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Introduction

The determination of cause-effect relations among (financial) time
series poses several challenges:

• the proper detection of the causality

• the quantifyfication of its strength, and

• the effects of side information that might be present in the
system.

In econometrics the standard tool for testing statistical causality
are Granger’s and Geweke’s tests for (conditional) Granger causal-
itythat assume a linear relation among the causes and effects.



There are several recent approaches to testing causality based on
non parametric methods, kernel methods and information theory,
among others, that cope with non linearity and non stationar-
ity1, but disregarding the presence of side information (conditional
causality).

We present a modification of Wibral et al. transfer entropy based
causality test onto a conditional causality test, and thus, account-
ing for side information. We show that this conditional transfer
entropy is a measure of statistical causality in the same sense as
Granger causality (i.e. that the causes precede the effects).

1Diks& Wolski (2015) Nonlinear Granger causality... Jr. Appl. Econometrics;
Zaremba et.al. (2014) Measures of causality in complex datases with applications
to financial data, Entropy 16; Marinazzo et.al (2008), Kernel method for nonlinear
Granger causality, Phys. Rev. Lett 100; Barnett et.al. (2009) Granger Causality
and TE are equivalent in the Gaussian case, Phys. Rev. Lett. 103; Wibral
et.al.(2013), Measuring information-transfer delays, PLoS ONE 8(2)



Let’s fix notation

Let Xt, Yt, Zt be stochastic processes defined on a common prob-
ability space.

We try to infer a causal interaction between X and Y , and where
Z represents the side information to complete the system.

Xt will be understood as the random variable associated with time
t, and xt its realization.

Consider Xt,Yt and Zt state space vectors that characterize the
processes at time t, in this case we choose the whole collection of
random variables up to time t, though a finite and well chosen
collection would suffice.



On State-Space representations

A state space model for a (possibly multivariate) time series
{ηt, t = 1, 2, . . .} consists of:
The state equation that expresses the observation ηt as a linear
function of a state variable ξt, plus noise:

ηt = Gtξt +Wt, t = 1, 2, . . .

and the observation equation, that determines the state vector
over time:

ξt+1 = Ftξt + Vt, t = 1, 2, . . .

{Wt} and {Vt} are uncorrelated and uncorrelated to ξ1.



Causality
Causality is an asymmetric, binary relation that connects one pro-
cess (the cause) to another (the effect).

Wiener principle: “For two simultaneously measured signals, if we can

predict the first signal better by using the past information from the

second one than by using the information without it, then we call the

second signal causal to the first one”. This statement highlights two

central issues that other definitions of causality abide:

• A cause occurs strictly before its effect (there is a lag)

• The cause has unique information about the future values of
its effect.

Currently the most accepted measure of causality is the one made by

Clive Granger, conceived in the context of linear autoregressive models,

and was built from these two properties.



We shall say that X does not (Granger) cause Y , relative to the
side information, Z, if for all t ∈ Z and lag k ∈ N:

P (Yt|Xt−1,Yt−k,Zt−1) = P (Yt|Yt−k,Zt−1)

The standard measure of Granger causality is based on comparing

Yt = LY (Y t−1) + LXY (Xt−1) + LZY (Zt−1) + εY,t

where LY , LXY , LZY are linear functions and εY,t is the residual,
with:

Yt = L̃Y (Yt−1) + L̃ZY (Zt−1) + ε̃Y,t



Then we can quantify the usefulness of including X in explaining
Y by comparing the variances of the residuals2:

FX→Y |Z = log
Var(ε̃Y,t)

Var(εY,t)
(≥ 0)

The corresponding (ML based) estimator will have (asymptoti-
cally) a χ2 distribution under the null hypothesis

FX→Y |Z = 0

and a non-central χ2 distribution under the alternative hypothesis
FX→Y |Z > 0.

2Geweke, Mesurements of linear dependence and feedback between multiple
time series, JASA 77 (1982)



Entropy

Entropy is a measure of the disorder of a system.
In information theory, the Shannon entropy H(X) of a random
variable X with density (or mass function) p(x) is defined as the
expected value of the logarithm of the random variable 1/p(X):

H(X) = −E log(p(X))

Likewise, joint and conditional entropy are defined respectively as

H(X,Y ) = −E log(p(X,Y )), H(X|Y ) = −E log(p(X|Y ))

and chain rules are easily deduced, such as

H(X,Y ) = H(X)+H(Y |X) H(X,Y |Z) = H(X|Z)+H(Y |X,Z)



Mutual Information
Given two random variables, their mutual information I(X;Y )
measures the deviation from the system where both variables are
independent, as the Kullback-Lieber distance:

I(X;Y ) = E log
p(X,Y )

p(X)p(Y )

hence it can be written in terms of entropy in several ways,

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

The conditional mutual information of X and Y given Z is simply
defined as

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)



Transfer Entropy

The transfer entropy with self predicting optimality of process X
to Y , conditioned to the side information Z, is defined as

TESPO:X−→Y,u|Z = I(Y t;Xt−u|Y t−1,Zt−1)

This is an adaption of the definition in Wibral et. al.3 that al-

lows the incorporation of more information on the target and the
presence of side information.

• If X and Y are coupled via a delay δ, then TESPO:X−→Y,u|Z
is maximal for u = δ.

3Measuring information-transfer delays, PLoS ONE 8 (2013)



TE is a measure of causality

• Adapting Barnet & Seth4 to the conditional case, we see
that if {Xt},{Yt} and {Zt} are Gaussian Processes,

FX→Y |Z = 2TEX−→Y |Z

• For {Xt},{Yt}, if X Granger-causes Y , then

TEX−→Y |Z ≥ 0

• Given {Xt},{Yt}, stationary stochastic processes defined in a
common probability space, then the standard measure of
Granger Causality and transfer entropy are related by

2 TEX−→Y |Z ≥ FX→Y |Z
4Granger Causality and Transfer Entropy are equivalent in the Gaussian case,

PRL (2009



Embedding Parameters

In order to reconstruct the state-space of the system from scalar
time series, each of them can be written as a delay vector of the
form5

X
(m)
t = (Xt, Xt−τ , Xt−2τ , . . . , Xt−mτ )

m is the embedding dimension −→ false nearest neighbours 6

τ is the embedding delay −→ first zero of the ACF 7

5Takens (1981), Detecting strange attractors in Turbulence, in LNMath 898,
Springer

6Hegger & Krantz (1999), Improved false nearest neighbours method to detect
determinism in time series data, Phys. Rev. E 60(4)

7Ragwiz et.a. (2002) Markov models from data by simple nonlinear time series
predictors in delay embedding spaces, Phys. Rev. E 65



Estimating MI

Following Karasov et.al8 the MI of random variables A and B is esti-
mated approximating the joint density of the pairs ct = (at, bt) and that
of the marginal densities.

If N is the length of the series, nA is the number of points in A whose
pairwise distance is below certain given threshold (similarly define nB),

and Ψ(x) is the digamma function Ψ(x) = Γ(x)−1 dΓ(x)
dx , then . . .

8Estimating mutual information, Phys. Rev E 69 (2004)



mutual information is estimated by

Î(A,B) = Ψ(k)− 〈Ψ(nA + 1) + Ψ(nB + 1)〉+ Ψ(N)

Then

T̂ESPO X−→Y,u = Î(Y t;Xt−u,Y t−1)− Î(Y t;Y t−1)

The distribution of T̂ESPO X−→Y,u is approximated by (station-
ary) Boostrap, and confidence intervals are thus obtained. This
allows us to assess (for each lag) whether there is no causation
(transfer entropy equal to zero).



Example 1
AR stationary system with one linear coupling (Y → Z), and two non-
linear X → Y and X → Z

Xt = 3.4Xt−1(1−Xt−1)2eX
2
t−1 + 0.4ε1,t

Yt = 3.4Yt−1(1− Yt−1)2eY
2
t−1 + 0.5X2

t−10 + 0.4ε2,t

Zt = 3.4Zt−1(1− Zt−1)2eZ
2
t−1 + 0.3Yt−15 + 0.5Xt−5Zt−1 + 0.4ε3,t

Geweke’s test for (linear) Granger Causality
p-value

Y → X 0.44
Z → X 0.08
X → Y 0.00 interaction detected
Z → Y 0.23
X → Z 0.68 interaction not detected, lag 5
Y → Z 0.00 linear interaction detected
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Example 2

Non stationary system, X → Y with a true delay δX→Y = 10 and
random variance that follows an IGARCH(1,1):

Xt = 0.7Xt−1 + σ1,tε1,t

Yt = 0.3Yt−1 + 0.5Xt−10Yt−2 + σ2,tε2,t

σ2
i,t = 0.2 + 0.9ε2i,t−1 + 0.1σ2

i,t−1



Example 2
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Example 3 : German DAX-30 & Spanish IBEX-35
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Log-returns were considered from =1/01/2011 to 06/24/2016


