so do
FPHP?*! and OPHP?*!. Since tree-like LK polynomially simulates any Frege system [8], they also
have polynomial-size tree-like LK-proofs. We first consider FPHP?*!. For every i € {1,...,n+ 1}
and j € {1,...,n}, let ;; be the formula \/ .4, p; j where j’ ranges over {1,...,n}. Let LFPHP be
the left hand side of the sequent FPHP?*! and let RFPHP be the right hand side of the sequent
FPHP.t!. We claim that the sequents

LFPHP F p; ;, p;;, RFEPHP (1)
LFPHP, ¢;;, p; ; - REPHP (2)

have tree-like MLK-proofs of size polynomial in n. The result will follow for FPHP”*! by Theorem
2. For sequent (1) reason as follows. For every j' € {1,...,n}, we have p; y F p; 1,..., pin, REFPHP
by right weakening on the axiom p; ; F p;; and structural rules. By left V-introduction we
get /1 Pij & Pi1y--.,Pin, RFPHP. Left weakening and left A-introduction gives LFPHP
Dils-- -1 Pin, REPHP. Finally, some structural rules and right V-introduction give sequent (1). For
sequent (2) reason as follows. For every j,j € {1,...,n 4+ 1} such that j # j', we have p; ;,p; ;» I
Di jApi j easily. Left weakening, right weakening and right V-introduction gives LFPHP, p; ;, p; j» I
RFPHP. Finally, left V-introduction for every j' # j gives sequent (2). As regards OPHP”*!  one
simply needs define @;; as \/;i4; pirj where i’ ranges over {1,...,n+ 1}, and reason analogously. O

Let us be given a graph G = (V, E) on n = 3m nodes. We consider the following matching
principle PM,, formulated in [10]. If X is a set of m edges forming a perfect matching in G and Y
is an m — 1 subset of V, then there is some edge (u,v) € X such that neither « nor v are in V. To
encode this principle as a monotone sequent we use variables z; ; for ¢ € [m] and k € [3m] whose
intended meaning is that the node % is in the i-th edge of the matching, and variables -y, ; for
i € [m — 1] and k € [3m] whose intended meaning is that the node k is the i-th element in Y. We
will encode the fact that there is a perfect matching on m edges in G by an m X 3m matrix such
that in each row there are exactly two 1’s and in each column there is at most one 1. Notice that

our formula has depth 3.
X(1):= /\ v (i A wig)
1€[m] k,k'€[3m],k#k’

X(2) = A A (—|$i7k Vv Ty V ﬁwi’h)
i€lm] kLhe[3m] kAl Ehtk

X(3):= /\ /\ (258 V 2 k)
iil€[m]isi! ke[3m]

Similarly, we will encode that ¥ is an m —1 subset of V', by an (m —1) x 3m matrix in which for
each row there is exactly one 0 and in each column there is at most one 0 (recall that the presence
of a node in Y is indicated by a negated variable).

Y(1):= A N Wik Vyik)

13 €[m—1],i#£: k€[3m]

Y(2):= A A Wik Vyir)

i,€[m—1] kK €[3m]k#k!

Y3) = AV -wir

1€[m—1] k€[3m]



The last formula that we introduce means that there is an edge such that neither of its endpoints
isin Y.

XY = V V (mi,k,/\mi,k’ /\ Yik /\ yz‘,k’)

1€[m] k,k'€[3m],k£k’ 1€[m—1] 1€[m—1]

Then the PMsg,, principle is expressed by the following sequent:
(1) X(1),X(2),X(3),Y(1),Y(2),Y3) F XY

It is easy to see that this sequent can be transformed in a monotone sequent. Consider the formulas
X (1)t := =X (i) fori = 2,3, and Y (3)1 := =Y'(3). Then (1) is equivalent to the monotone sequent

X(1),Y(1),Y(2)F X(2)5, X(3)4,Y(3)*, XY

Notice that, as observed in [10], PMs,, can be reduced to OPHP]?_,. However we need to define
the PHP variables p; ; as p; ; := VkE[Sm](‘ri,k A —y; k) which is not a monotone formula. Therefore
the reduction cannot be proved in MLK. In any case, we can get polynomial size MLK proofs for
PMas,,, principle directly.

Theorem 6 PM,, has tree-like MLK-proofs of size polynomial in n.

Proof: The proof follows the same lines of the previous Theorem given that [10] gave polynomial
size LK proofs for PM,,. Define for each ¢ € [m] and for each k¥ € [3m] the pseudocomplement
formula ¢ for z;x as:
ey = V (Zi g A zigo)
k! k! €[3m] kAR K kN Ak

For each ¢ € [m — 1] and for each k € [3m] define the pseudocomplement formula ‘sz,k for y; 1 as

@fk = /\ Yi k!
k' €[3m] k' £k

We prove that for each ¢ € [m], for each j € [m — 1] for each k& € [3m] the following sequents
have polynomial size tree-like MLK proofs:

(1) X(1),wik iy - X (25, X(3)7

(2) X(Q)F ik, 0, X(2)4, X(3)*

(3) Y(1),Y(2),yk #5, Y (3)*

4) Y(1),Y2)F gk, ¢50 Y (3)

The theorem then follows by the same argument used in the previous Theorem. We prove sequents

(1) and (2). Sequents (3) and (4) follow by an argument similar to that of FPHP. Observe that
X (2)+, X (3)* are the following formulas

x@2t=V V (zik A @iy Ain)

i€fm] k0 he[3m] ktihtk

x@)t= V V' (ik Awig)

ii'€[mlii’ ke[3m]



For sequent (1) reason as follows: for each &’ # k we have proofs of the sequents z; x Az; o - 2 k.
By left V-introduction on all the previous proofs, we can derive Vk;€[3m]’k/¢k(mi7k ANzig) Foak.
From this, by right weakening we have

(5) V  @ipAzip) b ik, el
k' €[3m] k'£k

For each k' # k" € [3m], with &', k" # k we can derive z; 4 A z; 4 b 240 A 2; . From this, by
right weakenings, we can derive z; g A z; kI ik, ¢ By left V-introductions on these proofs we
obtain
(6) V (Tigr A @ign) & 24 gy 7 g
k! k" €[3m] k! k' #k
Finally by left V-introduction between (5) and (6), left weakening, and left A-introduction we obtain
X (1) F @ik, 97y, from which (1) follows by right weakenings.

For sequent (2) reason as follows: for each k' # k" € [3m], k', k" # k, we have proofs of
the sequents z; g, (Zip A Zign) F (2% A Zipr A 2i40). By weakenings and right V-introduction
we obtain z;k, (2,4 A z;5#) F X (3)+. By right V-introductions on all previous proofs we have
Tiky Pip b X (3)1 from which the sequent (2) follows by two weakenings, left and right. O

5 MLK is polynomially bounded if and only if LK is.
In this section we prove the above statement. The main part of the proof is the following lemma.

Lemma 6 Let 7}'(z1,...,2,) be polynomial-size monotone formulas for TH}. If the sequents of
Lemmas 4 and 5 have polynomial-size LK-proofs with ' (zy,...,z,) instead of thi(z1,...,z,),
then MLK polynomially simulates LK on monotone sequents.

Proof: Let p(n) be a bound on the size of 77'(zy,...,2,). Suppose we have LK-proofs of all
the sequents in Lemmas 4 and 5 in a single proof of size at most ¢(n). These 2(n + 1)n + 2
sequents are called the pseudocomplement properties. We prove, by induction on n, that all 2(n +

1)n 4 2 pseudocomplement properties of 7'(z1,...,2,) can be obtained in a single MLK-proof of
polynomial-size. This will be enough since then we can apply the same argument as in Theorem 3
with 70 (zq,...,2,) instead of thi (zq,...,2,).

We will obtain a recurrence s(n) for the size of the MLK-proofs of the pseudocomplement
properties of 7. For n = 1, the proofs are just constant size and s(n) = O(1). Suppose n > 1 next.

Define auxiliary formulas as follows. Let of = 1, o7 = AL, z;, and for every ¢ € {1,...,n—1}, let
o be the formula
PN @y an) V(TP (1, Tant) A Tn).

Observe that the size of o} is bounded by 2p(n — 1) + 3. It is easy to get MLK-proofs of the
sequents of the pseudocomplement properties for o from those of 7/"~'. The size of these proofs
is at most /(n) for some polynomial I(n). With these, we use the argument of Theorem 3 with
of,...,op as threshold formulas to turn the LK-proofs of the properties of 7" into MLK-proofs
of size ¢(n) + 2¢(n)(2p(n — 1) + 3) + s(n — 1) + I(n). To see this bound on the size, observe
that the proof is built as follows. For each k& € {0,...,n}, take the LK-De Morgan proofs of the
2(n 4+ 1)n 4 2 properties for 7* and add o} to the left and 0ry, to the right by weakening. This
gives size ¢(n) + 2¢(n)(2p(n — 1) + 3). Then replace each negated variable —z; by o} (z;/0). This
gives ¢(n)(2p(n — 1) 4+ 3) additional symbols. Then derive the pseudocomplement properties of
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77~ monotonically in size s(n — 1), and those of o from these in /(n) additional symbols. Finally,

the rules of —-introduction are simulated by cuts on these sequents. This analysis gives us the
recurrence s(n) = ¢(n) + 3¢(n)(2p(n — 1) + 3) + s(n — 1) + I(n) which is easily seen to give a
polynomial. We note that the proofs are not tree-like at all. O

We are now ready to prove the main result of this section.
Theorem 7 LK is polynomially bounded if and only if MLK is polynomially bounded.

Proof: Suppose that LK is polynomially bounded. Let 7' be Valiant’s monotone formulas for all
threshold functions [16]. Any other polynomial-size monotone formulas computing TH} would do
as well. Since we are assuming that LK is polynomially bounded, the pseudocomplement properties
of 7' have polynomial-size LK-proofs. Hence, by Lemma 6, MLK polynomially simulates LK. In
particular, MLK is polynomially bounded.

For the other direction, suppose that MLK is polynomially bounded. We shall use the following
translation of nonmonotone sequents to monotone ones. Suppose we have a formula that uses only
variables z1,...,z,. Take another set of variables yy, ..., y, that will represent the negations of
the z;’s. Given a sequent

THT,

in De Morgan normal form, we shall translate it into the following monotone sequent

(751 Vyl)v L] (xn Vyn)vzl F Plv (wl A 3/1)7 L] (wn/\ yn)7 (3)

where Y/, T’ are obtained from X, T' by replacing all =z; by y;, for i = 1,...,n. Clearly, the first
sequent is a tautology if and only if the second is. Hence, if ¥ F I' is a tautology, we have, by our
assumption, a polynomial size MLK proof of the second sequent. Thus it remains to show that a
proof of the translation in MLK can be transformed into at most polynomially larger proof of the
original sequent in LK. But this is trivial. First replace y;’s back to —z;’s in the whole MLK proof.
Then add proofs of sequents - z; V —z; and apply cuts to remove these disjunctions from (3). Do
the same thing (more precisely, the dual thing) with the consequent. O

6 Conclusions and open problems

We do not know if our simulation of LK by MLK (of monotone sequents) can be improved to a
polynomial simulation. The bottleneck of our proof are the threshold formulas. By Lemma 6 to get
a polynomial simulation it would suffice to replace them by monotone formulas of polynomial size
and find polynomial size proofs of the properties of these formulas in LK. While there are explicit
constructions of polynomial size monotone threshold formulas (an easy corollary of the construction
of log-depth sorting network [1]), it is at all not clear whether the conditions can be proven for
such formulas by polynomial size proofs. The most direct approach would be to formalize the
proof of [1] in LK. This would require, in particular, to prove that the expander graphs used in
the construction have the expansion properties. We are not aware of any ‘low level’ proof of the
expansion properties, thus this seems to be an essential obstacle.

As expander graphs proved to be very useful in many applications, it may be of independent
interest to know if a tautology expressing such a property for some graph has polynomial size
proofs. Let p? be (nonmonotone) formulas expressing TH} and such that the basic conditions (the
sequents of Lemmas 4 and 5) have polynomial size LK proofs for these formulas. (Such formulas
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are well-known [4]; it does not matter which we choose, since their equivalence is provable by
polynomial size proofs.) Let G be a graph such that for some k and [, every set of vertices X of
size k expands to size I by G, which means that there are at least [ vertices that either belong to
X or are connected by an edge to X. Let the set of vertices of G be {1,...,n} and the set of edges
of G be E. The following tautology expresses the expansion property of G:

p2($1,...,$n)—>p?($1v V wj"'”x”v V wj) (4)
(l,j)EE (n,j)EE

The interesting case is when the degree of G is constant and for some constants 0 < € < § < 1,
k is asymptotically en and [ is asymptotically én. Does there exist a graph G such that for such
parameters the sequent (4) has a polynomial size LK proof?

The complexity of MLK proofs of the general PHP is also an open problem. Thus it is not
totally excluded that this tautology can be used to show a superpolynomial gap between LK and
MLK.
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