
Bounded-width QBF is PSPACE-complete∗

Albert Atserias†

Universitat Politècnica de Catalunya
Barcelona, Spain

atserias@lsi.upc.edu

Sergi Oliva‡

Universitat Politècnica de Catalunya
Barcelona, Spain

oliva@lsi.upc.edu

March 15, 2013

Abstract

Tree-width is a well-studied parameter of structures that measures their similarity to a tree.
Many important NP-complete problems, such as Boolean satisfiability (SAT), are tractable
on bounded tree-width instances. In this paper we focus on the canonical PSPACE-complete
problem QBF, the fully-quantified version of SAT. It was shown by Pan and Vardi [LICS 2006]
that this problem is PSPACE-complete even for formulas whose tree-width grows extremely
slowly. Vardi also posed the question of whether the problem is tractable when restricted to
instances of bounded tree-width. We answer this question by showing that QBF on instances
with constant tree-width is PSPACE-complete. Additionally, we introduce a family of formulas
with bounded tree-width that do have short refutations in a specific proof system.

1 Introduction

Tree-width is a well-known parameter that measures how close a structure is to being a tree.
Many NP-complete problems have polynomial-time algorithms on inputs of bounded tree-width. In
particular, the Boolean satisfiability problem can be solved in polynomial time when the constraint
graph of the input cnf-formula has bounded tree-width (cf. [1], [2]).

A natural question suggested by this result is whether QBF, the problem of determining if a
fully-quantified cnf-formula is true or false, can also be solved in polynomial time when restricted to
formulas whose cnf-formula has bounded tree-width. In [3], Chen concludes that the problem stays
tractable if the number of quantifier alternations, as well as the tree-width, is bounded. On the
negative side, Gottlob, Greco and Scarcello [4] proved that the problem stays PSPACE-complete
when the number of alternations is unbounded even if the constraint graph of the cnf-formula has
logarithmic tree-width (and indeed, its incidence graph is even a tree). By different methods, and
improving upon [4], Pan and Vardi [5] show that, unless P = NP, the dependence of the running
time of Chen’s algorithm on the number of alternations must be non-elementary, and that the QBF
problem restricted to instances of tree-width log∗ in the size of the input is PSPACE-complete. All

∗A preliminary version of this paper appeared in the Proceedings of the 30th International Symposium on Theo-
retical Aspects of Computer Science (STACS 2013). The current version is based on Chapter 3 of the second author’s
PhD thesis.

†Research partially supported by CICYT TIN2010-20967-C04-04 (TASSAT).
‡Research supported by CICYT TIN2007-66523 (FORMALISM).

1

these negative results hold also for path-width, which is a parameter that measures the similarity to
a path and is in general smaller than tree-width. However, they leave open whether QBF is tractable
for instances whose constraint graph has constant path-width, or even constant tree-width.

Main result and comparison to previous results In this paper, we resolve this question by
showing that, even for inputs of constant path-width, QBF is PSPACE-complete. Our construction
builds on the techniques from [5] with two essential differences. The first difference is that instead of
reducing from the so-called tiling-game and producing a quantified Boolean formula of log∗-smaller
path-width, our reduction starts at QBF itself and produces a quantified Boolean formula whose
path-width is only logarithmically smaller. Although this looks like backward progress, it leaves
us in a position where iterating the reduction makes sense. However, in order to do so, we need
to analyze which properties of the output of the reduction can be exploited by the next iteration.
Here comes the second main difference: we observe that the output of the reduction has not only
smaller path-width, but also smaller window-size, which means that any two occurences of the
same variable appear close to each other in some ordering of the clauses. We call such formulas
n-leveled, where n is a bound related to the window-size. Our main lemma exploits this structural
restriction in a technical way to show that the QBF problem for n-leveled formulas reduces to the
QBF problem for O(log n)-leveled formulas. Iterating this reduction until we reach O(1)-leveled
formulas yields the result.

A few more words on the differences between our methods and those in [5] and [4] are in order.
The technical tool from [5] that is used to achieve n-variable formulas of O(log∗ n) path-width builds
on the tools from [6] and [7] that were used for showing non-elementary lower-bounds for some
problems related to second-order logic. These tools are based on an encoding of natural numbers
that allows the comparison of two n-bit numbers by means of an extremely smaller formula; one
of size O(log∗ n). It is interesting that, by explicitely avoiding this technique, our iteration-based
methods take us further: beyond O(log∗ n) path-width down to constant path-width. For the
same reason our proof can stay purely at the level of propositional logic without the need to resort
to second-order logic. Along the same lines, our method also shows that the QBF problem for
n-variable formulas of constant path-width and O(log∗ n) quantifier alternations is NP-hard (and
ΣiP-hard for any i ≥ 1), while the methods from [5] could only show this for O(log∗ n) path-width
and O(log∗ n) alternations. It is worth noting that, in view of the results in [3], these hardness
results are tight up to the hidden constants in the asymptotic notation.

Structural restrictions on the generalization of QBF to unbounded domains, sometimes called
QCSP, have also been studied. Gottlob et al. [4] proved that QCSP restricted to trees is already
PSPACE-complete. Their hardness result for qbfs of logarithmic tree-width follows from this by
booleanization. They also identify some new tractable fragments, and some other hardness con-
ditions. Finally, Chen and Dalmau [8] introduced a general framework for studying structural
restrictions on QCSP, and characterized the restrictions that make the problem tractable under
complexity-theoretic assumptions.

Respectful tree-width and Q-resolution One of the restrictions of QCSP that Chen and
Dalmau showed tractable is that the constraint graph of the instance has bounded respectful tree-
width. Note that the tree-width of the constraint graph is independent of the quantification of the
instance. Respectful tree-width is precisely a quantifier-aware parameter, that considers only tree-
decompositions that are respectful with the quantification, in the sense that bottom-up algorithms

2

can be run on these tree-decompositions without violating precedence of quantifiers.
In this paper we observe that qbfs of bounded respectful tree-width are not only tractable but

also have short Q-resolution proofs. We start by presenting different forms of quantifier-aware
resolution introduced by Büning, Flögel and Karpinski [9] and Pan and Vardi [10] and show how
they relate to each other. Next, we show that respectful tree-width is equivalent to respectful
induced width. Here induced width refers to a measure equivalent to tree-width introduced in [11].
Finally, we show that false qbfs with bounded respectful induced width have short Q-resolution
refutations, which yields our result.

As an application of this result, we show that a family of formulas inspired by one introduced
by Dalmau, Kolaitis and Vardi [12], has bounded respectful tree-width. We give practical examples
of how these formulas are useful.

Paper organization The paper is organized as follows. In section 2, we introduce the basic
definitions. In section 3, we formalize the concept of leveled-qbf and state and prove the main
lemma. In section 4, we present the main theorem of the paper, which shows how to iterate the
lemma to obtain the desired result. Finally, in section 5, we introduce the Q-resolution proof system
and the concept of respectful tree-width and present our results on those.

2 Preliminaries

We write [n] := {1, . . . , n} and |n| := dlog(n+ 1)e. All logarithms are base 2. Note that |n| is the
length of the binary encoding of n. We define log(0) n := n and log(i) n := log(log(i−1) n) for i > 0.
Also, we use log∗ n as the least integer i such that log(i) n ≤ 1.

The negation of a propositional variable x is denoted by x. We also use the notation x(1) and
x(0) to denote x and x, respectively. Note that the notation is chosen so that x(a) is made true by
the assignment x = a. The underlying variable of x(a) is x, and its sign is a. A literal is a variable
or the negation of a variable. A clause is a sequence of literals. A cnf-formula is a sequence of
clauses. The size of a clause is its length as a sequence, and the size of a cnf-formula is the sum of
the sizes of its clauses. For example,

φ = ((x1, x2), (x2, x3, x4), (x4)) (1)

is a cnf-formula of size 6 made of three clauses of sizes 2, 3, and 1, respectively. If φ is a cnf-formula
of size s, we write `1(φ), . . . , `s(φ) for the s literals of φ in the left-to-right order in which they
appear in φ. For example, in (1) we have `4(φ) = x3. When φ is clear from the context we write
`i instead of `i(φ). We use var(φ) to denote the set of variables occurring in a formula φ.

Tree-width and path-width Let φ be a cnf-formula with variables X1, . . . , Xn and clauses
C1, . . . , Cm. The constraint graph of φ has one vertex for every variable of φ and two variables are
connected by an edge if and only if there is a clause which contains them both. We identify the
variables of a formula with the vertices of its constraint graph.

For a given a graph G = (V,E), a tree decomposition of G is a pair (T,L), where T is a tree
and L is a function L : V (T)→ P(V), that satisfies the following properties:

1.
⋃

t∈V (T) L(t) = V ,

2. for every (u, v) ∈ E, there is a t ∈ V (T) such that u, v ∈ L(t),

3

3. for every v ∈ V , the subgraph of T induced by {t ∈ V (T) | v ∈ L(t)} is a connected subtree.

For later convenience we assume that T is a rooted tree. Note that a graph has multiple tree-
decompositions.

Given a tree-decomposition, its width is defined as

max
t∈V (T)

L(t)− 1.

The tree-width of a graph is the minimum among the widths of its tree-decompositions.
The tree-width of a formula is defined as the tree-width of its constraint graph.

Claim 1. Let G be a graph and let (T,L) be a tree-decomposition of G. Then, for every S ⊆ V (G)
that induces a clique, there is a t ∈ V (T) such that S ⊆ L(t).

A path decomposition of a graph G is a tree-decomposition (T,L) such that T is a path. The
path-width of a graph is the minimum among the widths of its path decompositions.

Quantified boolean formulas A qbf is a quantified Boolean formula of the form

φ = Q1x1 · · ·Qqxq(φ′), (2)

where x1, . . . , xq are propositional variables, the matrix φ′ is a cnf-formula, and Qi is either ∀ or ∃
for every i ∈ {1, . . . , q}. The size of a qbf as in (2) is defined as the size of its matrix φ′. The tree-
width (path-width) of a qbf is the tree-width (path-width) of its matrix. We say that Q1x1 . . . Qqxq

is the prefix of φ.

3 Leveled Formulas

In this section we state and prove the main lemma. This lemma is a reduction from n-leveled qbfs
to O(log n)-leveled qbfs, which is progress in our iterative argument. Before stating the lemma, we
formalize the concept of leveled-qbf.

3.1 Definition of leveled qbf

Let n be a positive integer. An n-leveled cnf-formula is a cnf-formula φ in which its sequence
of clauses is partitioned into blocks B1, . . . , B`, where each block is a consecutive subsequence of
clauses of φ, and its set of variables is partitioned into the same number of groups G1, . . . , G`, each
containing at most n variables, and such that for every j ∈ {1, . . . , `− 1} we have that every clause
C in Bj has all its variables in Gj ∪Gj+1, and every clause C in B` has all its variables in G`. An
n-leveled qbf is a quantified Boolean formula whose matrix is an n-leveled cnf-formula.

Observe that every qbf with n variables is an n-leveled qbf: put all clauses in a single block
and all variables in a single group. However, when the sizes of the groups are limited, we get a nice
structure:

Lemma 1. Let n be a positive integer. Every n-leveled qbf has path-width at most 2n− 1.

Proof. Let φ be an n-leveled QBF with groups G1, . . . , G`. Define (T,L) as the path decomposition
of the matrix of φ where T is a path on vertices t1, . . . , t`, and L(ti) := Gi∪Gi+1 for i ∈ {1, . . . , `−1}
and L(t`) := G`. Since each Gi has cardinality at most n, the claim follows.

4

Now, we can formalize the statement of the main lemma.

Lemma 2. There exist c, d ≥ 1 and a polynomial-time algorithm that, for every n, s ≥ 1, given an
n-leveled qbf φ of size s, computes a c · |n|-leveled qbf ψ of size d · s · |n| such that φ↔ ψ.

We devote the rest of the section to the proof of this lemma. In order to improve the readability
of Boolean formulas, we use + for disjunction and · for conjunction.

3.2 Definition of θ

Let φ be a n-leveled qbf as in (2) whose matrix φ′ is an n-leveled cnf-formula of size s with groups
G1, . . . , G` and blocks B1, . . . , B`. As a first step towards building ψ we define an intermediate
formula θ. The formula θ contains variables τ1, . . . , τs, one for each literal in φ′, and is defined as

θ := Q1τ 1 · · ·Qqτ q(ncons∀ + (cons∃ · sat))

where

1. each τ j , for j ∈ [q], is the tuple of τ -variables corresponding to all the occurrences of the
variable xj in φ′,

2. consQ, for Q ∈ {∀,∃}, is a qbf to be defined later that is satisfied by an assignment to
τ1, . . . , τs if and only if all the variables from the same τ j with Qj = Q are given the same
truth value,

3. nconsQ for Q ∈ {∀,∃} is a qbf that is equivalent to the negation of consQ,

4. sat is a qbf to be defined later that is satisfied by an assignment to τ1, . . . , τs if and only if
every clause of φ′ contains at least one literal `k = x(a) such that τk is given value a.

This information about the constituents of θ is enough to prove the following claim.

Claim 2. φ↔ θ

Proof. We need to prove both implications. In both cases we use a game in which two players, the
existential player and the universal player, take rounds following the order of quantification of the
formula to choose values for the variables quantified their way. The aim of the existential player is
to show that the matrix of the formula can be made true while the aim of the universal player is
to show him wrong.

In the following, for j ∈ [q], we say that an assignment to the variables of τ j is consistent if
they are given the same truth value, say a ∈ {0, 1}. In case the assignment is consistent, we say
that a is the corresponding assignment for the variable xj . Conversely, if a is an assignment to the
variable xj , the corresponding consistent assignment for the tuple τ j is the assignment that sets
each variable in τ j to a. If an assignment to τ j is not consistent we call it inconsistent.

(→): Assume φ is true and let α be a winning strategy for the existential player in φ. We build
another strategy β that guarantees him a win in θ. The construction of β will be based on the
observation that, in the course of the game on θ, if the assignment given by the universal player
to some τ j with Qj = ∀ is inconsistent, then ncons∀ is true irrespective of all other variables, and
hence the matrix of θ is true. With this observation in hand, the strategy β is defined as follows:
at round j with Qj = ∃, if all τ 1, . . . , τ j−1 have been given consistent assignments up to this point

5

and a1, . . . , aj−1 ∈ {0, 1} are the corresponding assignments to the variables x1, . . . , xj−1, let aj

be the assignment given to xj by the strategy α in this position of the game on φ, and let the
existential player assign value aj to every variable in τ j . If on the other hand some τ k with k < j
has been given an inconsistent assignment, let the existential player assign an arbitrary value (say
0) to every variable in τ j . Using the observation above and the assumption that α is a winning
strategy, it is not hard to see that β is a winning strategy.

(←): Assume θ is true and let β be a winning strategy for the existential player in θ. We
build a strategy α for the existential player in φ. In this case the construction of α will be based
on the observation that, in the course of the game on θ, as long as the universal player assigns
consistent values to every τ j with Qj = ∀, the assignment given by β to each new τ j with Qj = ∃
must be consistent. To see this note that, if not, the universal player would have the option of
staying consistent all the way until the end of the game in which case both ncons∀ and cons∃
would become false, thus making the matrix of θ false. With this observation in hand, the strategy
α is defined as follows: at round j with Qj = ∃, let a1, . . . , aj−1 ∈ {0, 1} be the assignment given
to x1, . . . , xj−1 up to this point, let a1, . . . ,aj−1 be the corresponding consistent assignments for
τ 1, . . . , τ j−1, and let aj be the assignment given by β to τ j in this position of the game on θ. By
the observation above, since each ak with k < j and Qk = ∀ is consistent by definition and each
ak with k < j and Qj = ∃ has been assigned according to the strategy β, the assignment aj must
also be consistent. Thus the existential player can set xj to its corresponding value aj and continue
with the game.

We need to show that α is a winning strategy for the existential player on φ. First, if the
existential player plays according to α, then the final assignment a1, . . . , aq that is reached in the
game on φ is such that the corresponding assignment a1, . . . ,aq in the game on ψ satisfies the
matrix of θ. Since each aj is consistent this means that sat must be made true by a1, . . . ,aq, thus
the matrix of φ is made true by a1, . . . , aq. This shows that the existential player wins.

Now, we show how to construct the qbf-formulas sat, cons∃ and ncons∀. These formulas
have the τ -variables as free variables and a new set of quantified variables for each literal in φ′.
Recall that the τ -variables assign a truth value to each variable-ocurrence in φ′. The formula sat
will verify that these assignments satisfy all clauses of φ′, the formula cons∃ will verify that each
existentially quantified variable is assigned consistently, and the formula ncons∀ will verify that at
least one universally quantified variable is assigned inconsistently.

3.3 Definition of sat

For every i ∈ [s+ 1], we have variables µi and νi. By scanning its literals left-to-right, the formula
checks that every clause of φ′ contains at least one literal `k = x(a) such that τk is given value a.
To do so, µi and νi indicate the status of this process when exactly i−1 literals have been scanned.
The intended meaning of the variables is the following:

• µi = “just before scanning `i, the clauses already completely scanned are satisfied, and the
current clause is not satisfied yet”.

• νi = “just before scanning `i, the clauses already completely scanned are satisfied, and the
current clause is satisfied as well”.

Note that `s+1 is not a literal. Therefore, “just before scanning `s+1” means “just after scanning
the last literal” in this case. Also, variables µ1 and ν1 are initialized to true and false, respectively.

6

We want to make sure that at position i = s + 1, i.e. after scanning the last literal, µs+1 is true.
Later, we will axiomatize the transition between positions i and i + 1. That will define µi+1 and
νi+1 depending on µi, νi and `i according to its intended meaning. We will axiomatize this into
the formula sat(i). Then, sat is defined as

sat := ∃µ∃ν

(
µ1 · ν1 ·

s∏
i=1

sat(i) · µs+1

)

where µ = (µ1, . . . , µs+1) and ν = (ν1, . . . , νs+1).
Next, we formalize sat(i). For every i ∈ [s], let ai ∈ {0, 1} denote the sign of `i, the i-th literal

of φ′, and let ki ∈ {0, 1} be the predicate that indicates whether `i is the last in literal its clause.
Then, sat(i) is the conjunction of the following formulas:

µi+1 ↔ ki µi ai τi + ki µi ai τi + ki µi ai τi + ki µi ai τi + ki νi,

νi+1 ↔ ki µi ai τi + ki µi ai τi + ki νi.

In words, the axiomatization states that µi+1 holds in one of three cases: 1) if `i is the last
literal in its clause and the clause has been satisfied by a previous literal (kiνi), or 2) if `i is the last
literal in its clause, this clause is not yet satisfied by a previous literal, but the truth assignment
satisfies the current one (kiµiaiτi +kiµiaiτi), or 3) if `i is not the last literal in its clause, this clause
is not yet satisfied by a previous literal, and the truth assignment does not satisfy the current one
either (kiµiaiτi + kiµiaiτi). The axiomatization of νi+1 is similar.

Note that these two formulas can be written in cnf by writing ↔ in terms of conjunctions
and disjunctions and by distributing disjunctions over conjunctions. We call i-link a clause that
contains variables only with indices i and i+1. Observe for later use that all clauses in the resulting
cnf-formulas for sat(i) are i-links. Also, the size of sat written in cnf is c · s for some constant
c ≥ 1.

3.4 Definition of cons∃

The construction of cons∃ is a bit more complicated. It uses universally quantified variables
{π1, . . . , πs} as pointers to the literals of φ′, in one-to-one correspondance with {τ1, . . . , τs}. We
say that pointer πi points to literal `i. If x is the underlying variable of `i, we say that πi points to
x. Pointers that are set to true are called activated. We say that a pointer has been scanned if its
pointed literal has been scanned. The formula checks the following: whenever exactly two pointers
are activated and they point to occurrences of the same existentially quantified variable, then the
truth values assigned to the pointed literals are consistent. To refer to a variable, we do not encode
its identifier directly. Instead, we encode the parity of its group and its index inside this group.
This is enough information to distinguish between different variables in the same or neighbouring
blocks. This fact is key to our argument and will be proved later in Claim 3. The point is that
this compact encoding uses only |n|+1 bits per occurrence, where n is the number of variables per
group, which may be much smaller than the total number of variables.

The formula uses the following variables for i ∈ [s+ 1]:

• ξi = “just before scanning `i, all the activated pointers already scanned point to an existen-
tially quantified variable”.

7

• σi,k = “just before scanning `i, exactly k activated pointers have been scanned”.

• χi,k = “just before scanning `i, exactly one activated pointer has been scanned and there
have been k changes of block between the pointed literal and position i, or exactly two have
been scanned and there have been exactly k changes of block between the pointed literals”.

• ωi = “just before scanning `i, exactly one activated pointer has been scanned and the parity
of the group of the pointed variable is equal to the parity of the block of the clause of the
pointed literal, or exactly two have been scanned and the groups of the pointed variables are
the same”.

• κi = “just before scanning `i, exactly one activated pointer has been scanned and the τ -
variable at the pointed position is true, or exactly two have been scanned and the truth
values of the τ -variables at the pointed positions are the same”.

• λi,b = “just before scanning `i, exactly one activated pointer has been scanned and the b-th
bit of the index of the pointed variable in its group is 1, or exactly two have been scanned and
the b-th bit of the indices of the pointed variables in their respective groups are the same”.

The variables at step i + 1 will be axiomatized in terms of the variables at step i and `i in
the formula cons∃(i). The formula cons∃ also requires a consistency condition for all possible
combinations of activated pointers. For a given combination of these pointers, the consistency
condition holds if: either there is a problem with the pointers (there are not exactly two pointers
activated or one is not pointing to an existentially quantified variable), or the pointed variables are
not comparable (are not of the same group or do not have the same index in the group) or, they
are comparable and both receive the same truth value. This consistency condition will be encoded
in the formula consacc

∃ . Also, the value of the variables at position i = 1 will be encoded in the
formula consini

∃ . Now,

cons∃ := ∀π∃ξ∃σ∃χ∃ω∃κ∃λ

(
consini

∃ ·
s∏

i=1

cons∃(i) · consacc
∃

)
where π = (πi | 1 ≤ i ≤ s), ξ = (ξi | 1 ≤ i ≤ s + 1), σ = (σi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 2),
χ = (χi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 1), ω = (ωi | 1 ≤ i ≤ s + 1), κ = (κi | 1 ≤ i ≤ s + 1) and
λ = (λi,b | 1 ≤ i ≤ s+ 1, 1 ≤ b ≤ |n|).

Next we axiomatize the introduced variables, but before that we need to introduce some nota-
tion.

Let gi ∈ [`] be the group-number of the variable underlying literal `i, let ni ∈ [|Ggi |] be the
index of this variable within Ggi , and recall ai ∈ {0, 1} denotes the sign of `i. For every i ∈ [s],
let hi ∈ {0, 1} be the predicate that indicates whether the i-th literal `i is the last in its block
or not (recall that the blocks are subsequences of consecutive clauses that partition the sequence
of clauses), and recall that ki ∈ {0, 1} is the predicate that indicates whether the i-th literal `i
is the last in its clause or not. Next we encode the quantification of φ in a way that the type of
quantification of each variable can be recovered from each of its occurrences: for every i ∈ [s], let
qi ∈ {0, 1} be the predicate that indicates whether the variable that underlies the i-th literal `i is
universally or existentially quantified in φ.

Finally, observe that the definition of leveled formula implies that if bi ∈ [`] is the number of
the block that contains the clause to which the i-th literal belongs, then the group-number gi is

8

either bi or bi + 1 whenever 1 ≤ bi ≤ ` − 1, and is equal to ` if bi = `. Accordingly, let ei ∈ {0, 1}
be such that gi = bi − ei + 1 for every i ∈ [s]. In other words, ei indicates whether the parities of
gi and bi agree or not.

The following claim shows that, although the number ` of groups is in general unbounded, a
constant number of bits of information are enough to tell if the underlying variables of two literals
belong to the same group:

Claim 3. Let i, j be such that 1 ≤ i < j ≤ s. Then, the underlying variables of `i and `j belong to
the same group if and only if one of the following conditions holds:

1. ei = ej and bi = bj, or

2. ei = 0, ej = 1, and bi = bj − 1.

Proof. For the only if side, we have gi = gj . Then, bi− ei = bj − ej and also bi is either bj or bj − 1.
If bi = bj , then ei = ej . If bi = bj − 1, then necessarily ei = 0 and ej = 1.

For the if side, in the first case, gi = bi − ei + 1 = bj − ej + 1 = gj . In the second case,
gi = bi − ei + 1 = bj − 1 + 1 = bj − ej + 1 = gj . Therefore, gi = gj .

Using this claim, we axiomatize cons∃(i) as the conjunction of the following formulas:

ξi+1 ↔ πi ξi + πi ξi qi

σi+1,0 ↔ σi,0 πi

σi+1,1 ↔ σi,0 πi + σi,1 πi

σi+1,2 ↔ σi,1 πi + σi,2 πi

χi+1,0 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,0 + σi,2 χi,0

χi+1,1 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,1 hi + σi,1 πi χi,1 + σi,2 χi,1

ωi+1 ↔ σi,0 πi ei + σi,1 πi ωi + σi,1 πi (χi,0 ωi ei + χi,0 ωi ei + χi,1 ωi ei) + σi,2 ωi

κi+1 ↔ σi,0 πi τi + σi,1 πi κi + σi,1 πi κi τi + σi,1 πi κi τi + σi,2 κi

and, for all b ∈ [|n|],

λi+1,b ↔ σi,0 πi ni,b + σi,1 πi λi,b + σi,1 πi λi,b ni,b + σi,1 πi λi,b ni,b + σi,2 λi,b

where ni,b is the b-th bit of the binary encoding of ni.
Also, we define consini

∃ as the conjunction of the following unit clauses:

ξ1, σ1,0, σ1,1, σ1,2, χ1,0, χ1,1, ω1, κ1, λ1,1, . . . , λ1,|n|.

Furthermore, we define consacc
∃ as the following clause:

ξs+1 + σs+1,2 + ωs+1 +
|n|∑
b=1

λs+1,b + κs+1.

Again, note that each of these formulas can be written in cnf just by writing ↔ in terms of
conjunctions and disjunctions and by distributing disjunctions over conjunctions, and that the
clauses in the resulting cnf-formulas for cons∃(i) are i-links: the (first) index of the variables they
contain is either i or i+1. Also, the size of cons∃ written in cnf is c ·s · |n| for some constant c ≥ 1.

9

3.5 Definition of ncons∀

The formula ncons∀ is very similar to cons∃, since it verifies for universally quantified variables
exactly the opposite of what cons∃ verifies for existentially quantified variables. For this reason,
we proceed to its axiomatization directly.

The formula ncons∀ is defined as

ncons∀ := ∃π∃ξ∃σ∃χ∃ω∃κ∃λ

(
nconsini

∀ ·
s∏

i=1

ncons∀(i) · nconsacc
∀

)

where π, ξ, σ, χ, ω, κ, λ are defined as before, nconsini
∀ := consini

∃ , the formula ncons∀(i) is
axiomatized identically to cons∃(i) except by replacing every occurrence of qi by qi for every i ∈ [s],
and the formula nconsacc

∀ is the negation of consacc
∃ , i.e. the following set of unit clauses:

ξs+1, σs+1,2, ωs+1, λs+1,1, . . . , λs+1,|n|, κs+1.

In cnf, the formula ncons∀(i) is again a set of i-links, and its size is c · s · |n| for some c ≥ 1.

3.6 Converting θ to leveled-qbf

Recall that θ was defined as Q1τ 1 · · ·Qqτ q(ncons∀ + (cons∃ · sat)). By writing this formula in
prenex form, we obtain the equivalent formula

Qz (ncons′∀ + (cons′∃ · sat′))

where Qz is the appropriate prefix of quantified variables and the primed formulas are the matrices
of the corresponding non-primed qbfs. We would like to write it as a leveled-qbf.

Let a and b be two new variables and let ϑ be the conjunction of the following formulas:

a+ ncons′∀
b+ ncons′∀
ā+ cons′∃
b̄+ sat′

It is easy to see that
∃a∃b(ϑ)↔ ncons′∀ + (cons′∃ · sat′).

We write ϑ in cnf. For the first disjunction a + ncons′∀, it is enough to add a to every clause
of ncons′∀, and similarly for the others. Note that, except for the variables a and b, the result is a
conjunction of i-links.

In order to make them proper i-links, we introduce new variables {a1, . . . , as+1} and {b1, . . . , bs+1},
and clauses ai ↔ ai+1 and bi ↔ bi+1 for every i ∈ [s] to mantain consistency between the intro-
duced variables. Now, we replace each occurrence of a and b in an improper i-link by ai and bi
respectively. Let ψ′ be the resulting formula.

Finally, define
ψ := Qz∃a∃b(ψ′)

where a = (a1, . . . , as+1) and b = (b1, . . . , bs+1). Note that the construction guarantees ψ ↔ θ, and
by Claim 2, ψ ↔ φ.

10

We partition the variables of ψ in groups H1, . . . ,Hs+1 where group Hi is the set of variables
with (first) index i. We also partition the clauses of ψ in blocks C1, . . . , Cs+1 where block Ci is
the set of i-links of ψ. Note that, by the definition of i-link, all variables in Ci are contained in
Hi ∪Hi+1. Therefore, ψ is a leveled-qbf with groups H1, . . . ,Hs+1 and blocks C1, . . . , Cs+1.

Now, for every i ∈ [s + 1], the size of Hi is the number of variables with index i in ψ, namely
c · |n| for some constant c ≥ 1. Also, the size of ψ is d · s · |n| for some constant d ≥ 1. Therefore,
ψ is a c · |n|-leveled qbf of size d · s · |n| such that φ↔ ψ.

Finally, it is clear that all the steps to produce ψ from φ can be performed in time polynomial
in s, thus finishing the proof.

4 Main Theorem

In this section we prove the main result of the paper.

Theorem 1. There exists an integer w ≥ 1 such that QBF on inputs of path-width at most w is
PSPACE-complete.

Proof. We show that there exists a constant n0 ≥ 1 and a polynomial-time reduction from the
canonical PSPACE-complete problem QBF to the restriction of QBF itself to n0-leveled qbfs.
Then the result will follow by setting the path-width to w = 2n0 − 1 and applying Lemma 1.

Let c and d be the constants from the end of section 3. We choose the constant n0 large enough
so that whenever N ≥ n0 the following conditions are satisfied:

1. c · |N | < N ,

2. c · |c · |N || ≤ logN ,

3. (2 log∗N)(log |N |) ≤ logN ,

4. d2 log∗ N ≤ logN .

All these conditions can be met simultaneously. The idea of the reduction is to start with an
arbitrary qbf formula φ0 with N0 variables and size S0, view it as an N0-leveled qbf, and apply
Lemma 2 repeatedly until we get a n0-leveled qbf for the large fixed constant n0. Since the final
formula will be equivalent to φ0, we just need to make sure that this process terminates in a small
number of iterations and that the size of the resulting formula is polynomial in S0. We formalize
this below.

Let φ0 be an arbitrary qbf formula with N0 variables and size S0. In particular φ0 is an N0-
leveled qbf of size S0. If N0 ≤ n0 then φ0 is already n0-leveled and there is nothing to do. Assume
then N0 > n0. We apply Lemma 2 to get an N1-leveled qbf of size S1 where N1 = c · |N0| and
S1 = d · S0 · |N0|. By condition 1 on n0 we get N1 < N0, which is progress. Repeating this we get
a sequence of formulas φ0, φ1, . . . , φt, where φi is an Ni-leveled qbf of size Si with

1. Ni = c · |Ni−1|, and

2. Si = di · S0 ·
∏i−1

j=0 |Nj |,

for i ≥ 1. We stop the process at the first i = t such that Nt ≤ n0. We claim that t ≤ 2 log∗N0

and that St ≤ S0 ·N0 · logN0. This will be enough, since then the algorithm that computes φt from
φ0 is the required reduction as it runs in time polynomial in the size of the formula, and φ0 ↔ φt.

11

Claim 4. It holds that t ≤ 2 log∗N0.

Proof. First, by conditions 1 and 2 on n0 we have

1. Ni = c · |Ni−1| < Ni−1, and

2. Ni+1 = c · |Ni| = c · |c · |Ni−1|| ≤ logNi−1

for every i ≥ 1 such that Ni−1 > n0. In particular, this means that the process terminates and t
exists. Unfolding the second inequality gives

Nt−1 ≤ log(b(t−1)/2c)N0.

However, by the choice of t we have Nt−1 > n0 ≥ 1, which means that b(t− 1)/2c < log∗N0 and
therefore t ≤ 2 log∗N0.

Given this bound on t, we bound St. We have

St = dt · S0 ·
t−1∏
j=0

|Nj | ≤ dt · S0 · |N0|t,

where in the inequality we used the fact that Ni ≤ Ni−1 for every i ≥ 1 such that Ni−1 > n0, by
condition 1 on n0. Now:

|N0|t ≤ 2(2 log∗ N0)(log |N0|) ≤ 2log N0 = N0.

In the first inequality we used the bound on t, and in the second we used the assumption that
N0 ≥ n0 and condition 3 on n0. Altogether, this gives

St ≤ d2 log∗ N0 · S0 ·N0 ≤ S0 ·N0 · logN0,

which concludes the proof. Again, we used the assumption that N0 ≥ n0 and condition 4 on n0.

5 Q-resolution and respectful tree-width

For this section, it is useful to note that a qbf can be written as

φ = Q1X1 · · ·QqXq(φ′) (3)

where X1, . . . , Xq are disjoint sequences of propositional variables, and Qi 6= Qi+1 for 1 ≤ i < q. Of
course QiXi means Qix

i
1 . . . Qix

i
` for Xi := (xi

1, . . . , x
i
`). Also, we say that Xi is a quantifier block

of φ. Note that logical equivalence is preserved upon reordering of the variables within the same
quantifier block. To establish an order between the variables in the prefix of a qbf that accounts for
the quantifier blocks, we say that x is after y in φ for x, y ∈ var(φ) if x and y belong to quantifier
blocks Xi and Xj , respectively, with i > j. Also, for this section, all the literals in a clause have
different underlying variables and, in particular, all clauses are non-tautological.

12

5.1 The Q-resolution proof system

In this section we define and compare some proof systems for qbfs. In [9], in an attempt to
generalize resolution to qbfs, Büning et al. introduced the Q-resolution proof system, consisting of
the following rules:

1.
C

�
, if every x ∈ var(C) is quantified universally.

2.
C ∨ x D ∨ x
(C ′ ∨D′)′′

, if x is quantified existentially, where

(a) C ′ (resp. D′) is equal to C (resp. D) except for the literals whose underlying variable
is quantified universally and is after every existentially quantified variable y in var(C)
(resp. var(D)) in φ, and

(b) (C ′ ∨ D′)′′ is 1 if (C ′ ∨ D′) is tautological and, otherwise, is equal to (C ′ ∨ D′) except
for the literals whose underlying variable is quantified universally and is after every
existentially quantified variable y in var(C ′) ∪ var(D′) in φ.

Later, Pan and Vardi [10] extended the symbolic quantifier elimination approach from cnf
formulas to qbfs. They introduce a qbf solver that produces multi-resolution [13] refutations. Even
though they use OBDDs to represent the clauses, the proof system that is implicit in their algorithm
has the following two rules:

1.
C ∨ x
C

, if x is quantified universally and no y ∈ var(C) is after x in φ.

2.
C ∨ x D ∨ x

C ∨D
, if x is quantified existentially and no y ∈ var(C) ∪ var(D) is after x in φ.

In this work, we will call this proof system weak Q-resolution.
We introduce a simpler proof system, in the mold of weak Q-resolution, with the following rules:

1.
C ∨ x
C

, if x is quantified universally and no y ∈ var(C) is after x in φ.

2.
C ∨ x D ∨ x

C ∨D
, if x is quantified existentially.

For the moment, let us call this system Q*-resolution. Note that it is stronger than weak Q-
resolution, since their only difference is that Q*-resolution weakens the restrictions to apply its
second rule.

We say that a proof system P ′ p-simulates a proof system P if, whenever a contradiction has
a P -refutation size s, it also has a P ′-refutation of size polynomial in s. Also, we say that two
proof systems are p-equivalent if they p-simulate each other. We show that Q*-resolution is, in
fact, p-equivalent to Q-resolution:

Lemma 3. The proof systems Q-resolution and Q*-resolution are p-equivalent.

Proof. Let R1 and R2 be rules 1. and 2. of Q-resolution, and let R∗
1 and R∗

2 be rules 1. and 2. of
Q*-resolution. First, we show that Q*-resolution p-simulates Q-resolution. To do so, we show that
every Q-resolution step can be simulated by several Q*-resolution steps. To simulate R1, if C is a
purely universal clause, we obtain a Q*-resolution refutation of C by applying R∗

1 repeatedly |C|

13

times, always on the literal whose underlying variable is the right-most in the prefix. To simulate
R2 on clauses C and D, again, repeatedly apply R∗

1 on the universally quantified variables of C
and D that are after every existentially quantified variable in its clause in right-to-left order, then
apply R∗

2 on the resulting clauses, and finally, repeteadly apply R∗
1 on the universally quantified

variables of the resulting clause that are after every existentially quantified variable, in right-to-left
order. These are, at most, |C|+ |D| steps.

Second, we show that Q-resolution p-simulates Q*-resolution. Let C∗
1 , . . . , C

∗
` be a Q*-resolution

refutation. For i ∈ {1, . . . , `} let

Ci :=

C∗

i if C∗
i is an initial clause,

Cj if C∗
i = R∗

1(C
∗
j) for some j < i,

R2(Cj , Ck) if C∗
i = R∗

2(C
∗
j , C

∗
k) with j, k < i.

First we want to see that C1, . . . , C` is a valid Q-resolution derivation. It is clear by definition
that every Ci is either an initial clause or the result of applying R2, since in the second case Ci is
already in the refutation. It remains to be seen that � can be derived from C1, . . . , C` in one more
step. For that, it is enough to show that, for every i ∈ {1, . . . , `}, we have that Ci = C∗

i if C∗
i is an

initial clause and that, otherwise, Ci subsumes C∗
i ∨ Ai for some purely universal clause Ai whose

literals are after every existentially quantified variable of C∗
i in the prefix. If we suceed, just note

that C` subsumes (C∗
` ∨A`) = (� ∨A`) = A`, and, since A` is a purely universal clause, we apply

R1 to C` to obtain �. We are left to prove the claim. We will proceed by cases according to the
definition of C∗

i . First, it is clear by definition that Ci = C∗
i if C∗

i is an initial clause. Second, if
C∗

i = R∗
1(C

∗
j) for some j < i, let li be the universally quantified literal that is in C∗

j and not in C∗
i

and let Ai := Aj ∨ li. Since Cj subsumed C∗
j ∨Aj , it is clear that Ci subsumes C∗

i ∨Ai. Third, we
have that Cj subsumes C∗

j ∨ Aj and Ck subsumes C∗
k ∨ Ak. By the definition of the rule and the

conditions on Aj and Ak, we have that R2(Cj , Ck) = R2(C∗
j ∨Aj , C

∗
k ∨Ak). Therefore, R2(Cj , Ck)

subsumes R∗
2(C

∗
j ∨Aj , C

∗
k ∨Ak), this is, Ci subsumes C∗

i and, therefore, C∗
i ∨Ai for Ai := ∅.

Since both proof systems are p-equivalent, to simplify notation, we will refer to both as Q-
resolution for the rest of the section.

Now, for a qbf φ with matrix φ′ and for variables x, y quantified existentially and universally
respectively in φ, we define

φ′(∃x) := {C ∨D | C ∨ x ∈ φ′ and D ∨ x ∈ φ′} ∪ {C ∈ φ′ | x /∈ var(C)}, and

φ′(∀x) := {C | C ∨ x ∈ φ′ or C ∨ x ∈ φ′} ∪ {C ∈ φ′ | x /∈ var(C)}.

We write φ′(Q1x1,Q2x2) instead of (φ′(Q2x2))
(Q1x1)

. Note that x /∈ var(φ(Qx)). We prove the following
lemma:

Lemma 4. Let ψ be a cnf formula and let Q be any prefix. Then,

1. Qψ(∃x) |= Q∃xψ, and

2. Qψ(∀x) |= Q∀xψ.

Proof. For the first claim, let A be an assignment that satisfies ψ(∃x). Let A0, A1 be extensions of
A that assign x := 0 and x := 1 respectively. If neither satisfies ψ, then ψ contains at least a pair
of clauses C ∨ x and D ∨ x such that A0(C) = 0 and A1(D) = 0. But then, C ∨D belongs to ψ(∃x)

and A(C ∨D) = 0 causing a contradiction. Therefore, since at least one of A0 and A1 satisfies ψ,
we have that A satisfies ∃xψ. For the second claim, just note that ψ(∀x) |= ψ.

14

Note that completeness of weak Q-resolution (and therefore, also Q-resolution) is proved by
repeated applications of this lemma: let Q be the prefix of φ. Then, φ′(Q) is either empty, and
therefore the formula is true, or contains just �, and therefore the formula is false.

Various efforts have been directed to determine families of qbfs for which the Q-resolution proof
system is polynomially bounded. Aspvall et al. [14] showed that (weak) Q-resolution is polynomially
bounded for bijunctive-qbfs, that is, formulas with at most two literal per clause. Later, Büning
et al. [9] showed the same for Horn-qbfs. They also proved that extended-Horn qbfs, that is, qbfs
in which the existentially quantified part of each clause is Horn and the universal part is arbitrary,
require exponential-size Q-resolution refutations.

Observe that Theorem 1 implies that, unless NP=PSPACE, no proof-system is polynomially
bounded for qbfs of bounded tree-width (and even path-width), as otherwise one could guess a
polynomial-size refutation and check it in polynomial time. However, some families of qbfs with
bounded tree-width have polynomial-size Q-resolution refutations. For example, if we allow only
existential quantifiers, the problem becomes equivalent to boolean satisfiability of cnfs (CNF-SAT),
and Alekhnovich and Razborov [15] showed that cnfs of bounded branch-width (which is equiva-
lent to bounded tree-width) have polynomial-size resolution (and therefore, (weak) Q-resolution)
refutations. We devote the rest of the section to describe a larger family of qbfs with bounded
tree-width for which (weak) Q-resolution is polynomially bounded.

5.2 Respectful tree-width

As defined in section 2, the tree-width of a qbf is the tree-width of its matrix, and therefore,
it is independent of its prefix. Multiple algorithms on cnfs that are tractable on instances with
bounded tree-width are not applicable to qbfs, since the tree decompositions that they use do
not mesh well with the quantification of the variables. To tackle this problem, Chen and Dalmau
[16] introduced what we call here respectful tree-width, a concept analogous to tree-width, but on
tree decompositions that are, in some sense, respectful with the prefix of the formula, so that the
algorithms for cnfs make sense.

Let φ be a qbf and let (T,L) be a tree decomposition of its matrix. Let r be the root of T .
Define tx as the closest vertex to r in T such that x ∈ L(tx). For a pair of variables x, y ∈ var(φ),
we say that x is under y if tx 6= ty and ty is in the (unique) path from r to tx in T . We say that
(T,L) is respectful with the prefix of φ if, for every pair of variables x, y ∈ var(φ), if x is under y,
then y is not after x. A respectful tree decomposition of φ is one that is respectful with its prefix.
The respectful tree-width of φ is the minimum width among its respectful tree decompositions.

The main result of this section is that Q-resolution is polynomially bounded on qbfs of bounded
respectful tree-width. The proof of this lemma makes use of a construction on graphs defined by
Dechter and Pearl [11] named induced graph.

A pair (H,≺) is an induced graph of G if ≺ defines a strict total order on the vertices of G,
and H is the closure of G under the following operation: for every x, y, z ∈ V (H) such that x ≺ z
and y ≺ z, if (x, z) and (y, z) are edges, add (x, y) as an edge. The width of an induced graph is
maxx∈V (H) |{(x, y) ∈ E(H) | y ≺ x}|. The induced width of a graph is the minimum among the
widths of its induced graphs.

Given G and ≺, the usual way to obtain H, as proposed by Dechter and Pearl, is through the
following process: one vertex of V (H) at the time and in order opposite to ≺, add edges (x, y) for
every pair x, y of neighbors of the current vertex z such that x ≺ z and y ≺ z.

15

Let φ be a qbf and let (H,≺) be an induced graph of its matrix. We say that (H,≺) is respectful
with the prefix of φ if, for every pair of variables x, y ∈ var(φ), if x ≺ y then x is not after y. A
respectful induced graph of φ is one that is respectful with its prefix. The respectful induced width
of φ is the minimum width among its respectful induced graphs.

Observe the following claim:

Claim 5. Let φ be a qbf as in (3) and let (H,≺) be a respectful induced graph of φ. Let S be
the sequence of variables in φ in the order defined by ≺. Then, S = Y1, . . . , Yq, where Yi is a
permutation of Xi for every i ∈ {1, . . . , q}. Moreover, Q1Y1 . . . QqYq(φ′) is logically equivalent to φ.

In [17], Arnborg et al. show that a qbf has a tree decomposition of width w if and only if its
constraint graph is a partial w-tree. Along the same lines, Freuder [2] shows that a qbf has an
induced graph of width w if and only if its constraint graph is a partial w-tree. By composing these
theorems, we obtain that a qbf has a tree decomposition of width w if and only if it has an induced
graph of width w. In [18], Dechter gives a direct proof of the if side of this statement in terms
of bucket elimination. Using the construction by Decther, we present a direct proof of the whole
statement in graph-theoretic terms and show that our constructions preserve respectfulness.

Lemma 5. Let φ be a qbf. Then φ has a respectful tree decomposition of width w if and only if it
has a respectful induced graph of width w.

Proof. Let G be the constraint graph of φ. First, let (T,L) be a respectful tree decomposition of φ
of width w. We will construct a respectful induced graph of φ of the same width. Define ≺ as x ≺ y
if y is under x in (T,L) and arbitrarily if neither is under the other. Let H be such that (H,≺)
is an induced graph of G. We show that (T,L) is also a tree decomposition of H by induction on
the number of edges of H. If |E(H)| = |E(G)|, then H = G and we are done. If |E(H)| > |E(G)|,
let (x, y) be an edge of E(H) \E(G). By definition of H, there is a z ∈ V (H) such that x ≺ z and
y ≺ z and both (x, z) and (y, z) belong to E(H). By induction hypo (T,L) is a tree decomposition
of H− (x, y). We have to show that x, y ∈ L(t) for some t ∈ V (T). Let Tz be the connected subtree
of T induced by the vertices t ∈ V (T) such that z ∈ L(t) and let tz be the root of Tz. We will
show that, in fact, both x and y belong to tz. Let T x

z := {t ∈ V (Tz) | x ∈ L(t)}. Since (T,L) is a
tree decomposition of H − (x, y) and (x, z) ∈ E(H), we have that T x

z is non-empty. Let txz ∈ T x
z be

the closest vertex to tz among them. If txz 6= tz, then x is under z and, by the definition of ≺, we
have that z ≺ x, which is a contradiction. Therefore, txz = tz, which implies x ∈ L(tz). The same
argument can be made to show that y ∈ L(tz), proving the claim. Define ≺R as x ≺R y if y is
under x in (T,L) and x ≺R y if x occurs before y in the prefix of φ and neither is under the other.
Let HR be such that (HR,≺R) is an induced graph of G. Note that, since ≺R is a particular case
of ≺, we have that (T,L) is also a tree decomposition of HR. To see that (HR,≺R) is respectful
we show that, if x ≺R y, then x is not after y. We have two cases: first, if y is under x, then,
since (T,L) is respectful, we have that x is not after y; and second, if x occurs before y in the
prefix, of course x is not after y. Finally, for every x ∈ V (HR), by definition of HR, the vertices of
Vx := {x} ∪ {y | y ≺ x and (x, y) ∈ E(HR)} form a clique. By Claim 1, for every x ∈ V (HR) there
is a t ∈ V (T) such that Vx ⊆ L(t). Therefore,

max
x∈V (HR)

|{(x, y) ∈ E(HR) | y ≺ x}| ≤ max
x∈V (HR)

|Vx| − 1 ≤ max
t∈V (T)

|L(t)| − 1 ≤ w.

Second, let (H,≺) be a respectful induced graph of φ of width w. We will construct a respectful
tree decomposition of the same width. Let T be a graph with one vertex tx for every x ∈ V (H)

16

and one edge (ty, tx) where y is the biggest (with respect to ≺) neighbor of x in H such that y ≺ x.
Note that T is acyclic, since for every x ∈ V (H), we have that tx is connected to at most one
vertex ty such that y ≺ x. As defined, T is not rooted and may not be connected, but we will fix
this at the end of the proof. Let L be defined by L(tx) := {x} ∪ {y | (y, x) ∈ E(H) and y ≺ x}
for every x ∈ V (H). Next, we show that (T,L) is a respectful tree decomposition of G of width
w. First, we have that

⋃
t∈V (T) L(t) = V (G) since V (G) = V (H) and, for every x ∈ V (H),

we have that x ∈ L(tx). Second, for every (x, y) ∈ E(G), we have x, y ∈ L(tx) if y ≺ x and
x, y ∈ L(ty) if x ≺ y. Third, we have to show that for every x ∈ V (G), the subgraph of T induced
by {t ∈ V (T) | x ∈ L(t)} is a connected subtree. Recall that H has the property that, for every
x, y, z ∈ V (H) such that x ≺ z and y ≺ z, if (x, z) and (y, z) are in E(H), also (x, y) is in E(H).
It is enough to see that, if x ∈ L(t), the unique shortest path t1, . . . , t` with t1 = t and t` = tx
is such that x ∈ L(ti) for every i ∈ {1, . . . , `}. We prove this by induction on i. If i = 1, by
hypothesis we have x ∈ L(t1). Now, let i > 1 and, as induction hypothesis, assume x belongs to
L(t1), . . . , L(ti−1). We want to show that x belongs to L(ti) also. Let y, z ∈ V (H) be such that
ti−1 = tz and ti = ty. Since, by induction hypothesis, x ∈ L(tz), we have that x ≺ z and that (x, z)
is in E(H). Also, since (ty, tz) ∈ E(T), we have that (y, z) is in E(H). Now, we show that x ≺ y by
cases: if z ≺ y, then x ≺ y, since x ≺ z. If y ≺ z, then also x ≺ y, since otherwise y would not have
been the biggest (with respect to ≺) neighbour of z such that y ≺ z (x would satisfy the conditions
and would be bigger than y). Note that, by the construction of T , every vertex tu ∈ V (T) has at
most one neighbour in Vu(T) := {tv ∈ V (T) | v ≺ u}. Suppose, for the sake of contradiction, that
z ≺ y. Then, (y, z) is the single edge that connects y to Vy(T). But since the path does not repeat
edges, it cannot lead to any other vertex in Vy(T). Since tx is in Vy(T), this is a contradiction.
Therefore, we have that y ≺ z. Finally, since x ≺ z and y ≺ z and (x, z) and (y, z) both belong
to E(H) and (H,≺) is an induced graph, also (x, y) belongs to E(H). And then, since x ≺ y, we
have that x ∈ L(ti). We make sure now that the graph that we built is rooted and connected. Let
T1, . . . , Tk be the connected components of T . For i ∈ {1, . . . , k}, let ri be the unique vertex of Ti

such that |L(ri)| = 1. Let r be a fresh vertex and let TC = (VC , EC) with VC := V (T) ∪ {r} and
EC := V (E) ∪

⋃
i∈[k]{(r, ri)} be a rooted tree with r in the root. Note that TC is connected. Also,

let LC be the extension of L to VC such that LC(r) = ∅. Note that (TC , LC) is respectful, since if
x is under y, by construction of TC surely y ≺ x, and, since (H,≺) is respectful, y is not after x.
Finally, (TC , LC) has width

max
t∈V (TC)

|LC(t)| − 1 = max
t∈V (T)

|L(t)| − 1 = max
x∈V (H)

|{y | (x, y) ∈ E(H) and y ≺ x}| ≤ w.

Corollary 1. Let φ be a qbf. Then φ has respectful tree-width w if and only if it has respectful
induced width w.

In a different setting, Chen and Dalmau [16] show that quantified constraint satisfaction prob-
lems, which generalize QBFs to unbounded domains, are tractable if they have bounded respectful
tree-width. We show here the corresponding result for Q-resolution: it is polynomially bounded
for qbfs of bounded respectful tree-width.

Lemma 6. Let φ be a false qbf sentence with n variables, m clauses and respectful tree-width w.
Then, there is a weak Q-resolution refutation of φ of size O(m+ n · 3w).

17

Proof. By Lemma 5, we have that φ has respectful induced width w. Let (H,≺) be a respectful
induced graph of φ of width w. Let Y := (R1y1, . . . , Rnyn) be the sequence of variables of φ in
order ≺ together with its quantifier in φ, and, for i ∈ {1, . . . , n}, let Yi := (Riyi, . . . , Rnyn) be the
i-th suffix of Y .

Since (H,≺) is respectful with the prefix of φ, by Claim 5 we have that R1y1 . . . Rnyn (φ′) is
equivalent to φ. Moreover, since φ ≡ �, by Lemma 4 we have that φ′(Y) |= � and also that
� ∈ φ′(Y). Then, the sequence (φ′, φ′(Yn), . . . , φ′(Y1)) makes a valid Q-resolution refutation of φ.

Finally, note that every φ′(Yi) has at most 3w clauses not already in the sequence, since every
variable is connected to at most w variables of φ′(Yi−1), and there are a total of 3w possible clauses
that can be formed with w variables. Therefore, the size of the refutation is O(m+ n · 3w).

5.3 Formulas with bounded respectful tree-width

In the previous section we have shown that false qbfs with bounded respectful tree-width have short
Q-resolution refutations. In this section we introduce a family of formulas with this property and
show some formulas that belong to this family and may have real-world applications.

5.3.1 qbfs with bounded number of variables

Let x1, . . . , xk be propositional variables. A k-qbf is defined recursively as follows:

1. any clause on variables x1, . . . , xk is a k-qbf,

2. if φ and ψ are k-qbfs, then φ ∧ ψ is a k-qbf,

3. if φ is a k-qbf, then ∃xi is a k-qbf, where i ∈ {1, . . . , k}, and

4. if φ is a k-qbf, then ∀xi is a k-qbf, where i ∈ {1, . . . , k}.

Notice that we allow a variable to be quantified more than once. The recursive construction of
a k-qbf defines a (rooted) labeled tree, whose leaves are labeled with the clauses of the formula and
whose internal vertices are either labeled with a ∧ and have two children, or labeled with ∃ or ∀ and
have a single child. For a k-qbf φ, we say that (Tφ,Kφ) is its associated tree in the sense described
above, where Tφ is a tree of the indicated form and Kφ : V (Tφ)→ C∪{∧,∃x1, . . . ,∃xs,∀x1, . . . ,∀xs}
where C is the set of all clauses on the variables x1, . . . , xk. We say φ is the associated formula of
the pair (Tφ,Kφ).

This family of formulas is the propositional version of one introduced by Dalmau et al. in [12],
extended by allowing universal quantification. Their framework allows, given a QBF, to rewrite
it as a logically equivalent k-QBF. Here we want to achieve exactly the opposite: given a k-qbf,
rewrite it as a logically equivalent qbf. To do so, given a k-qbf φ, consider the following rewriting
rules:

1. A-Rule: Associativity of conjunction is applied to subformulas of φ.

2. C-Rule: Commutativity of conjunction is applied to subformulas of φ.

3. ∃-Rule: a subformula of φ of the form (ψ ∧ (∃xθ)) is replaced by the formula (∃x(ψ ∧ θ)),
provided the variable x does not occur in ψ.

4. ∀-Rule: a subformula of φ of the form (ψ ∧ (∀xθ)) is replaced by the formula (∀x(ψ ∧ θ)),
provided the variable x does not occur in ψ.

18

5. R-∃-Rule: a subformula of φ of the form (∃xψ) is replaced by the formula (∃y)ψ[x/y], where
y does not occur in ψ and ψ[x/y] is obtained from ψ by replacing all free occurrences of x in
ψ by y.

6. R-∀-Rule: a subformula of φ of the form (∀xψ) is replaced by the formula (∀y)ψ[x/y], where
y does not occur in ψ and ψ[x/y] is obtained from ψ by replacing all free occurrences of x in
ψ by y.

It is clear that the application of these rules preserves logical equivalence.
Note that every k-qbf of size s can be rewritten as a qbf as in (2) by the following steps: first,

repeatedly apply the R-Rules with fresh variables xk+1, . . . , xs until no variable in the formula
occurs quantified more than once. Second, repeatedly apply ∃-Rule and ∀-Rule, always on the
outermost possible quantifier (and A-Rule and C-Rule, as necessary, to reorder the conjunctions
in order to apply the other rules) until we obtain the form (2). It is clear that this can be done
in a number of steps polynomial in s and that the resulting formula φR will be over the variables
x1, . . . , xs. Also, let KR

φ be equal to Kφ but appropiately applying the renaming performed by the
R-Rules on the clauses at the leaves.

For a tree T and t ∈ V (T), let T t be the subtree of T rooted at t. Let φt be the associated
formula of (T t

φ,Kφ) and let φR
t be the associated formula of (T t

φ,K
R
φ). Now, define Lφ : V (Tφ) →

P({x1, . . . , xs}) as
Lφ(t) := {x | x is free in the formula φR

t }

for every t ∈ V (Tφ).
We prove the following claim:

Claim 6. The pair (Tφ, Lφ) is a respectful tree decomposition of φR of width k − 1.

Proof. First, note that every clause of φR is precisely KR
φ (t) for some leaf t of Tφ. Since t = T t

φ,
the associated formula of (t,KR

φ) is precisely the clause KR
φ (t), and therefore, all of its variables

are free in it. Therefore, for every clause C of φR, there is a leaf t of Tφ for which L(t) = var(C),
and also,

⋃
t∈V (Tφ) L(t) = var(φ′R). Second, for x ∈ var(φR), let tx be the (unique) child of the

(unique) vertex of t of Tφ such that KR
φ (t) is of the form Qx for Q ∈ {∃,∀}, and the root of T if

there is none. Note that x ∈ L(t) if and only if both t ∈ V (T tx) and for some leaf t′ of T t, we have
x ∈ L(t′). Then, the subgraph of Tφ induced by {t ∈ var(φR) | x ∈ L(t)} is precisely the union of
the (unique) paths from tx to a leaf t′ of Tφ such that x ∈ L(t′). Since all of these paths have their
beginning at tx, this is a connected subtree. Finally, note that for every t ∈ Tφ, we have |L(t)| ≤ k
since, in case |L(t)| > k for some t ∈ Tφ, that would imply that φR

t has more than k free variables,
which is not possible, since, before renaming, φ (and therefore, φt) has only k variables in total.

Corollary 2. Every k-qbf is logically equivalent to a qbf with respectful tree-width k − 1.

Note that, together with Lemma 6, this gives that, as long as k ≤ c · log n for some constant c,
for every false k-qbf we can obtain a logically equivalent qbf and a short Q-resolution refutation of
the second. Next, we see examples of k-qbfs for which this result may be useful.

5.3.2 Bounded model checking

An alternating finite state machine is a nondeterministic state machine whose states are of two
types: ∃-states or ∀-states. On a given input, the machine accepts if there is at least one transition

19

leaving every ∃-state such that for every transition leaving every ∀-state, the machine ends up
reaching an accepting state. Consider an alternating finite state machine with n states and with
m transitions leaving each state, in which every transition leaving an ∃-state leads to a ∀-state and
viceversa. States and transitions leaving each state are labeled with a number encoded in binary as
x̄ = x1, . . . , x|n| and ȳ = y1, . . . , y|m|, respectively. Also, define the ternary relation R as R(x̄, ȳ, x̄′)
if, from state x̄, using transition ȳ, we can reach state x̄′ in a single step. Let I(x̄) indicate that x̄
is an initial state, and let Z(x̄) indicate that x̄ is a Z-state.

We want to obtain a proof of the following statement, common in the context of bounded
model checking: no Z-state is accessible from an I-state in at most ` steps. We call this statement
P≤`. Note that this problem can be reduced to obtaining a proof of Pt for every 0 ≤ t ≤ `. We
focus on this last problem, which is equivalent to finding a refutation of ¬Pt, which is equal to
∃x̄(I(x̄) ∧ ψt(x̄)) where

ψ0(x̄) = Z(x̄),
ψi+1(x̄) = ∃ȳ∃x̄′(R(x̄, ȳ, x̄′) ∧ ψi(x̄′)) for odd i ≥ 0,
ψi+1(x̄′) = ∀ȳ∃x̄(R(x̄′, ȳ, x̄) ∧ ψi(x̄)) for even i ≥ 0.

Observe that, by writing I(x̄), Z(x̄) and R(x̄, ȳ, x̄′) as cnfs, the formula ¬Pt that we obtain is a
(2|n|+ |m|)-qbf. Therefore, if Pt is true, we can obtain a Q-resolution refutation of a qbf expressing
¬Pt of size exponential in 2|n|+ |m|, that is, polynomial in the number of states and the size of the
formula.

By defining the formulas encoding I(x̄), Z(x̄) and R(x̄, ȳ, x̄′) appropiately, we can use this to
model multiple real-world situations. We present a couple of examples:

Verification of software with human interaction In this case, the alternating finite state
machine models the interaction between a user and a computer interface: ∃-states are those waiting
for a response of the system and ∀-states are those waiting for a response from the user. The initial
state is the initial configuration of the software, the Z-states are those in which the software crashes
or reaches an undesired point. Finally, the relation R is defined by the work-flow of the program.
We want to make sure that, from the initial state of the program, for every input of the user into
the interface, there is a possible response of the program in such a way that the user cannot crash
the system before ` interactions.

Two-player games by turns In this case, the alternating finite state machine models the
strategies of the players: the ∃-states model the positions in which the first player has to move and
the ∀-states model the positions in which his adversary has to move. The initial state is the initial
configuration of the game and the Z-state is a winning or losing configuration, depending on what
we want to prove. The relation R defines the legal moves of the players. What we can prove here
is that, starting with the initial configuration of the game, the first player cannot win the game (or
lose it) before `+ 1 rounds have been played.

References

[1] R. Dechter and J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38
(1989) 353-366.

20

[2] E. Freuder, Complexity of k-tree structured constraint satisfaction problems, Proceedings of
the 8th National Conference on Artificial Intelligence (AAAI) 1 (1990) 4-9.

[3] H. Chen, Quantified constraint satisfaction and bounded treewidth, Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI) (2004) 161-165.

[4] G. Gottlob, G. Greco, and F. Scarcello, The complexity of quantified constraint satisfaction
problems under structural restrictions, Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI) (2005) 150-155.

[5] G. Pan and M.Y. Vardi, Fixed-parameter hierarchies inside PSPACE, Proceedings of the
21th IEEE Symposium on Logic in Computer Science (LICS) (2006) 27-36.

[6] A. Meyer, Weak monadic second order theory of succesor is not elementary recursive, Logic
Colloquium. Lecture Notes in Mathematics 453 (1975) 132-154.

[7] M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revis-
ited, Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS) (2002)
215-224.

[8] H. Chen and V. Dalmau, Decomposing Quantified Conjunctive (or Disjunctive) Formulas,
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS)
(2012) 205-214.

[9] H.K. Büning, A. Flögel and M. Karpinski, Resolution for quantified Boolean formulas, In-
formation and Computation 117 (1995) 12-18.

[10] G. Pan and M.Y. Vardi, Symbolic decision procedures for QBF, Proceedings of the 10th
International Conference on Principles and Practice of Constraint Programming (CP) (2004)
453-467.

[11] R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems, Ar-
tificial Intelligence 34 (1987) 1-38.

[12] V. Dalmau, P. Kolaitis and M.Y. Vardi, Constraint satisfaction, bounded treewidth and finite-
variable logics, Proceedings of the 8th International Conference in Principles and Practice of
Constraint Programming (CP) (2006) 223-254.

[13] P. Chatalic and L. Simon, Multi-resolution on compressed sets of clauses, Proceedings of
the 12th IEEE International Conference on Tools with Artificial Intelligence (ICTAI) (2000)
2-10.

[14] B. Aspvall, M.F. Plass and R.E. Tarjan, A linear-time algorithm for testing the truth of
certain quantified boolean formulas, Information Processing Letters 8 (1979) 121-123.

[15] M. Alekhnovich and A.A. Razborov, Satisfiability, branch-width and Tseitin tautologies,
Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS) (2002)
593-603.

21

[16] H. Chen and V. Dalmau, From pebble games to tractability: An ambidextrous consistency
algorithm for quantified constraint satisfaction, Proceedings of the 19th Conference on Com-
puter Science Logic (CLS) (2005) 232-247.

[17] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree,
SIAM Journal on Algebraic Discrete Methods 8 (1987) 277-284.

[18] R. Dechter, Constraint processing, Morgan Kaufmann, 2003.

22

