## Counting proportions of sets:

expressive power with almost order
@ LATIN'06, Valdivia, CHILE, 24.03.06
Argimiro Arratia \& Carlos Ortiz
Universidad de Valladolid, Spain
Arcadia University, USA
arratia@mac.uva.es ortiz@arcadia.edu

## Motivations

As almost everyone we would like to show $\mathbf{N P} \neq \mathbf{P}$.

We tackle problems in computational complexity using Descriptive Complexity

Fagin, 1974: $\mathrm{NP}=\exists \mathrm{SO}$
Immerman, Vardi, 1982: $\mathbf{P}=\mathrm{FO}+$ LFP
Abiteboul-Vianu, 1991 : PSPACE $=\mathrm{FO}+\mathrm{PFP}$
Grädel, 1992 : $\mathbf{P}=\exists$ SO-Horn, $\mathbf{N L}=\exists$ SO-Krom

## Motivations

- Logics capturing complexity classes below NP need built-in order
- In the presence of order techniques for showing inexpressibility, such as Ehrenfeucht-Fraissé games, are hard to apply and often do not give meaningful lower bounds for the interesting complexity classes
- In the absence of order, logics may become weak: FO + LFP with order captures $\mathbf{P}$; without order it can not express the parity of the size of models.


Caveat: Libkin \& Wong show that FO + COUNT with almost order is weak: it has the Bounded Number of Degrees Property (BNDP)

Almost order: Let $g: \mathbb{N} \rightarrow \mathbb{N}$, so that $g(n)<n$. An almost linear order over set $A$ determined by $g$ is binary relation $\leq_{g}$ that partitions $A$ into $B$ and $C$ such that

- $|B|=n-g(n)$ and $\leq_{g} \upharpoonright B$ is linear order
- $\leq_{g} \upharpoonright C$ is 2-preorder (reflexive, transitive relation in which every induced equivalence class of $\leq_{g} \cap \leq_{g}^{-1}$ has size 2)
- $(\forall x \in C)(\forall y \in B)\left(x \leq_{g} y\right)$

Picture of an almost order


BNDP: $G$ a graph. Its degree set, $\operatorname{deg} \cdot \operatorname{set}(G)$, is the set of all possible in- and out-degrees that are realised in $G$. A formula $\psi(x, y)$ on graphs has the Bounded Number of Degrees Property (BNDP) if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any graph $G$ with $\operatorname{deg} \cdot \operatorname{set}(G) \subseteq\{0, \ldots, k\}$, $|\operatorname{deg} \cdot \operatorname{set}(\psi[G])| \leq f(k)$, where $\psi[G]$ is the graph with same universe as $G$ and edge relation given by $\psi^{G}$.
These notions generalise to arbitrary $\tau$-structures and
[Libkin \& Wong, 02]: every formula in $\mathcal{L}_{\infty \omega}^{*}(C)$ (a very strong counting logic that subsumes all known pure counting extensions of FO, including FO extended with all unary quantifiers), in the presence of almost-linear orders, has the BNDP and thus "exhibits the very tame behaviour tipical for FO queries over unordered structures"

## Our proposal

- Work with almost order. It is a reasonable weakening of the order.
- Be relax! Count proportions of elements as opposed to exact number of elements that satisfy a formula. The intuition is: an operator that counts proportions should be less susceptible to perturbations by the change of semantics from linear orders to almost orders
- Extend your counting power: From counting any element in the universe, to count elements in specific sets of the universe

2nd. Order Proportional Quantifier Logic, $\mathcal{S O} \mathcal{L P}$
Extend FO with quantifiers acting on fmlas. $\alpha(\bar{x}, X)$ with $X$ 2nd. order var. of arity $k$, and rational $r \in(0,1)$ :

$$
(P(X) \geq r) \alpha(\bar{x}, X) \text { and }(P(X) \leq r) \alpha(\bar{x}, X)
$$

## Semantic

Let $\mathcal{B}_{m}$ an appropriate structure of size $m$,

$$
\mathcal{B}_{m} \models(P(X) \geq r) \alpha(\bar{a}, X) \Longleftrightarrow
$$

exists $A \subseteq\left\{b_{0}, \ldots, b_{m-1}\right\}^{k}: \mathcal{B}_{m} \models \phi(\bar{a}, A)$ and $|A| \geq r m^{k}$
Similarly for $(P(X) \leq r)$

## Fragments of interest

$\mathcal{S O} \mathcal{L P}\left[r_{1}, \ldots, r_{k}\right]$, for a given sequence $r_{1}, r_{2}, \ldots, r_{k}$ of distinct natural numbers, is the sublogic of $\mathcal{S O \mathcal { L P }}$ where the proportional quantifiers can only be of the form $\left(P(X) \leq q / r_{i}\right)$ or $\left(P(X) \geq q / r_{i}\right)$, for $i=1, \ldots, k$ and $q$ a natural number such that $0 \leq q<r_{i}$.

Another fragment of $\mathcal{S O \mathcal { L P }}$ of interest for us is the Second Order Monadic Logic of Proportionality, denoted $\mathcal{S O} \mathcal{M} \mathcal{L P}$, which is $\mathcal{S O L P}$ with the arity of the second order variables being all equal to 1 .

## Examples

1. Let $\tau=\{R, s, t\}$ ( $R 3$-ary, $s, t$ constant symbols). Let $r$ be a rational with $0<r<1$.

NOT-IN-CLOS $_{\leq r}:=\{\mathcal{A}=\langle A, R, s, t\rangle: A$ has a set containing $s$ but not $t$, closed under $R$, and of size at most a fraction $r$ of $|A|\}$.

Let $\beta_{\text {nclos }}(X)$ be the following formula

$$
\begin{aligned}
\beta_{n c l o s}(X):=\quad \forall x \forall u \forall v & {[X(s)} \\
\wedge & \neg X(t) \\
& \wedge(X(u) \wedge X(v) \wedge R(u, v, x) \longrightarrow X(x))]
\end{aligned}
$$

Then

$$
\mathcal{A} \in \text { NOT-IN-CLOS }_{\leq r} \Longleftrightarrow \mathcal{A} \models(P(X) \leq r) \beta_{n c l o s}(X)
$$

This problem is $\mathbf{P}$-complete under first order reductions.
2. Let $\tau_{2}=\{E\}, E$ binary relation. A $\tau$-structure is seen as a graph. Let.

$$
\psi:=\forall x \bigvee_{i=1}^{k}\left(Z_{i}(x) \wedge \bigwedge_{\substack{j \neq i \\ 1 \leq j \leq k}} \neg Z_{j}(x)\right)
$$

$\psi$ says "each vertex has exactly one of the possible $k$ colors". Let

$$
\theta:=\forall x \forall y \bigwedge_{i=1}^{k}\left(Z_{i}(x) \wedge Z_{i}(y) \longrightarrow \neg E(x, y)\right)
$$

$\theta$ says "two vertices with the same color are not connected by an edge". Then,
$\Psi_{k}:=\left(P\left(Z_{1}\right) \geq \frac{1}{k}\right)\left(P\left(Z_{2}\right) \leq \frac{k-1}{k}\right) \ldots\left(P\left(Z_{k}\right) \leq \frac{k-1}{k}\right)(\theta \wedge \psi)$
is a sentence in $\mathcal{S O} \mathcal{M} \mathcal{L P}[k]$, and expresses that "the graph is k-colorable"
3. $\mathbf{N C O N}_{\geq r}:=\{\mathcal{A}=\langle A, E, s\rangle:\langle A, E\rangle$ is digraph and at least a fraction $r$ of $A$ is not connected to $s\}$

Let

$$
\alpha_{\text {ncon }}(B):=\neg B(s) \wedge \forall x \forall y(E(x, y) \wedge B(x) \longrightarrow B(y))
$$

Then

$$
\mathcal{A}_{n} \in \mathbf{N C O N}_{\geq r} \Longleftrightarrow \mathcal{A}_{n} \models(P(B) \geq r) \alpha_{n c o n}(B)
$$

Prop.: $\mathbf{N C O N}_{\geq r}$ is complete for $\mathbf{N L}$ via fop.

## The logic with order: $\mathcal{S O} \mathcal{L P}+\leq$

We have shown
(1) In the presence of order (at least a built-in successor),
$\mathbf{P} \subseteq \mathcal{S O} \mathcal{L P}$ [2] (in the sense that any class of structures decidable in $\mathbf{P}$ is definable by a sentence of $\mathcal{S O \mathcal { L P } [ 2 ] ) \text { and, furthermore, it is }}$ captured by the fragment $\mathcal{S O} \mathcal{L P}$ Horn[2], consisting of formulas of the form $\left(P\left(X_{1}\right) \leq 1 / 2\right) \cdots\left(P\left(X_{r}\right) \leq 1 / 2\right) \alpha$, where $\alpha$ is a universal Horn formula.
(2) In the presence of order, $\mathbf{N L}$ is captured by $\mathcal{S O} \mathcal{L P}$ Krom $[2]$, a fragment consisting of formulas of the form $\left(P\left(X_{1}\right) \geq 1 / 2\right) \cdots\left(P\left(X_{r}\right) \geq 1 / 2\right) \alpha$, where $\alpha$ is a universal Krom formula.
(This and the previous capturing of $\mathbf{P}$ by fragments of $\mathcal{S O} \mathcal{L P}$ are inspired on Grädel's [TCS 1992], but taking into account the limitations in the cardinalities of second order variables imposed by our counting quantifiers.)

## $\mathcal{S O L P}$ restricted to almost order

We must make sure that elements that are equivalent w.r.to almost order satisfy same predicates, and avoid inconsistencies in our model theory.

An almost linear order $\leq_{g}$ over a set $A$ induces an equivalence relation $\equiv_{g}$ in $A$ defined by $a \equiv_{g} b$ iff $a \leq_{g} b$ and $b \leq_{g} a$.

An $n$-ary relation $R$ on a set $A$ is consistent with $\leq_{g}$ if for every pair of vectors $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ of elements in $A$ with $a_{i} \equiv_{g} b_{i}$ for every $i \leq n$, we have that

$$
R\left(a_{1}, \ldots, a_{n}\right) \text { holds if and only if } R\left(b_{1}, \ldots, b_{n}\right) \text { holds. }
$$

A structure $\mathcal{A}=\left\langle A, R_{1}^{\mathcal{A}}, \ldots, R_{k}^{\mathcal{A}}, C_{1}^{\mathcal{A}}, \ldots, C_{s}^{\mathcal{A}}\right\rangle$ is consistent with $\leq_{g}$ iff for every $i \leq k, R_{i}^{\mathcal{A}}$ is consistent with $\leq_{g}$.
$\mathcal{S O \mathcal { L P }}+\leq_{g}$, for almost order $\leq_{g}$, is $\mathcal{S O} \mathcal{L P}$ with $\leq_{g}$ as additional built-in relation, and where

* only consider models $\mathcal{A}$ that are consistent with $\leq_{g}$.
* for formulas
$(P(X) \geq r) \phi(\bar{x}, \bar{Y}, X)$ and $(P(X) \leq r) \phi(\bar{x}, \bar{Y}, X)$, for
appropriate finite model $\mathcal{A}$ consistent with $\leq_{g}$, for elements $\bar{a}=\left(a_{1}, \ldots, a_{m}\right)$ in $A$ and appropriate vector of relations $\bar{B}$, consistent with $\leq_{g}$, we should have

$$
\mathcal{A} \models(P(X) \geq r) \phi(\bar{a}, \bar{B}, X) \Longleftrightarrow \text { there exists } S \subseteq A^{k}
$$ consistent with $\leq_{g}$, such that $\mathcal{A} \models \phi(\bar{a}, \bar{B}, A)$ and $|S| \geq r \cdot n^{k}$

Similarly for $(P(X) \leq r) \phi(\bar{a}, \bar{Y}, X)$, substituting in the above condition $\geq$ for $\leq$.

## $\mathcal{S O M} \mathcal{M P}+\leq_{g}$ passed a typical benchmark

For every almost order $\leq_{g}$, given by a sublinear function $g$, we can define in $\mathcal{S O} \mathcal{M} \mathcal{L P}[2]+\leq_{g}$, the set of models with almost order and with universe of even cardinality.

Example: Fix an almost order $\leq_{g}$, and consider the sentence $\Theta_{2}$ :

$$
\left(P(B) \geq \frac{1}{2}\right)\left(P(C) \geq \frac{1}{2}\right)[\forall x(B(x) \vee C(x)) \wedge \forall y(B(y) \longrightarrow \neg C(y))]
$$

Then for every structure $\mathcal{A}$, consistent with $\leq_{g}$,

$$
\mathcal{A} \models \Theta_{2} \text { iff }|\mathcal{A}| \text { is even }
$$

## $\mathcal{S O M} \mathcal{L P}+\leq_{g}$ does not have the BNDP

Consider the quantifier free formula $\theta(x, y, U)$ in $\mathcal{S O M} \mathcal{L P}(\{E\})$
( $E$ binary):

- $x \neq y$;
- $x \in U$ and $y \in U$;
- There is no element $w$ of $U$ such that $E(w, x)$ and there is no element $w$ of $U$ such that $E(y, w)$;
- $\exists w_{1}, w_{2} \in U$ such that $E\left(x, w_{1}\right)$ and $E\left(w_{2}, y\right)$;
- For any element $z$ in $U$ different from $x$ and $y$ there exists unique $a, b \in U$ such that $E(a, z)$ and $E(z, b)$.
and let

$$
\Psi(x, y):=\left(P(U) \geq \frac{1}{2}\right) \theta(x, y, U)
$$

$\Psi(x, y)$ does not have the BNDP property for most sublinear functions $g$; for if we look at the models $\mathcal{A}$ consistent with $\leq_{g}$ and of cardinality $2 n$, whose graph $E(x, y)$ is just the natural successor relation induced by $\leq_{g}$, i.e.

we see that $E$ is consistent with $\leq_{g}$ and that $\operatorname{deg} \cdot \operatorname{set}(\mathcal{A}) \subseteq\{0,1,2\}$. However, the structure $\psi[\mathcal{A}]$ represents, for any $n$, the "transitive closure of length bigger or equal to half the size of the model $\mathcal{A}$ ", and thus $1,2, \ldots n \in \operatorname{deg} \cdot \operatorname{set}(\psi[\mathcal{A}])$ for every $g$ sublinear.

## Separation in the presence of almost order

Using appropriate Ehrenfeucht-Fraïssé type of games, we've shown
(1) With respect to almost ordered structures there exists an infinite hierarchy within the monadic fragment $\mathcal{S O} \mathcal{M} \mathcal{L P}$, namely,

$$
\mathcal{S O} \mathcal{M} \mathcal{L P}[2] \subsetneq \mathcal{S O} \mathcal{M} \mathcal{L P}[2,3] \subsetneq \mathcal{S} \mathcal{O} \mathcal{M} \mathcal{L P}[2,3,5] \subsetneq \ldots
$$

(2) With respect to almost ordered structures and unbounded arity we have that

$$
\mathcal{S O} \mathcal{L P} \text { Horn }[2] \underset{\not \subset}{ } \mathcal{S O} \mathcal{L P}[2,3] .
$$

(Recall that in the presence of order, i.e. $\mathcal{S O} \mathcal{L P}+\leq$,

$$
\mathbf{P} \subseteq \mathcal{S O} \mathcal{L P}[2] \subseteq \mathcal{S O} \mathcal{L} \mathcal{P}[2,3] \subseteq \mathbf{P S P A C E})
$$

## Sketch of proof of existence of hierarchy in $\mathcal{S O M} \mathcal{L P}$

Using our notion of games we proved

Lemma : Let $r_{1}, r_{2}, \ldots, r_{k}$ be distinct non zero natural numbers. Let $g$ be a sublinear function, $\leq_{g}$. For every pair of structures $\mathcal{A}$ and $\mathcal{B}$, such that $\mathcal{A} / \sim_{g} \cong \mathcal{B} / \sim_{g},|\mathcal{A}|=m,|\mathcal{B}|=m+1, m+1>r_{i}$ and $m \equiv_{r_{i}}-1$, for every $i \leq k$, we have that,

$$
\mathcal{A} \models \varphi \text { implies } \mathcal{B} \models \varphi
$$



Theorem : Let $r, r_{1}, r_{2}, \ldots, r_{k}$ be distinct non zero natural numbers, pairwise relatively prime. Then $\mathcal{S O} \mathcal{M} \mathcal{L} \mathcal{P}_{A}\left[r_{1}, \ldots, r_{k}\right]$ is properly contained in $\mathcal{S O} \mathcal{M} \mathcal{L} \mathcal{P}_{A}\left[r_{1} \ldots r_{k}, r\right]$.
Proof : We show that the query "the size of the model is a multiple of $r "$ is not expressible in $\mathcal{S O} \mathcal{M} \mathcal{L} \mathcal{P}_{A}\left[r_{1} \ldots, r_{k}\right]$.
Assume there exists a sentence $\phi$ in $\mathcal{S O} \mathcal{M} \mathcal{L P}\left[r_{1} \ldots, r_{k}\right]$ that defines the query, for all almost ordered structure $\mathcal{A}$. Using that $r$ is relatively prime with the $r_{i}$ 's together with the Generalised Chinese Remainder Theorem we can get a $b \leq r\left(\prod_{i=1}^{k} r_{i}\right)$ such that

$$
b \equiv_{r} 0 \text { and } b \equiv_{r_{i}}-1, \text { for all } i=1, \ldots, k
$$

Take $m=r\left(\prod_{i=1}^{k} r_{i}\right) n+b$, for some $n>1$. Observe that

$$
m \equiv_{r} 0, m \equiv_{r_{i}}-1 \text { and } m+1>r_{i}, \text { for all } i=1, \ldots, k
$$

Let $g=h_{t}(\cdot)$ with $t=r\left(\prod_{i=1}^{k} r_{i}\right) n$ (here $h_{t}(n)=2 r$, where $\left.r \equiv_{t} n\right)$. Then

$$
h_{t}(m)=2 b \text { and } h_{t}(m+1)=2 b+2
$$

Let $\mathcal{A}$ be a structure, consistent with the almost order $\leq_{g}$, formed by $t$ many 2-preorders followed by a linear order of size $b$. Let $\mathcal{B}$ be $\mathcal{A}$ with a new element with which we form an extra 2 -preorder; that is, $\mathcal{B}$ consists of $t+12$-preorders and a linear order of size $b-1$. There is a natural isomorphism between $\mathcal{A} / \equiv_{g}$ and $\mathcal{B} / \equiv_{g}$.

On the other hand, $m$ satisfies the conditions of previous Lemma, and $|\mathcal{A}|=m$ and $|\mathcal{B}|=m+1$. It follows that if $\mathcal{A} \models \phi$ then $\mathcal{B} \models \phi$; therefore $m+1$ is a multiple of $r$, which is impossible.

Thus,

$$
\mathcal{S O M} \mathcal{M} \mathcal{P}_{A}[2] \subsetneq \mathcal{S O M \mathcal { L P }}{ }_{A}[2,3] \subsetneq \mathcal{S O} \mathcal{M} \mathcal{L} \mathcal{P}_{A}[2,3,5] \subsetneq \ldots
$$

