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Keep in mind our forecasting challenge

I One output variable
I Standard & Poor’s 500 Index (S&P500)

I Three exogenous variables
I Volatility index (VIX)
I U.S. 10-year treasury bond (US10Yr)
I Cooper 3-month future price (LME3m)

Challenge: predict next month performance of S&P500
given its own history and the exogenous variables
measured on a daily basis (2006–2014).

I In practice, find a function X → Y for which f (xxx) is not too
different from y on average
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Support Vector Machines (for regression)
An SVM approximates dataset G = {(xk , yk) : k = 1, . . . ,N} by
multiple regressions of the form:

f (xk ,w) =
D∑
i=1

wiφi (xk) + b

where {φi (xk)}Di=1 are the features of inputs,
w = {wi}Di=1 and b are coefficients estimated from data by
minimizing the risk functional:

R(w) =
1

N

N∑
i=1

|yi − f (x i ,w)|ε +
1

2
||w ||2

with respect to the ε-insensitive loss function

|yi − f (x i ,w)|ε =

{
0 if |yi − f (x i ,w)| < ε
|yi − f (x i ,w)| otherwise



Interpreting the approximations f (xk ,w) =
∑D

i=1 wiφi (xk) + b as
hyperplane in D-dimensional feature space defined by {φi (x)}
The Goal: to find a hyperplane f (x ,w) that minimizes R(w)

Vapnik (1995) shows

such minimum is attained by functions of the form:

f (x ,α,α′) =
N∑
i=1

(α′i − αi )K (x , x i ) + b

where K (x , y) =
D∑
i=1

φi (x)φi (y) is the kernel function (and inner

product in D-dim. feature space),



Kernel trick
One does not need to compute the features φi (x) and their inner
product, since kernel can be computed alternatively through
analytical functions not involving them.

Common choices for kernel

I polynomial kernel (with degree d): K (x , y) = (x · y + 1)d ;

I Gaussian radial basis function (RBF)
K (x , y) = exp(−||x − y ||2/σ2), with bandwidth σ2, and

I sigmoid kernel: K (x , y) = tanh(κx · y − σ).



Multivariate Dynamic Kernels for Time Series



Measuring similarity between time series

Use an old idea: Dynamic Time Warping (Sakoe & Chiba, 1970)

I Objective: find a good alignment between x and y before
computing dEuclidean(xxx ,yyy) =

∑n
i=1 d(xi , yi )

DTW

dDTW(xxx ,yyy) = min
π∈A(xxx ,yyy)

|π|∑
i=1

d(xπ1(i), yπ2(i)) = min
π∈A(xxx ,yyy)

Dπ(xxx ,yyy)

where d(xxx ,yyy) is usually d(xxx ,yyy) = ‖xxx − yyy‖



Alignments

I Here are two sequences aligned

I An alignment is an increasing path on a grid



Problems with the DTW distance

I The DTW is not rigorously a distance and is known not to be
n.d. (not satisfy the triangle inequality). Then the similarity

kDTW(xxx ,yyy) = e−dDTW(xxx ,yyy)

is NOT p.d. in general

I The lack of p.d. contradicts most of the mathematical
foundations of kernel methods

I Moreover, DTW is a arbitrary choice in terms of defining the
distance based exclusively on the optimal alignment:

min
π∈A(xxx ,yyy)

Dπ(xxx ,yyy)

I All these weaknesses lead to unexpected and counter-intuitive
behaviors in some cases



Global alignment kernel

I Instead of the minimum, GA (Cuturi, Vert, Birkenes and
Matsui, 2009) consider the soft-minimum of Dπ(xxx ,yyy) :

soft-minimum
π∈A(xxx ,yyy)

(Dπ(xxx ,yyy)) = − log
∑

π∈A(xxx ,yyy)

e−Dπ(xxx ,yyy)

I To get a similarity, we take exp(soft-minimum) :

kGA(xxx ,yyy) =
∑

π∈A(xxx ,yyy)

e−Dπ(xxx ,yyy)

I The GA kernel takes advantages of all distances spanned by
all possible alignments

This is our gold-standard on kernels for TS!



Multivariate dynamic euclidean distance kernel

I Given that financial time series follow a filtration process, we
propose the MDED alignment that shortens the longer time
series up to become equal in length to the shorter time series

I Thus, the MDED alignment between time series xxx and yyy with
lengths N ≥ M is πMDED =
{(N−(M−1), 1), (N−(M−2), 2), . . . , (N−1,M−1), (N,M)}

I We define the MDED as

MDED(xxx ,yyy) =
1

M

M∑
i=1

d(xπMDED1(i)
, yπMDED2(i)

)

I For turning it into similarity, we use the RBF function

kMDED = exp

{
−MDED(xxx ,yyy)

2σ

}
I We recommend σ = median MDED(xxx ,yyy)



Vector autoregressive kernel

I We propose a VAR kernel (much simpler than (Cuturi 2011))
based on comparing the similarity of VAR models parameters.

I A VAR(L) model is such that x(t) =
∑L

l=1 Alx(t − l) + b + εt

I We propose to append the Â’s and b̂’s into a single matrix
denoted as B̂ = (Â1|Â2| . . . |ÂL|[b̂]). Then, compute a
distance using the Frobenious norm

FD(xxx ,yyy) =

√
Trace

{
(B̂xxx − B̂yyy )(B̂xxx − B̂yyy )T

}
I Since we need a similarity, we use a radial basis function

kVAR = exp

{
−FD(xxx ,yyy)

2σ

}
I We recommend σ = median FD(xxx ,yyy)



Cuturi’s VAR-kernel
Cuturi 2011 rely on VAR model for multivariate processes but
avoid the two-step approach by using a matrix normal-inverse
Wishart prior. In short, a VAR(L) model on time series
X ∈ RP×TX is summarise into two matrices ZX ∈ RP×(TX−L) and
WX ∈ R(PL+1)×(TX−L)

Then a VAR-related covariance kernel is formulated using the Z
and W matrices, by applying a bayesian linear regression framework
with non-informative prior. The kernel function takes the form of

k(X ,Y ) = (|W TW4+ IC |1−α + |W TW4+ ZTZ4+ Ic |α)−P/2

where X = [WXWY ], Z = [ZXZY ], c = TX + TY − 1, and α
depend on P and the degrees of freedom d of the matrix-normal
inverse. Wishart prior can be a tuneable parameter. This is the
Gram formulation
This one-step VAR kernel has many tuneable parameters, including
the lag parameter L, making it difficult for the kernel to perform
well in practice without much domain knowledge by the user.



Temporal Data Blocks



Data compression process

I We design a data compression process that redefines the
original dataset into temporal data blocks so as to analyze
temporal information within each block
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I This approach allows to extract additional information and

not only a single vector of prices for each interval



Temporal data block

I A data block is the central unit of our analysis, i.e., a
multivariate time series (MVT) of P time series sampled at
the same time intervals

xxx j =



x1(1)
x2(1)

...
xP(1)

 . . .

x1(t)
x2(t)

...
xP(t)

 . . .

x1(Tj)
x2(Tj)

...
xP(Tj)




I A MVT can be represented as a P-by-Tj matrix: xxx j ∈ RP×Tj

I Therefore, the compressed database of MVTs is

D =
{
xxx j : xxx j ∈ RP×Tj

}N

j=1



Forecasting Performance Evaluation



Mixed-frequency forecasting challenge

I One output variable
I Standard & Poor’s 500 Index (S&P500)

I Three exogenous variables
I Volatility index (VIX)
I U.S. 10-year treasury bond (US10Yr)
I Cooper 3-month future price (LME3m)

Challenge: predict next month performance of S&P500
given its own history and the exogenous variables
measured on a daily basis (2006–2014).



S&P 500 daily Adjusted price, 2006-2014
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Data pre-processing

I y= Rt+1 (next month log return)

I Input features are constructed on a daily basis to capture
temporal patterns of different scale on S&P500, VIX, US10yr
and LME3m using the pre-processing function

ROCt,n = ln

(
xt

xt−n

)
I For each ith time series (i = 1, . . . , 4), we derive a vector of

several rates of changes on day t

x it = [ROC i
t,20,ROC

i
t,40,ROC

i
t,60,ROC

i
t,100,ROC

i
t,140]

I Then, the input features for day t takes the form of

xt = [x1
t , x

2
t , x

3
t , x

4
t ]



S&P 500 daily returns, 2006-2014

−0.1

0.0

0.1

0.2

SP500 daily returns [2006−01−03/2014−12−31]

Last 0.00856645696693881

Jan 03
2006

Jan 03
2007

Jan 02
2008

Jan 02
2009

Jan 04
2010

Jan 03
2011

Jan 03
2012

Jan 02
2013

Jan 02
2014

Dec 31
2014



Performance metrics

I We use the mean absolute scaled error (MASE) which scales
the forecasted error et using a naive forecast

MASE = mean

∣∣∣∣∣ et
1

n−1

∑n
i=2 |Yi − Yi−1|

∣∣∣∣∣
I We also include the accuracy or hit rate (HITS) → proportion

of correctly predicted trends in the period

HITS =
|{Fi | (Yi − Yi−1) · (Fi − Fi−1) > 0, i = 1, . . . , n}|

n



Empirical results

Table 1: Mean Absolute Scaled Error of Multivariate Dynamic Kernels

MASE

Naive kGA kVAR kMDED VAR

2006 – 2008 1.0000 0.7835 0.7954 0.7688 1.1507
2009 – 2011 1.0000 0.8959 0.8496 0.8464 1.1305
2012 – 2014 1.0000 0.7284 0.7123 0.7332 1.5677

Total 1.0000 0.8195 0.7981 0.7940 1.2455



Empirical results

Table 2: Forecasting Accuracy of Multivariate Dynamic Kernels

HITS

Naive kGA kVAR kMDED VAR

2006 – 2008 0.6571 0.7778 0.7500 0.7222 0.6389
2009 – 2011 0.500 0.5833 0.5278 0.5556 0.6111
2012 – 2014 0.5833 0.7222 0.7222 0.7222 0.4167

Total 0.5794 0.6944 0.6667 0.6667 0.5556



Industrial Experimental Design:

Trading Perspective



SVR timing model

I We design a timing rotation investment strategy in which a
positive prediction f̂t+1 will result in going long S&P500 while
a negative prediction in going short

I The log-return, R̂t+1, of our strategy is computed as

R̂t+1 =

{
|Rt+1| if Rt+1 · f̂t+1 ≥ 0;
−|Rt+1| otherwise.

I We include different levels of transaction costs

Objective: evaluate the performance of the investment
strategy based on SVR with multivariate dynamic kernels
as compared to the buy-and-hold strategy.



Experimental results timing model

Table 3: Summary performance statistics for SVR timing rotation
strategies with transactions costs.

Period: 2006/01 – 2014/12

Benchmark Model, 0 bp. Model, 30 bp. Model, 50 bp.

kGA
Total cumulative (%) 50.04 145.64 133.62 125.59
Mean (%) 5.56 16.18 14.85 13.96
Standard deviation (%) 15.54 14.90 14.94 14.97
Sharpe ratio 0.36 1.09 0.99 0.93

kVAR
Total cumulative (%) 50.04 123.78 113.86 107.24
Mean (%) 5.56 13.75 12.65 11.92
Standard deviation (%) 15.54 15.11 15.16 15.21
Sharpe ratio 0.36 0.91 0.83 0.78

kMDED
Total cumulative (%) 50.04 131.99 122.08 115.45
Mean (%) 5.56 14.67 13.56 12.83
Standard deviation (%) 15.54 15.03 15.10 15.15
Sharpe ratio 0.36 0.98 0.90 0.85

VAR
Total cumulative (%) 50.04 67.19 45.86 31.60
Mean (%) 5.56 7.47 5.10 3.51
Standard deviation (%) 15.54 15.47 15.57 15.65
Sharpe ratio 0.36 0.48 0.33 0.22



Experimental results timing model
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Figure 1: Cumulative log-returns from the SVR timing strategy with
multivariate dynamic kernels for the period 2006 – 2014, with no
transaction costs.



Experimental results timing model
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Figure 2: Cumulative returns from SVR timing strategy with
multivariate dynamic kernels along different periods (no transaction
costs)



Conclusions



Conclusions

I The proposed forecasting method facilitates the integration of
data measured at different frequencies and at irregular time
intervals in financial markets.

I The method increases the predictions accuracy and performs
better than the naive forecast.

I Our VAR and MDED kernels prove to be highly competitive
with the gold-standard GA similarity in literature and provides
significant gains in computational speed.



Why this (easy) approach works

I Aggregated normality phenomena: the wider the period of
observations the closer to normal density.
Our compressed data blocks amount to observing data at
wide periods but no intermediate information is lost.

I The best forecaster for Gaussian variable Yt w.r.to MSE and
only knowledge of its past is linear regression.
For multivariate (Gaussian) time series the VAR gives a good
fit.



An apologia for simple models

From David Hand, Classifier Technology and the Illusion of
Progress, Statistical Science 2006.

“if insufficient information is known about likely sources of
variability in the data, then the principle of parsimony suggests
that it is better to stick to simple models”.
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Argimiro Arratia, Llúıs Belanche and Mauricio Peña-Grass
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