The Descriptive Complexity of
the Fixed-Points of Bounded Formulas

Albert Atserias®

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
¢/ Jordi Girona Salgado, 1-3, Edif. C6.
08034 Barcelona, Spain.
atserias@lsi.upc.es

Abstract. We investigate the complexity of the fixed-points of bounded
formulas in the context of finite set theory; that is, in the context of ar-
bitrary classes of finite structures that are equipped with a built-in BIT
predicate, or equivalently, with a built-in membership relation between
hereditarily finite sets (input relations are allowed). We show that the
iteration of a positive bounded formula converges in polylogarithmically
many steps in the cardinality of the structure. This extends a previously
known much weaker result. We obtain a number of connections with
the rudimentary languages and deterministic polynomial-time. Moreover,
our results provide a natural characterization of the complexity class
consisting of all languages computable by bounded-depth, polynomial-
size circuits, and polylogarithmic-time uniformity. As a byproduct, we
see that this class coincides with LH(P), the logarithmic-time hierar-
chy with an oracle to deterministic polynomial-time. Finally, we discuss
the connection of this result with the well-studied algorithms for integer
division.

Keywords: Circuit uniformity, BIT predicate, logarithmic-time hierarchy, rudi-
mentary languages, integer division.

1 Introduction

1.1 Background

The Ordered Conjecture of Kolaitis and Vardi [22] states that least fixed-point
logic LFP is strictly more expressive than first-order logic FO on every infinite
class of ordered finite structures. Informally, the conjecture expresses an inherent
limitation of first-order logic to capture polynomial-time computations on finite
structures, no-matter how rich the combinatorial nature of the structures is.
The question remains open, and it is known that any way of solving it will have

* Supported by the CUR, Generalitat de Catalunya, through grant 1999F1 00532, and
partially supported by ALCOM-FT, 1ST-99-14186.

important consequences in Complexity Theory. A refutation would imply that
P # PSPACE [12], and a proof would imply that LINH # E [13]. Here, LINH
is the linear-time hierarchy of Wrathall [35], and E is the usual complexity class
that consists of all languages that are accepted by deterministic Turing machines
in time 20(7),

There is a special case of the conjecture, singled out by Gurevich, Immerman,
and Shelah [15], that is of particular interest. Namely, it is unknown whether LFP
collapses to FO on the class of all finite structures of the form ({0,...,n—1},<
,BIT), where < is the usual linear ordering, and BIT is the binary relation
that consists of all pairs (p,¢) of natural numbers such that the p-th bit in
the binary expansion of ¢ is one. As pointed out in [15], the collapse happens
if and only if DLOGTIME-uniform AC° = P-uniform AC° (see Section 2
for definitions), or equivalently, if and only if LINH = E. Motivated by this
interesting connection, Atserias and Kolaitis [3] investigated the difficulty of
settling this special case of the Ordered Conjecture. Their approach is further
motivated by the existence of a well-known isomorphism between (IN, BIT) and
(Vwy €) (see [6]), where V,, is the class of all hereditarily finite sets; that is,
Vo = U,so Vi, where V41 = P(V,) and V5 = 0. The Ackermann bijection
e:IN — V, defined for every n € IN as

e(n) = {e(m) : the m-th bit of n is one},

is the aforementioned isomorphism. Furthermore, by exploiting this mapping
of BIT into €, Dawar, Doets, Lindell and Weinstein [11] showed the somewhat
surprising result that the standard linear order is first-order definable from the
BIT predicate alone. Hence, the question translates into whether LFP collapses
to FO on the class BFR = {({e(0),...,e(n — 1)},€) : n > 0}. In view of
the Ackermann bijection, we identify the structures ({0,...,n — 1}, BIT) and
({e(0),...,e(n — 1)}, €), here and in the future, and thus use the notation
BIT, = ({0,...,n — 1}, €).

This set-theoretic framework led to the study of the fixed-points of the Ag
formulas of set theory, also called bounded formulas. These are the formulas
all of whose quantifiers are of the form (3= € y) and (V2 € y) (Sazonov has
studied the fixed-points of bounded formulas in the context of definability on
(Vi, €), rather than in the context of uniform definability on finite structures;
see [30] for a survey). It was proved by Atserias and Kolaitis [3] that if the fixed-
points of positive Ag formulas LFP(Ag) were first-order definable on BFR, then
P C LINH and so P # PSPACE. Thus, settling whether LFP(Aq) collapses
is already a difficulty question. Nonetheless, the authors were able to show that
the fixed-points of the so-called restricted Ay formulas were indeed first-order
definable, and so were the fixed-points of all unary and binary Ag formulas.
Finally back to complexity issues, they showed that the number of times that a
positive Ag formula has to be iterated until its fixed-point is reached in a finite
structure, its closure function, is bounded by a polylogarithm of the cardinality
of the structure on a small subclass of BFR. As a consequence, these fixed-points
are computable in NC on this class.

1.2 Main results

The isomorphism mapping BIT to the membership relation € constitutes a good
source of inspiration to obtain results that explain the expressive power of first-
order logic and fixed-point logic when strong built-in relations are available. The
results in [11] and [3] are good examples. Moreover, the set-theoretic framework
provides new concepts to consider, such as Ag formulas, and new techniques
to apply, such as absoluteness arguments. However, the complexity aspects of
LFP(Ap) were not completely studied in [3], and we feel that the results of the
present paper complete this study.

The first result of this paper is the extension of the last result in [3] to
arbitrary classes of finite structures with built-in membership (BIT) relation.
That is, we show that the closure functions of Ag formulas are bounded by a
polylogarithm of the cardinality of the universe of any arbitrary finite structure
with built-in membership relation. Moreover, we observe that this implies that
LFP(Ay) is computablein DPOLYLOGTIME (and not simply in NC) on any
arbitrary class of finite structures with built-in membership relation. Then we
focus back to the class BFR. We observe that on this particular class, LFP(Ag)
is even in (non-uniform) AC? for some trivial reasons. The interesting question
is then: Which uniform version of AC? is captured by FO + LFP(Ay), the first-
order closure of LFP(Ag)? Our second main result is the answer to this question:
on BFR, the logic FO + LFP(A) captures DPOLYLOGTIME-uniform AC°
which in turn, coincides with LHF; the logarithmic-time hierarchy of Sipser
with an oracle to P. As a corollary we obtain an exact characterization of the
complexity-theoretic difficulties of showing FO + LFP(Aq) = FO on BFR. We
show that the collapse is equivalent to P C LINH. Note that LINH coincides
with the rudimentary languages RUD [35] introduced by Smullyan [32].

We then consider the descriptive complexity of FO 4+ LFP(Ag) on arbi-
trary classes of finite structures with built-in membership relation. Somewhat
surprisingly, we are only able to provide an exact answer in the case that
the underlying vocabulary of the class of structures is unary (on classes of
words with built-in membership relation). In that case, FO + LFP(Ay) still
captures DPOLYLOGTIME-uniform AC°. For higher arities, however, we
are only able to compare the relative expressive power of FO + LFP(A) and
FO with a complexity-theoretic question. We show that if P C RUD,,1/r, then
FO 4 LFP(Ag) collapses to FO on any arbitrary class of finite structures with
built-in membership relation over a vocabulary of arity at most r. The class
RUD,,.;- was introduced by Jones [21] as a natural subclass of the rudimen-
tary languages RUD = RUD,. A result of Allender and Gore [1] implies
that RUD,- coincides with ATIME(O(r®),O(1)) for every ¢ € (0,1]. Here,
ATIME(t(n),a(n)) is the class of languages accepted by alternating Turing ma-
chines in time #(n) and a(n) alternations. Moreover, as mentioned by Allender
and Gore, RUD,,c contains complete problems of each level of the polynomial-
time hierarchy PH [33, 35].

It is interesting that DPOLYLOGTIME-uniform AC? comes out of our
results as a natural complexity class (we note that polylogtime uniformity has

been considered at least once in the past by Allender and Gore [2], although in
a completely different context). The reason amounts to a connection with the
problem of the uniformity of Boolean circuits for integer division, an interesting
issue that has received a good deal of attention [7, 28, 23, 19]. See the end of
Section 5 for more details. Finally, it is obvious that our objects of study are
intimately related to questions about the rudimentary languages, a well-studied
topic [32, 8, 20, 35, 27, 1]. We point out that the rudimentary languages, and the
techniques related to them, have been revisited very recently by Fortnow [14],
and Lipton and Viglas [24], to obtain significant progress in some important
open problems in Complexity Theory.

2 Preliminaries

Logic. Let 0 = {R1,...,R;} be a finite relational vocabulary, and let M =
(M, BM, ..., BM) be a finite structure over o. We will always identify the uni-
verse of M, denoted M, with the initial segment of the natural numbers of
cardinality |M|; thus, M = {0,...,|M|—1}. Let R = (R, Rz, ...) be a sequence
of k-ary relations such that R, C {0,...,n — 1}*. Let C be a class of finite
structures for o U {R}, with R € 0. We say that C' is a class of finite structures
over o with built-in R-relation if and only if, for every M € C, we have that
RM = Rypr)- Notice that the built-in relation only depends on the cardinality of
the structure.

Least fixed-point logic FO 4+ LFP is the extension of first-order logic FO
obtained by augmenting the syntax with a new formula LFPz x (1, ..., 2k, X),
for every first-order formula ¢ positive in the k-ary relation variable X. The
meaning of M = (LFPz x¢)[a] is that @ € I,(M), where I,(M) is the least
fixed-point of the monotone operator defined by ¢ on M. We let I7'(M) be

the m-th stage, that is, I7'(M) = {a € M* : M | ¢[@, U, cm IZLI(M)]}. It is
known that FO+LFP is closed under nested applications of the least fixed-point
operator (see [17, 16]).

We let LFP(Ag) be the class of formulas of the form LFPz x ¢(z1, ..., 2k, X),
where ¢ is a Ag formula positive in k-ary relation variable X. Observe that
first-order parameters are not allowed, and neither is the nesting of fixed-point
operators. We let FO + LFP(Ap) denote the closure of LFP(Ag) under all first-

order connectives and quantification.

Complexity. For every natural number n, we let logn denote the length of
the shortest binary representation of n. If we wish to use the true base-two
logarithm, we use the notation log,(n); thus, logn = |log,(n)| + 1. We identify
natural numbers with their shortest binary representation. However, for every
m € {0,...,n — 1}, we let b,(m) denote the unique binary representation of
length log(n — 1) (padded with leading zeros if necessary).

Our model of computation is the oracle alternating multitape Turing ma-
chine with random access to the input. This model, originally defined by Ruzzo
[29] and used by Barrington, Immerman and Straubing [5], Buss [9], and Sipser

[31] among others, is a modification of the model of Chandra, Kozen and Stock-
meyer [10] to allow sublinear time-bounds. These machines are equipped with
an address tape on which to write a number in binary. When the machine enters
a distinguished state with a number p written on its address tape, the head of
the input tape jumps, in one step, to the p-th leftmost cell of the tape. Strictly
speaking, the definition of Ruzzo [29] is slightly different from ours, but standard
simulation arguments show that both models have the same computing power
with only a constant factor loss in time or number of alternations (see [5] and [9]
for example). In the case of deterministic machines, our model is slightly more
robust, but this will not affect the generality of the results.

Finite structures are encoded as words over the alphabet {0, 1, #} according
to the following convention. For every relation symbol R; € o of arity r, we let
x(BM) be the characteristic sequence of RM. That is, x(BM) = a¢at ...anr—_1,
where a,, € {0,1}, and a, = 1 if and only if (m,_1,...,mg) € RM where
(mr_1,...,mgp) is the n-ary representation of m. Then, the encoding of M is
just

(M) = 17X (R X (R

We extend the encoding to include individuals as follows. For every a1,...,a; €
M, let (M,aq,...,ar) = {(M)#by(a1)#...#bn(ax). Let C be a class of finite
structures, and let @) be a k-ary query on C. We say that @ is computable in
a complexity class C on C' if there exists a language L € C such that for every
M € C and ay,...,a; € M, we have that (ay,...,a;5) € Q(M) if and only if
(M, ay,...,a;) € L. We say that a k-ary built-in relation R = (Ry, Ra,...) is
computable in a complexity class C if there exists a language L € C such that
for every n and ay,...,a; € {0,...,n — 1}, we have that (a,...,a;) € R, if
and only if 17#b,(a1)#...#bn(ar) € L. When considering Boolean circuits,
we are forced to restrict ourselves to the binary alphabet {0,1}. We fix then
an homomorphism A : {0, 1,#}* — {0,1}* in a standard way: put h(0) = 00,
h(1) = 11 and h(#) = 01 (see Section 4 for more details).

3 General facts about bounded formulas

Recall that the transitive closure of a set a, denoted by TC(a), is defined in-
ductively as follows: TC(a) = [J{TC(b) : b € a}. The reflexive transitive closure
of a, denoted by RTC(a), is {a} U TC(a). Our first Lemma says that the satis-
fiability of a Ag formula only depends on the reflexive transitive closure of its
arguments. Given a first-order formula ¢(21, ..., z,) with free variables among
Z1,...,%n, we let F(p) be the set of indices of the free variables of .

Lemma 1. Let o be a relational vocabulary, let M be a structure for o U {€}
with built-in membership relation, and let p(z1,...,25, X) be a Ay formula over
o U{€, X}, where X is a k-ary relation variable. For every A C M*, and
every tuple @ = (a1,...,a,) € M*, we have that M |= o[a, A] if and only if

M E gfa, AN ({RTC(a:) i € F(g)})*].

Proof: We proceed by induction on the construction of ¢. The base cases are
trivial, and so is the case in which ¢ is of the form —i. Suppose that ¢ is of
the form 91 A 1s. Let B = |J{RTC(a;) : i € F(¢)} and B; = |J{RTC(a;) : i €
F(i;)} for j = 1,2. Then, M | ¢[a, ANB*] if and only 1fM E ¢;la, AnB*] for
j = 1,2. By induction hypothesis, this is equivalent to M = ¢;[@, AN B* N Bf]
for j = 1,2. Since F(1;) C F(y), this is equivalent to M | ¥;[a, A N Bf] for
J = 1,2. By induction hypothesis again, this is equivalent to M = v;[a, A] for
J = 1,2, and therefore to M | ¢[a, A]. Suppose next that ¢ is of the form
(Fz; € x5)1. Let B = |J{RTC(a;) : i € F(p)}. In this case, M [¢[a, AN B*] if
and only if there is some a € M such that a € a; and M |: ¥[b, AN B*], where
b= (ay,...,a;_1,a,a;41,...,a5). Let B(b) = |J{RTC(b) : I € F(¢)}. Therefore,
by induction hypothesis, M = ¢[@, AN B*] if and only if there is some a € M
such that a € a; and M | ¢[b, A N B* N B(b)*]. Since for every a € a; we
have that RTC(a) C RTC(a;), it is the case that B(b) C B. Consequently,
M k= ¢[a, AN B*] if and only if there is some a € M such that a € a; and M |=
¥[b, AN B(b)*], and by induction hypothesis again, M [= ¥[b, A], as required. O

For every first-order formula ¢(x1,..., 25, X) positive in the k-ary relation
symbol X, we let cl, (M) denote the closure ordinal of ¢ m M; that is, cl, (M)
is the minimum ordinal « such that [“(M) = U, <QI$ (M) [26]. Since the
reflexive transitive closure of a finite set is relatively small, Lemma 1 allows us
to put polylogarithmic bounds on the closure functions of Aq formulas. This
result extends Theorem 4 in [3] to the case of BFR, and in fact, to arbitrary

classes of finite structures with built-in membership relation.

Theorem 1. Let o be a relational vocabulary, and let ¢(z1,..., 25, X) be a Ag
formula over o U {€, X} that is positive in the k-ary relation variable X. Then,

ol (M) < (log(|M] - 1) + k)"
for every finite structure M over o U {€} with built-in membership relation.

Proof: Put t = (log(|M|—1)+k)*, and assume for contradiction that cl, (M) > ¢.
Let @9 = (ao,1,..-,a0,k) € I,(M) be such that |@g| > ¢, where |G| denotes
the minimal m such that @ € I'(M) if @ € [,(M), and oo if @ & I,(M).
In the following, let I be an abbreviation for I7'(M). We build a sequence
o, @1, . ..,a such that [@;| = |@o| — i, and @; € S* for every i = 0,...,t, where
S =40,...,log(|M|-1)—1}U{ao,1; ..., ao,r}. This will prove the theorem since
the cardinality of S* is at most ¢.

For every @ = (ay,...,ax) € M*, let S(@) denote the set {0,. log(|M|
NI U{ag,..., a5} Observe that U{RTC(;)i € F(p)} C S(a) since every
element in TC(a;) is a bit position of an element in {0,..., |M| — 1}. Assuming
a; = (ai1,-..,) is already defined, we define @; 1 = (ai+171, ey @ip1k). Let
m = |@;|. Then, M = ¢[@;, I™~!]. Lemma 1 and monotonicity imply that M |=
el@, I~ N S(@;)*]. Observe that since @; € S(@o)* by assumption, we have
that S(@;) C S(@o). Now let us consider two cases: (i) m-1n S(Eo) [’"—2
or (i) I'™=1' N S(@o)* ¢ =% In case (i) we have that M = ¢[a;, I™?] by

monotonicity. Hence, @; € I™~! which contradicts the minimality of m = |a;|.
In case (ii), there must exist some @;41 € m-1n S(Eo)k that does not belong
to I™~2. Observe that |@;y1] = |@i| — 1, and @41 € S(Eo)k as required. This
completes the proof of the theorem. O

The polylogarithmic bounds on the closure functions, together with a result
of Immerman [18], imply that every query that is definable as the fixed-point of
a Ag formula is computable in NC, the parallel complexity class. However, we
can keep the machine sequential as noted in the following

Lemma 2. Let o be a relational vocabulary, let C be a class of finite structures
over o with built-in membership relation, and let ¢(z1,...,25, X) be a Aqg for-
mula that is positive in the k-ary relation variable X. Then, the query on C
defined by the formula (LFPz x) is computable in DPOLYLOGTIME on C.

Proof: The idea is that the standard fixed-point computation will only take
a polylogarithmic number of iterations by Theorem 1, and each iteration is
computable in polylogarithmic-time because ¢ is a Ag formula. More precisely,
on input (M, a1, ..., ax), the polylogarithmic-time Turing machine will proceed
as follows. The machine first determines the cardinality of M, say n. To this
end, it determines the length m of the input in O(logm) steps using its random
access to the input (see [5] for this trick), and then it executes a straightforward
computation to extract n from m (here we use the fact that our encodings
are carefully chosen so that their length is determined by the cardinality of
M, the signature of o, and k). Let B = {0,...,log(n — 1) — 1} U {a1,...,ar}.
The machine will keep, in a separate tape, an encoding of a k-ary relation on
B; this will require O((logn)*) bits of information. Then, it starts a loop that
is to be repeated (log(n — 1) + k)* times. In each iteration, the machine cycles
through all k-tuples (b1,. .., bx) in B*, and evaluates M = ¢[b1, . . ., bx, R] where
R is the k-ary relation encoded in the separate tape. Atomic formulas from o
are resolved by random access to the input, and atomic formulas of the form
X (u1,...,ug) are resolved by accessing the position of tuple (uq,...,ux) in the
encoding of R. Observe that each relevant tuple (uq,...,u;) will be available

since M = ¢[b1, ..., bg, B] if and only if

M ': So[bla EREE) bka RN (U{RTC(bZ) S F(W)})k]a

and |J{RTC(b;) : i € F(p)} C B for every (b1,...,b;) € B*, since every element
of TC(a;) is a bit position of an element in {0,...,n — 1}. For the same reason,
each quantifier is bounded by some b;, and therefore, the variable it bounds
ranges over at most log(n — 1) elements of the universe. Hence, the computation
can be done in time O((logn)") where r depends on the number of quantifiers of
. When the evaluation of M = @by, ..., by, R] is complete, the machine updates
accordingly the position corresponding to tuple (by,...,b;) in the encoding of
R. Finally, the machine will only have to check whether the tuple (a1,...,ax)
belongs to R at the end of the loop. O

4 Fixed-points of bounded formulas on BFR

A closer examination of Lemma 2 in the case of BFR reveals that LFP(Agp)-
definable queries are also computable in (non-uniform) ACY; the reason is that
they only depend on O(logn) bits of the input (in fact, the relevant part of
the input is that short already). The interesting question at this point is the
following: which uniform version of AC? is captured by FO+LFP(Ap) on BFR?
Our next theorem is the answer to this question. Before stating the result, we
need some definitions.

Let C = (C1,Cy%,...) be a sequence of boolean circuits, and let s, be a
bound on the size of C),. Thus, gates in C,, may be numbered in {0,...,s, —1}.
The direct connection language of C' (see [5]) is the set of words of the form
174D, (a)#b,, (b)#t, where gate b is an input to gate a, and the type of gate b
ist € {0,1,2,3}. Here, t = 0 means that b is an AND gate, ¢t = 1 means that b
is an OR gate, t = 2 means that b is an positive input, and ¢ = 3 means that b
is a negated input. If C is a complexity class, we say that C' is C-uniform if there
exists a language in I € C such that for every word w of the form 17#a#tb#t
we have that w € L if and only if w € DCL(C). The class C-uniform AC®
is the class of all languages that are accepted by a C-uniform, polynomial-size,
bounded-depth, family of circuits (for languages L C X* with X # {0, 1}, we
say that I is accepted by a family of circuits C if A(L) is accepted by C' for some
fixed homomorphism h : ¥* — {0, 1}* [5]).

Theorem 2. Let () be a query on BFR. The following are equivalent:

1. Q is computable in LHY on BFR,
2. Q is computable in DPOLYLOGTIME-uniform AC® on BFR,
3. @ is definable in FO + LFP(Ap) on BFR.

Proof: We close a cycle of implications. We first show that (i) implies (ii). Assume
that @ is computable in LH# for some A € P. We may assume A C {0, 1}*. For
every n, let F,(z1,...,2,) be the following DNF-formula

V (/\m/\ﬁxi).

ac An{0,1} \a;=1 a; =0

Observe that Fy(ai1,...,ay) is true if and only if the word a1 ...a, belongs to
A. The sequence (Fy, Fy,...), interpreted as a sequence of depth-two circuits, is
exponential-size in n, but P-uniform (the words of its direct connection language
are of the form 17 #a#b#tt with a,b € {0,1}°(?) and deciding membership can
be done in polynomial-time since A € P). We now build a DPOLYLOGTIME-
uniform family of AC? circuits to compute . Let M be an oracle alternating
Turing machine witnessing that @ is computable in LH*, and assume that M
queries its oracle at most once in each computation path (this is a standard
trick in alternating machines; it consists of existentially guessing the answers,
write them down on a separate tape together with the nondeterministic branch
taken at each step, and at the end of the computation, universally branch to

check the correctness of every guess by deterministically resimulating the com-
putation path until the challenged query is asked). Let clogn be a bound on the
running-time of M on inputs of length n. Observe that the length of each oracle
query is bounded by clogn too. As in [5], we may see the computation trees
of M as a DLOGTIME-uniform family of AC? circuits, except for the oracle
queries, which may be resolved by DPOLYLOGTIME-uniform AC® circuits;
namely, we let queries of length m < clogn be resolved by the circuit F,,, above
(exponential-size in m < clogn is polynomial-size in n, and polynomial-time
uniformity for length m < clogn is polylogarithmic-time uniformity for length
n). It follows that @ is computable in DPOLYLOGTIME-uniform ACC.

We see that (ii) implies (iii). Let ¢ be computable in DPOLYLOGTIME-
uniform AC° (recall the convention established just before the statement of the
theorem). It is well-known [4, 25] that @ is then first-order definable with an addi-
tional built-in relation R = (R1, R, ...) that is computable in polylogarithmic-
time. We show how to replace every occurrence of this built-in relation by a
formula of FO + LFP(Ay). For every n and @ = (a1, ...,ax) € {0,...,n — 1}*,
let Mgz = ({0,...,log(n — 1) — 1}, €, P}, ..., P{?), where P = {m : m € a;}.
Since R is a built-in relation computable in polylogarithmic-time, the language

{1"4tb,(a1)# .. . #bn(ag) : (a1,...,a5) € Ry, n > 1}

is decidable in polylogarithmic-time on inputs of the appropriate form. A simple
unpadding argument shows then that the language {(Mgz) :@ € |J,~; Rn} isin
P (the length of (Mgz) is logarithmic in the length of ({0,...,n—1},ay,..., ax)).
Hence, by the Immerman-Vardi Theorem, the boolean query @ = {Mgz : @ €
Un>1 Rn} is definable in least fixed-point logic on the class of all structures of
the form Mz. We may even assume that) is definable by a sentence of the form
(LFPz x)(0) in which ¢ is a first-order formula, and 0 is a constant for zero. Let
o' (Y, 2y P15 -y Pry T, X) be the first-order formula over the vocabulary {€} that
results from the following substitution in ¢: replace each occurrence of an atomic
formula of the form P;(u) by u € p;; replace each atomic formula of the form
X (u) by X(y,2,p1,-.., Pk, u); and replace each subformula of the form (Ju)(v)
by (Fu € y)(¥') vV (Ju € z)(¢'), where 9’ is the result of applying recursively the
substitutions. Clearly, ¢’ is a Ay formula. Moreover, it is not hard to see that
for every ay,...,a; € {0,...,n — 1}, we have that Mz = (LFPz x ¢)(0) if and
only if

({0,...,log(n —1) - 1},€) (LFP%z’Z—,’E’X'&o')(r, S, a1,y ..,ak,0),

where s is the largest power of two in the universe, and r = s — 1 (observe that
the binary representations of s and r are dual words; that is, j € s if and only
if j & r for every j < log(log(n — 1) — 1)). Since r and s are first-order definable
with €, we have shown that R is uniformly definable on BFR by a sentence of
FO + LFP(Ay).

It remains to see that (iii) implies (i). Let ¢(z1,...,2;) be a formula wit-
nessing that @ is definable in FO + LFP(Ap). Without loss of generality, we may

10

assume the following normal form for ¢:

S

(Qiy1) - (Qryr) (N (Wi Voo Vthie Vi g1 V o)),

i=1

where each @); is 3 or V, and each 1; ; is either an atomic formula, or a formula
of the form (LFPz z0)(z1,...,2), with 6 a Ag formula. For every i, j, let @Q; ;
be the query on BFR defined by ; ;, and let A be the following language over
the alphabet {0, 1, #}:

{n##bn(b1)# . .. 3#bn (bs) 45 : (b1, ..., bs) € Qij(BIT,)}.

This language will be our oracle set (that it belongs to P will be shown later).
An alternating Turing machine with oracle A may simulate ¢ as indicated next.
On input (BIT,,ay,...,ar) where ay,...,ar € {0,...,n — 1}, the machine
behaves as follows. First, it computes n. To this end, it existentially guesses
the position of the leftmost # in the input, and universally branches to check
that every smaller position contains a symbol other than #. Then, following
the alternation pattern of the quantifier prefix of ¢, the machine existentially or
universally guesses r words wi, ..., w, of length log(n — 1) each. The ¢-th word
w; is meant to be the binary representation of an element b; € {0,...,n—1} that
is to interpret the first-order variable y;. The machine proceeds then to evaluate
each atomic formula v; ; as follows. Assume ; ; = ; ;(z1,...,25), where each
variable zj is either an z; or a y;. The machine will write an oracle query of
the form n#tdi# . .. #ds#i#j, where dy = b, (b)) if zx = yi, and dp = by (ar) if
zi = 1. Observe that the length of this query is O(logn), and is easy to recover
from the input (existentially guess each by, (g;) and universally branch to check
that all guesses match the input). Clearly, the answer to this query is yes if and
only if BIT,, |=1; ;[dy,...,d;] by the definition of the oracle set A.

All it remains to show is that the language A belongs to P. This is fairly
easy. If 9; ; is an atomic formula, there is almost nothing to see: equalities are
checked at once, and atomic formulas of the form z; € z; are also straightforward
to check. If 4; ; is a formula of the form (LFPz 260)(21,...,z) with 6 being a
Aq formula, then the query it defines is computable in DPOLYLOGTIME
on BFR by Lemma 2. Therefore, since the length of nftdi# ... #dH#i#j is
logarithmic in the length of (BIT,,d,...,d,), a simple unpadding argument
puts Ain P. O

As a corollary, we obtain a characterization of the question on whether all
polynomial-time decidable languages are rudimentary. The relationship between
P and RUD remains unknown. It is known however that NL C RUD [27],
where NL is the class of languages accepted in nondeterministic logarithmic-
space.

Corollary 1. The following are equivalent:
1. FO + LFP(Ap) C FO on BFR,

11

2. P C RUD,
3. P C LINH.

Proof: Since RUD = LINH = ATIME(O(n), O(1)), it is enough to show that
(i) and (iii) are equivalent. The implication from (i) to (iii) follows from Theo-
rem 1 in [3]. For the other implication, assume that P C LINH, and let @ be
a query on BFR that is definable by a FO + LFP(Ap) formula. By Theorem 2
we have @ is computable in LHF, and so in LH"'™H by hypothesis. Let M be
an oracle alternating Turing machine witnessing that @ is computable in LH*
for some A € LINH, and let NV be an alternating Turing machine witnessing
that A € LINH. Since an oracle Turing machine running in logarithmic-time
can only ask logarithmically long queries, oracle queries of M may be answered
by N in logarithmic-time with respect to the input to M. The number of al-
ternations being constant, it follows that @ is computable in LH. Hence, @ is

first-order definable on BFR. O

5 The presence of input predicates

The natural question at this point is what happens when input predicates, in
addition to the membership (BIT) relation, are available. That is, we fix a re-
lational vocabulary o, and we wonder what is captured by FO + LFP(Ag) on
classes of finite structures over o with built-in membership relation. Somewhat
surprisingly, we are only able to provide an exact answer in the case that o is a
unary vocabulary. In that case, the LFP(Aq)-definable queries still only depend
on O(logn) bits of the input, and a similar argument as before goes through.

Theorem 3. Let o be a unary vocabulary, let C' be a class of finite structures
over o with built-in membership relation, and let Q) be a query on C'. Then, the
following are equivalent:

1. Q is computable in LHY on C,
2. Q is computable in DPOLYLOGTIME-uniform AC® on C,
3. @ is definable in FO + LFP(Ayp) on C.

Proof: The proofs that (i) implies (ii), and that (ii) implies (iii), go through
as in Theorem 2 essentially without change. The proof that (iii) implies (i)
uses an argument similar to the one in the proof of Lemma 2. Recall from
Lemma 1 that if ¢ is a Ag formula, then M = ¢[aq, ..., a5, A] if and only if M =
elat, ... a5, AN (U{RTC(a;) : i € F(p)})*]. Iterated application of this lemma
with each of the relation symbols of o shows then that M = ¢[aq,...,as, A] if
and only if
MNB = ¢lar,...,a,, AN B,

where B = [J{RTC(q;) : ¢ € F(p)}, and M N B is the substructure of M gener-
ated by B. In turn, we remark that B C {0,...,log(|M|—1)—1}U{ay,...,a;s}
since each element of TC(a;) is a bit position of an element in {0,...,|M|—1}.
Moreover, a straightforward argument reveals that M N B’ is an end-extension

12

of M N B, where B' = {0,...,log(|M| — 1) — 1} U {a4,...,a,}. Hence, M |=
elai,...,as, A] if and only if M N B = ¢[ay,...,as, AN B*], and by absolute-
ness, if and only if M N B’ = ¢[aq,...,a5, AN B'k]. With these observations in
hand, we claim that:

Claim. If Q) is definable in FO4+LFP(Aq) on C, then @ is definable by a formula
of FO 4+ LFP(Aq) in which no relation symbol from o appears within the scope
of a fixed-point operator.

Proof: The main idea is that since every LFP(Ag) formula will only depend on
O(logn) bits of the input predicates by the remarks above (here is the crucial
point where we use the fact that the vocabulary is unary), we can existentially
quantify these bits outside the LFP(Ap)-formula, and pass them to it as input
variables. Formally, the argument is as follows. Assume for simplicity that o
consists of a unique relation symbol R; the general case is as easy. Let ¢ be a
formula defining @) on C'. Replace each occurrence in ¢ of a subformula of the
form (LFPz x0)(z1,...,zx) with 8 a Ay formula, by the formula

(Fv)((r €v e R(r)) A(Vz €5)(z €v & R(2)) A

v (A R(a?”/\ A _‘R(Ii)A(LFPv,E,X’Hw)(vaE)))a

we{0,1}F w;=1 w;=0

where 6" is the result of replacing each atomic formula of the form R(u), with
u a bound variable, by u € v, each atomic formula of the form R(z;) by ; = x;,
if w; = 1, each atomic formula of the form R(x;) by z; # x;, if w; = 0, and
each atomic formula of the form X (@) by X' (v, u). Here, r and s are existentially
quantified variables set to the largest power of two of the universe, and r — 1
respectively (observe that the binary representations of r and s are dual words).
Observe that if v is a witness for the first-order variable of this formula, then its
binary representation is encoding the first log(n — 1) bits of R. By the remarks
preceding the claim, it is straightforward to check using standard absoluteness
arguments that the modified formula is defining @ on C, as required.

The rest of the proof that (iii) implies (i) is now almost identical to the
proof of Theorem 2. Namely, access to the input predicates is only required
when simulating the first-order part of the formula, and the simulation of the
LFP(Ap)-parts of the formula may be asked to an oracle set in P. O

Observe that the argument of Theorem 3 does not go through for vocabularies
of higher arities. In the case of digraphs, for example, the reason is that there
are O((log|M|)?) significant bits (instead of O(log|M|)) in the substructure
MnA{0,...,log(|M|—1)} of any digraph M. Although we do not provide with an
exact characterization of FO+LFP(Ag) for vocabularies of higher arities, we are
able to compare the expressive power of FO+LFP(Ag) with a familiar complexity
class. Recall from the introduction that RUD,,1;» = ATIME(O(n'/"),0(1)) (see
Corollary 5 in [1]).

13

Theorem 4. Let o be a relational vocabulary of mazimum arity v, and let C
be the class of all finite structures over o with built-in membership relation. If

P C RUD,, /-, then FO 4+ LFP(Aq) C FO on C.

Proof sketch: Assume P C RUD,,1/», and let) be a query on C' definable in
FO+4LFP(Ap). It is enough to show that () is computable in LH on C. Even eas-
ier, it is enough to show that each FO+LFP(Ap)-formula can be evaluated in LH
on the appropriate inputs. Let ¢(21,...,2;) be such a formula. Lemma 2 says
that deciding whether M = ¢[aq, ..., ax] can be done in polylogarithmic-time
in |M|. Moreover, the same absoluteness argument as in the proof of Theorem 3
reveals that M = ¢la1, ..., ax] if and only if M N B’ | ¢lay, ..., ar], where
B'={0,...,log(|M|—-1)—1}U{a1,...,ar}. Since only O((log|M])") bits are
relevant in M N B’, the same computation can can be carried over an unpadded
input that only contains these bits. The computation time is now polynomial
in the length of the (unpadded) input, and therefore, by hypothesis, the same
language is decidable in ATIME(O(n'/"), O(1)) = RUD,,,/ on the appropriate
inputs. Since the length of these inputs is O((log |M|)"), the alternating compu-
tation can be carried over the original inputs in time

O(((log |M])")/") = O(log | M),

and still a constant number of alternations. That is, on the original inputs, the
evaluation of ¢ can be done in LH as required. O

As mentioned in the introduction, Theorem 3 sets the link to an impor-
tant problem related to the uniformity of circuits for integer division. Beame,
Cook, and Hoover [7] showed that the problem of dividing two numbers can
be computed by P-uniform bounded fan-in, logarithmic-depth circuits (NCl).
The result was improved by Reif [28] (see also [19]) who showed that the prob-
lem could be computed by P-uniform unbounded fan-in, bounded-depth circuits
with majority gates (TCO). However, it is not known whether the uniformity
condition of their algorithm can be relaxed to DLOGTIME-uniformity, as it is
the case for the TC? circuits for addition, subtraction, and multiplication (see
Barrington, Immerman and Straubing [5]).

On the other hand, it is known that majority gates of polylogarithmically-
many bits may be simulated by DLOGTIME-uniform AC? circuits (see [34]

for a similar construction). A circuit THy(z1,...,2,,) computing whether at
least k of the input bits x4, ..., 2, is recursively built as follows:
S
THg (21, ...y) = v /\THij(x(j_l)m/s+1,...,J:jm/s),
i ik j=1
ij<m/s

where m = (log n)o(l), and s is suitably chosen so that the size of the circuit
is polynomial in n, and the depth is a constant independent of n (the choice
s = (logn)® works for sufficiently small €). Tt is not hard to see that these cir-
cuits are DLOGTIME-uniform (a clever numbering of gates will tell all the

14

required information to the DLOGTIME algorithm that computes the direct
connection language). The well-known power of AC? circuits to do arithmetic
on numbers with polylogarithmically-many significant bits follows from Reif’s
result, and the known algorithms for addition, subtraction and multiplication.
However, while addition, subtraction and multiplication of polylogarithmically-
long numbers admit DLOGTIME-uniform AC? such circuits, the known algo-
rithms for division fall short since they only give DPOLYLOGTIME-uniform
ACP circuits. We note that Theorem 3 implies that division of numbers with
polylogarithmically-many significant bits is definable in FO 4+ LFP(Aq) on the
class of finite words with built-in membership relation. We do not know, however,
of a direct proof of this fact.

Acknowledgments I am grateful to José L. Balcdzar and Phokion Kolaitis for in-
sightful comments, and to Ricard Gavalda for teaching me about the simulation of
TC° circuits of polylogarithmically many bits by ACP circuits. I am also grateful to
Martin Grohe who asked the question that led to Theorem 3.

References

[1] E. Allender and V. Gore. Rudimentary reductions revisited. Information Process-
ing Letters, 40:89-95, 1991.

[2] E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM
Journal of Computing, 23(5):1026-1049, 1994.

[3] A. Atserias and Ph. G. Kolaitis. First-order logic vs. fixed-point logic in finite set
theory. In 14th IEEE Symposium on Logic in Computer Science, pages 275-284,
1999.

[4] D. M. Barrington and N. Immerman. Time, hardware, and uniformity. In Com-
plexity Theory Retrospective II, pages 1-22. Springer-Verlag, 1997.

[5] D.M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC*.
Journal of Computer and System Sciences, 41(3):274-306, 1990.

[6] J. Barwise. Admissible Sets and Structures. Springer-Verlag, 1975.

[7] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and
related problems. SIAM Journal of Computing, 15(4):994-1003, 1986.

[8] J. H. Bennett. On Spectra. PhD thesis, Princeton University, 1962.

[9] S. R. Buss. The boolean function value problem is in ALOGTIME. In 28th Annual
IEEE Symposium on Foundations of Computer Science, pages 123-131, 1987.

[10] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28:114-133, 1981.

[11] A. Dawar, K. Doets, S. Lindell, and S. Weinstein. Elementary properties of finite
ranks. Mathematical Logic Quarterly, 44:349-353, 1998.

[12] A. Dawar and L. Hella. The expressive power of finitely many generalized quan-
tifiers. Information and Computation, 123:172-184, 1995.

[13] A. Dawar, S. Lindell, and S. Weinstein. First order logic, fixed point logic and
linear order. In Computer Science Logic ’95, volume 1092 of Lecture Notes in
Computer Science, pages 161-177. Springer-Verlag, 1996.

[14] L. Fortnow. Time-space tradeoffs for satisfiability. In 12th IEEE Conference in
Computational Complexity, pages 52-60, 1997. To appear in Journal of Computer
and System Sciences.

(1]
[16]
(17]
(18]
[19]
[20]

(21]

15

Y. Gurevich, N. Immerman, and S. Shelah. McColm’s conjecture. In 9th IEEE
Symposium on Logic in Computer Science, pages 10-19, 1994.

Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of
Pure and Applied Logic, 32(3):265-280, 1986.

N. Immerman. Relational queries computable in polynomial time. [Information
and Computation, 68:86-104, 1986.

N. Immerman. Expressibility and parallel complexity. SIAM Journal of Compul-
ing, 18:625-638, 1989.

N. Immerman and S. Landau. The complexity of iterated multiplication. Infor-
mation and Computation, 116(1):103-116, 1995.

N. Jones. Context-free languages and rudimentary attributes. Mathematical Sys-
tems Theory, 3:102-109, 1969.

N. D. Jones. Space-bounded reducibility among combinatorial problems. Jour-
nal of Computer and System Sciences, 11:68-85, 1975. Corrigendum: Journal of
Computer and System Sciences 15:241, 1977.

Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model
theory. In 7th IEEE Symposium on Logic in Computer Science, pages 46-57, 1992.
S. Lindell. A purely logical characterization of circuit uniformity. In 7th IEEE
Structure in Complexity Theory, pages 185192, 1992.

R. J. Lipton and A. Viglas. On the complexity of SAT. In 40th Annual IEEFE
Symposium on Foundations of Computer Science, pages 459-464, 1999.

J. A. Makowsky. Invariant definability and P/poly. To appear in Lecture Notes
in Computer Science, Proceedings of Computer Science Logic 1998, 1999.

Y. N. Moschovakis. Flementary Induction on Abstract Structures. North-Holland,
1974.

V. A. Nepomnjascii. Rudimentary predicates and Turing calculations. Soviet
Math. Dokl., 11:1462-1465, 1970.

J. H. Reif. On threshold circuits and polynomial computation. In 2nd IEEE
Structure in Complexity Theory, pages 118-123, 1987.

W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22:365-383, 1981.

V. Y. Sazonov. On bounded set theory. In Logic and Scientific Methods, pages
85-103. Kluwer Academic Publishers, 1997.

M. Sipser. Borel sets and circuit complexity. In 15th Annual ACM Symposium on
the Theory of Computing, pages 61-69, 1983.

R. Smullyan. Theory of formal systems. In Annals of Mathematics Studies, vol-
ume 47. Princeton University Press, 1961.

L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1-22, 1977.

I. Wegener. The Complexity of Boolean Functions, pages 243-247. John Wiley &
Sons, 1987.

C. Wrathall. Rudimentary predicates and relative computation. STAM Journal of
Computing, 7(2):194-209, 1978.

