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The Ornstein-Uhlenbeck process

For parameters λ > 0 and σ > 0,

xλ,σ(t) = σ

∫ t

−∞
e−λ(t−s)dW (s) (1)

where W is standard Wiener process.
(Gaussian, centered, with independent increments and variance

E(W (t)−W (s))2 = |t− s|)

In differential form

dxλ,σ(t) = −λxλ,σ(t)dt+ σdW (t) (2)

G. E. Uhlenbeck and L. S. Ornstein (1930) On the theory of Brownian motion,

Phys. Rev. 36.



OU as continuous time interpolation of AR(1)

Sample the OU process xλ,σ at equally spaced times
{iτ : i = 0, 1, 2, . . . , n}, τ > 0, to get the (discrete time) series

Xi = x(iτ) = σ

∫ iτ

−∞
e−λ(iτ−s)dW (s)

Proposition: {Xi} obeys an AR(1) model

Show that
Xi+1 = e−λτXi + Zi+1

where Zi+1 = σ

∫ (i+1)τ

iτ
e−λ((i+1)τ−s)dW (s), Gaussian

innovation.



OU(p): Ornstein-Uhlenbeck processes of order p

For complex κ = λ+ ıµ, λ > 0, µ ∈ R define OUκ operator
acting on process Y (t) , t ∈ R, as

OUκY (t) =

∫ t

−∞
e−κ(t−s)dY (s) (3)

For p ≥ 1, κ = (κ1, . . . , κp) ∈ (C+)p and σ > 0, we present the

OU process of order p

xκ,σ = OUκ(σW ) :=

p∏
j=1

OUκj (σW )

= OUκ1OUκ2 · · · OUκp(σW )



Example: OU(2) as linear combination of OU(1)

Consider κ = (κ1, κ2), so that

xκ,σ = OUκ1OUκ2(σW ) =

∫ t

−∞
e−κ1(t−s)dOUκ2(σW (s))

Proposition:

When κ1 6= κ2

OUκ2OUκ1 =
κ1

κ1 − κ2
OUκ1 +

κ2

κ2 − κ1
OUκ2

The above linear expression generalizes to OU(p).
Everything holds when the underlying noise is Lévy.
From now on W gets substituted by Λ, a second-order Lévy
process.
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Lévy driven continuous time processes

A Lévy process Λ(t) is a càdlàg function, with independent and
stationary increments, that vanishes in t = 0.

As a consequence, Λ(t) is, for each t, a random variable with an
infinitely divisible law.

The characteristic function of Λ(t) is EeiuΛ(t) = (EeiuΛ(1))t, and
is usually written as EeiuΛ(1) = eψΛ(iu).

The function ψΛ is called characteristic exponent and has the form

ψΛ(iu) = aiu−σ
2

2
u2+

∫
|x|<1

(eiux−1−iux)dv(x)+

∫
|x|≥1

(eiux−1)dv(x)

where v({0}) = 0,
∫
|x|<1 x

2dv(x) <∞,
∫
|x|≥1 dv(x) <∞.



Wiener process W sat-
isfies these properties,
and, moreover, is the
unique continuous Lévy
process.

The compound Poisson
process with rate λ and
i.i.d. jumps Yj with
EYj = 0,Var(Yj) = η <
∞ is also a Lévy process.
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OU(p) as a superposition of OU(1)

The Ornstein-Uhlenbeck process with parameters κ = (κ1, . . . , κp)
and σ,

xκ,σ =

p∏
j=1

OUκj (σΛ)

can be written as a linear combination of p processes of order 1:
1) When the components of κ are pairwise different:

xκ,σ =
∑p

j=1Kj(κ)ξκj , ξκj (t) =
∫ t
−∞ e−κj(t−s)d(σΛ(s)).

The coefficients are:

Kj(κ) =
1∏

κl 6=κj (1− κl/κj)
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2) When κ has components κh repeated ph times (h = 1, 2, . . . , q,∑q
h=1 ph = p) the linear combination is:

xκ,σ =

q∑
h=1

Kh(κ)

ph−1∑
j=0

(
ph−1
j

)
ξ

(j)
κh

where

ξ(j)
κh

(t) =

∫ t

−∞
e−κh(t−s) (−κh(t− s))j

j!
d(σΛ(s))



The autocovariances of xκ,σ are

γκ,σ(t)=

q∑
h′=1

ph′−1∑
i′=0

q∑
h′′=1

ph′′−1∑
i′′=0

Kh′(κ)K̄h′′(κ)
(ph′−1

i′

)(ph′′−1
i′′

)
γ

(i′,i′′)
κh′ ,κh′′ ,σ(t)

γ(i1,i2)
κ1,κ2,σ(t) = Eξ(i1)

κ1
(t)ξ

(i2)
κ2 (0)

= σ2(−κ1)i1(−κ̄2)i2
∫ 0

−∞
e−κ1(t−s) (t− s)i1

i1!
e−κ̄2(−s) (−s)i2

i2!
ds,

and when the components of κ are pairwise different, the covari-
ances can be written as

γκ,σ(t)=

p∑
h′=1

p∑
h′′=1

Kh′(κ)K̄h′′(κ)γ
(0,0)
κh′ ,κh′′ ,σ(t).



A state space representation of the OU(p) process

The decomposition of the OU(p) process

xκ,σ(t)

as a linear combination of simpler processes of order 1, leads to an
expression of the process by means of a state space model.

State space modelling provides us with

• a unified approach for computing the likelihood of xκ,σ(t)
through a Kalman filter.

• a tool to show that the covariances of xκ,σ(t) coincide with
those of an ARMA(p, p− 1) whose coefficients can be
computed from κ.



In order to ease notation, we consider that the components of κ
are all different.
The decomposition of xκ,σ(t) =

∑p
j=1Kjξκj (t) as a linear combi-

nation of the OU(1) processes

ξκj (t) =

∫ t

−∞
e−κj(t−s)d(σΛ(s)) = e−κjξκj (t−1)+

∫ t

t−1
e−κj(t−s)d(σΛ(s))

with innovations ηκ with components

ηκj (t) =

∫ t

t−1
e−κj(t−s)dΛ(s)

provides a representation of the OU(p) process in the space of states
ξκ = (ξκ1 , . . . , ξκp)tr.



The transitions in the state space are

ξκ(t) = diag(e−κ1 , . . . , e−κp)ξκ(t− 1) + ηκ(t),

and
x(t) = Ktr(κ)ξ(t)

The assumption EΛ(1)2 = 1 implies that the innovations have
variance

Var(ηκ,τ (t)) = ((vj,l))

vj,l = E
∫ t
t−1 e−(κj+κ̄l)(t−s)ds = 1−e−(κj+κ̄l)

κj+κ̄l
.



A state space representation and its implications on the covari-
ances of the OU process in the general case are slightly more com-
plicated.

ξ(t) = Aξ(t− 1) + η(t) (4)

x(t) = Ktrξ(t) (5)

When κ1, . . . , κq are all different, p1, . . . , pq are positive integers,∑q
h=1 ph = p and κ is a p-vector with ph repeated components

equal to κh, the OU(p) process xκ is a linear function of the state
space vector(

ξ(0)
κ1
, ξ(1)
κ1
, . . . , ξ(p1−1)

κ1
, . . . , ξ(0)

κq , ξ
(1)
κq , . . . , ξ

(pq−1)
κq

)
and the transition equation is no longer expressed by a diagonal
matrix.



OU(p) as a CARMA(p, p− 1)

Eq. (4) shows that ξ(t) is a p-dimensional VARMA(1,0) process
Eq. (5) expresses x(t) as a linear transformation of ξ(t) by the
(1× p) matrix F = Ktr. Use Theorem below (with d = p,
p̃ = 1, q̃ = 0, m = 1)

Theorem (Lütkepohl (2005) Cor. 11.1.2)

Let yt be a d-dimensional, stable, invertible VARMA(p̃,q̃)
process and let F be an (m× d) matrix of rank m. Then the
process zt = Fyt has a VARMA(p̌, q̌) representation with
p̌ ≤ (d−m+ 1)p̃ and q̌ ≤ (d−m)p̃+ q̃.



OU(p) as a CARMA(p, p− 1)

We conclude that (x(t) : t = 0, 1, . . . , n) is an ARMA(p̌,q̌)
process with p̌ ≤ p and q̌ ≤ p− 1:

x(i) =

p∑
j=1

φjx(i− j) +

p−1∑
l=0

θlεi−l

where ε is a white noise with variance one and

the parameters φ = (φ1, . . . , φp)
tr, θ = (θ0, . . . , θp−1)tr of the

ARMA(p, p− 1) process are functions of the parameters κ and
σ of the OU(p).

Hence,

Given κ we know exactly to which ARMA(p, p− 1) corresponds
the OUκ



φ and θ as functions of κ

Apply the AR operator
∏p
j=1(1− e−κjB) to xκ and obtain

p∏
j=1

(1− e−κjB)xκ(t) =

p∑
j=1

KjGj(B)ηκj (t) =: ζ(t),

with Gj(z) =
∏
l 6=j(1− e−κlz) := 1−

∑p−1
l=1 gj,lz

l.

This process has the same second-order moments as the
ARMA(p, p− 1) 1

p∏
j=1

(1− e−κjB)xκ(t) =

p−1∑
j=0

θjε(t− j) =: ζ ′(t) (ε is a white noise)

when the covariances cj = Eζ(t)ζ̄(t − j) and c′j = Eζ ′(t)ζ̄ ′(t − j)
coincide.

1When Λ is a Wiener process, it is in fact an ARMA(p, p− 1)



The covariances c′j and cj are given respectively by the generating
functions

p−1∑
l=−p+1

c′lz
l =

(
p−1∑
h=0

θhz
h

)(
p−1∑
k=0

θ̄kz
−h

)

and

p−1∑
l=−p+1

clz
l =

p∑
j=1

p∑
l=1

KjK̄lGj(z)Ḡl(1/z)vj,l =: J(z)

Since J(z) can be computed once κ is known, the coefficients θ =
(θ0, θ1, . . . θp−1) are obtained by identifying the coefficients of the

polynomials zp−1J(z) and zp−1
(∑p−1

h=0 θhz
h
)(∑p−1

k=0 θ̄kz
−h
)

.





What’s known and where do we stand

The link between discrete ARMA processes and stationary pro-
cesses with continuous time has been of interest for many years
and has been studied, among others, by

Doob, J.L. (1944) The elementary Gaussian Processes, Ann. Math. Statist. 25

Durbin, J. (1961) Efficient fitting of linear models for continuous stationary time

series from discrete data

Bergstrom (1984) Handbook of Econometrics, (1990) Continuous Time Econometric

Modelling, Oxford U Press

and there is a recent upsurge of interest in continuous-time models,
because they can be used in presence of irregularly spaced data,
and in non Gaussian processes mainly due to the fact that jumps
play an important role in realistic modelling in finance and other
fields of application.



One approach is via the stochastic volatility model2, in which the
volatility process V and the log asset price G satisfy (apart from
a deterministic rescaling of time)

dV (t) = −λV (t) + dΛ(t)

dG(t) = (γ + βV (t))dt+
√
V (t)dW (t) + ρdΛ(t)

where λ > 0, Λ is a non-decreasing Lévy process and W is a
standard Brownian motion independent of Λ.

The volatility V is a Lévy-driven Ornstein-Uhlenbeck process, or
a continuous- time autoregression of order 1: CAR(1).

The autocorrelations of V decay exponentially, hence they consti-
tute a very restrictive family.

2Barndorff- Nielsen, O. and Shephard, N. (2001), Non-Gaussian
Ornstein-Uhlenbeck-based models and some of their uses in financial economics.
JRSS, 63.



In order to include a wider family of covariances, econometric or
physical models apply frequently linear combinations (superposi-
tions) of OU processes driven by either uncorrelated or correlated
noise

p∑
j=1

aj

∫ t

−∞
e−κj(t−s)dΛj(s)

Eliazar, I, and Klafter, J. (2009), From Ornstein-Uhlenbeck dynamics to long-memory
processes and fractional Brownian motion, Physical Review E, 79

Barndorff- Nielsen, O. and Shephard, N. (2001), op.cit. JRSS, 63.



or models that replace the finite linear combination by a continu-
ous version ∫ t

s=−∞

∫
<(κ)>0

e−κ(t−s)dΛ(s, κ)

Bergstrom, A. R. (1984), Continuous time stochastic models and issues of aggregation
over time, in Handbook of Econometrics, Volume ll, Edited by Z. Griliches and M.
D. lntriligator,

Brockwell, P.J. (2004), Representations of continuous time ARMA models, Jr. Appl.
Probab, 41.

Brockwell, P.J. (2009), Levy-driven continuous time ARMA processes, in Handbook
of financial Time Series.

Chambers, M. J. and Thornton, M.A. (2012), Discrete time representation of contin-

uous time ARMA processes



Brockwell’s CARMA

Brockwell proposes to define CARMA processes via a state space
representation of the formal equation

a(D)Y (t) = σb(D)DΛ(t)

where σ > 0 is a scale parameter,
D denotes differentiation w.r.t t,
Λ is a second-order Lèvy process,
a(z) = zp + a1z

p−1 + . . .+ ap is a polynomial of order p
and b(z) = b0 + b1 + . . .+ bqz

q a polynomial of order q ≤ p− 1.



He proves that, under reasonable conditions on the eigenvalues of
the matrix of the space equations, the process Y (t) can be written
as

Y (t) =
σ

2π

∫ ∫
exp (i(t− u)λ)

b(iλ)

a(iλ)
dλdΛ(u)

This representation allows the computation of moments, and to
identify the resulting Gaussian CARMA with the class of station-
ary Gaussian processes with rational spectral density.

When the zeroes of the AR polynomial are all different, he obtains
a representation of the CARMA as a sum of Lèvy-driven Ornstein-
Uhlenbeck processes.



He proposes to estimate the CARMA parameters by adjusting an
ARMA(p, q), q < p to regularly spaced data and then obtain the
parameters of the CARMA whose values at the observation times
have the same distribution of the fitted ARMA.

• Is this always possible?
Even in the Gaussian case, he shows that not all ARMA(p, q) with
q < p are embeddable.

We have proposed a different construction of continuous versions of
ARMA processes that solves at least in part, these inconveniences.

Our heuristics is completely different, though some of the features
of the resulting process are the same.



Estimation: First a reparameterization

Though γ(t) depends continuously on κ, the same does not happen
with each term in the expression for the covariance, because of the
lack of boundedness of the coefficients of the linear combination
when two different values of the components of κ approach each
other. Recall that the autocovariances of xκ,σ are

γκ,σ(t)=

q∑
h′=1

ph′−1∑
i′=0

q∑
h′′=1

ph′′−1∑
i′′=0

Kh′(κ)K̄h′′(κ)
(
ph′−1
i′

)(
ph′′−1
i′′

)
γ
(i′,i′′)
κh′ ,κh′′ ,σ(t)

with Kj(κ) = 1∏
κl 6=κj

(1−κl/κj)

Since we wish to consider real processes x and the process itself
and its covariance γ(t) depend only of the unordered set of the
components of κ, we shall reparameterize the process.



With the notation Kj,i = 1
(−κj)i

∏
l6=j(1−κl/κj)

(in particular, Kj,0 is the same as Kj )

• The processes xi(t) =
∑p

j=1Kj,iξj(t) and the coefficients
φ = (φ1, . . . , φp) of the polynomial (in z)

p∏
j=1

(1 + κjz) = 1−
p∑
j=1

φjz
j

satisfy
p∑
i=1

φixi(t) = xκ,σ(t).

Therefore, the new parameter φ = (φ1, . . . , φp) ∈ Rp shall be
adopted.



ML estimation of the parameters of OU(p) in the
Gaussian case

From the observations {µ + x(i) : i = 0, 1, . . . , n}, obtain the
likelihood L of the vector x = (x(1)), . . . , x(n)):

logL(x;φ, σ) = −n2 log(2π)− 1
2 log(det(V (φ, σ))− 1

2x
tr(V (φ, σ))−1x

with V (φ, σ) equal to the n× n matrix with components

Vh,i = γ(|h− i|)

that reduce to γ(0) at the diagonal, γ(1) at the 1st sub and super diag-
onals, ...

Obtain via numerical optimisation the MLE φ̂ of φ and σ̂2 of σ2.

The estimations κ̂ follow by solving
∏p
j=1(1 + κ̂jz) = 1−

∑p
j=1 φ̂jz

j .



Matching correlations estimation

From the closed formula for the covariance γ and the relationship
between κ and φ, we have a mapping (φ, σ2) 7→ γ(t), for each t.
Since ρ(T ) := (ρ(1), . . . , ρ(T ))tr = (γ(1), . . . , γ(T ))tr/γ(0) does not
depend on σ2, these equations determine a map

C : (φ, T ) 7→ ρ(T ) = C(φ, T )

for each T .

After choosing a value of T and obtaining an estimate ρ
(T )
e of ρ(T )

based on x, we propose as a first estimate of φ, the vector φ̌T such
that all the components of the corresponding κ have positive real

parts, and such that the euclidean norm ‖ρ(T )
e −C(φ̌T , T )‖ reaches

its minimum, that is, a procedure that resembles the method of
moments.



The Gaussian case: examples

When Λ is a Wiener process, the OU process of order p belongs
to a subclass with p+ 1 parameters of the classical family of the
2p-parameters Gaussian ARMA(p, p− 1)

xt = φ1xt−1 + · · ·+ φpxt−p + θ0εt + θ1εt−1 + · · ·+ θp−1εt−p+1

where φ1, . . . , φp and θ0, . . . , θq are parameters and εt is a Gaussian
noise with variance 1.



Maximum likelihood estimation of κ and σ

The parameters κ, σ determine the Gaussian likelihood of
OUκ,σw, and are estimated by the values κ̂ and σ̂ that maximize
that likelihood.

The matching correlations estimators can be used as the starting
point of an optimization procedure leading to compute the ML
estimators.

We have simulated the sample paths for the Wiener-driven OU(p)
for different values of the parameters.



A series (xi)i=0,1,...,n of n = 300 observations of the OUκ process x, p = 3

original φ −1.30 −0.56 −0.18 σ2 = 1

original κ 0.9 0.2 + 0.4ı 0.2− 0.4ı σ2 = 1

MCEφ̌T −1.9245 −0.6678 −0.3221
κ̌ 1.6368 0.1439 + 0.4196ı 0.14389− 0.4196ı

MLE φ̂ −1.3546 −0.6707 −0.2355 σ̂2 = 0.8958
κ̂ 0.9001 0.2273 + 0.4582ı 0.2273− 0.4582ı
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Series A (Box, Jenkins & Reinsel) consists of 197 lectures of con-
centration in a certain chemical process, taken every 2 hours.
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The parameters φ and θ can be obtained from κ and σ using the
expressions for the covariances of both processes.
For Series A, the parameters of the OU(3) fitted by maximum
likelihood are

κ̂ = (0.8293, 0.0018 + 0.0330i, 0.0018− 0.0330i) and σ̂ = 0.4401

The corresponding ARMA(3,2) is

(1−2.4316B+1.8670B2−0.4348B3)x = 0.4401(1−1.9675B+0.9685B2)ε

On the other hand, the ARMA(3,2) fitted by maximum likelihood
is

(1−0.7945B−0.3145B2+0.1553B3)x = 0.3101(1−0.4269B−0.2959B2)ε.



ARMA (AIC 110.46) and OU(3) (AIC 109.9) fitted by maximum likelihood



Estimating the shape of the Lévy noise

The estimation of the parameters of ψΛ, two real numbers and
a measure (the so called Lévy-Khinchin triplet), is difficult and
requires a large amount of information.

Jongbloed, van der Meulen and van der Vaart (Bernoulli 11(5), 2005, 759–791)

Valdivieso, Schoutens, Tuerlinks (Stat. Infer. Stoch. Process, 2009, 12: 1–18)

have proposed nonparametric estimation for the Lévy noise driving an Ornstein-

Uhlenbeck process.

A simpler setting is to assume that the admissible exponents
belong to a parametric class Ψ = {ψθ : θ ∈ Θ} where Θ ⊂ Rd,
and obtain the value of θ for which a chosen quadratic distance
between the exponential of ψθ(iu) and the empirical
characteristic function of the residuals is minimum.



Let us denote ψΛ(iu) the characteristic exponent of the Lévy pro-
cess Λ,

ψΛ(iu) = logEeiuΛ(1)

The innovation in each component ξj is

ηj(t) =
∫ t
t−1 e−κj(t−s)dΛ(s), so that the innovation of xκ,σ is

η(t) =

∫ t

t−1
g(t− s)dΛ(s) where g(t) =

p∑
j=1

Kje
−κjt.

Hence, η ∼
∫ 1

0
g(1− s)dΛ(s) ∼

∫ 1

0
g(s)dΛ(s)

and its characteristic exponent is therefore

ψη = logEeiuη = logEeiu
∫ 1
0 g(s)dΛ(s) =

∫ 1

0
ψΛ(iug(s))ds



A simple example: estimation of a noise sum of a Poisson process
plus a Gaussian term
Let us assume that the noise is given by

Λ(t) = σW (t) + c(N(t)− λt)

where W is a standard Wiener process and N is a Poisson process
with intensity λ. The family of possible noises depends on the
three parameters (σ, λ, c). In this case, the characteristic exponent
has a simple form:

ψΛ(1)(iu) = −σ
2u2

2
+ λ(eiuc − iuc− 1)

hence

ψη(iu) =

∫ 1

0

(
−σ

2u2g2(s)

2
+ λ(eiug(s)c − iug(s)c− 1)

)
ds



With gh =
∫ 1

0 g
h(s)ds,

ψη(iu) = −σ
2u2g2

2
+ λ

(
−u

2g2c
2

2
− iu

3g3c
3

6
+
u4g4c

4

24
+ . . .

)
Then we propose to estimate the parameters by equating the coef-
ficients of u2, u3, u4 in ψη(iu) with the corresponding ones in the
logarithm of the empirical characteristic function of the residuals.
Assuming that the mean of the residuals r1, r2, . . . , rn is zero, their
empirical characteristic function is

1

n

n∑
h=1

eiurh = 1− 1

2
u2R2 −

1

6
iu3R3 +

1

24
u4R4 + . . .

where Rm = 1
n

∑n
h=1 r

m
h .



Then the logarithm has the expansion
log 1

n

∑n
h=1 eiurh = −1

2u
2R2 − 1

6 iu
3R3 + 1

24u
4R4 − 1

8u
4R2

2 + . . .
Consequently, the estimation equations are

(σ2 + λc2)g2 = R2,

λc3g3 = R3,

λc4g4 = R4 − 3R2
2

from which the estimators follow:

c̃ =
R4 − 3R2

2

R3

g3

g4
λ̃ =

R4
3

(R4 − 3R2
2)3

g3
4

g4
3

σ̃2 =
R2

g2
− R2

3

(R4 − 3R2
2)

g4

g2
3

.



Next figures show the empirical c.d.f. of 90 estimators of the parameters obtained
from simulated series of 200 terms. The residuals were obtained by applying a Kalman
filter to the space state formulation, starting from the actual vaue of κ used at the
simulation (red), that in practical situations is unknown, and from the estimators
obtained by matching correlations (green) and by maximum likelihood (blue).
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Estimation of the parameters of the noise from 90 replications of
{xκ(t) : t = 0, 1, . . . , 200}, κ = (0.01± 0.1i, 0.2), driven by Λ(t) = 0.1W (t) +N0.3(t)− 0.3t.3

The estimators are not sharp at all, but the ones obtained by the same procedure
applied directly on the unfiltered noise Λ (dashed lines) are equally rough. Larger
series (of size 10000 and 1000000) produce sharper estimates, also shown in the figures
by dotted lines.

3
Normality is rejected in 100% of all cases.
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Estimation of the parameters of the noise from 90 replications of
{xκ(t) : t = 0, 1, 2, . . . , 200}, κ = (0.0018+0.033i, 0.0018−0.033i, 0.083),
driven by Λ(t) = W (t) +N1(t)− t.4
κ used at the simulation (red), estimated by matching correlations (green) and by maximum
likelihood (blue)

4
Normality is rejected in 30%, 36% and 36% of the cases.



Conclusions

• We have proposed a family of continuous time stationary pro-
cesses, based on p iterations of the linear operator that maps a
Wiener process onto an Ornstein-Uhlenbeck process, or more gen-
erally, wrt Levy processes.
• These operators have some nice properties, such as being com-
mutative, and their p-compositions decompose as a linear combi-
nation of simple operators of the same kind.
• An OU(p) process depends on p + 1 parameters that can be
easily estimated by either maximum likelihood (ML) or matching
correlations (MC) procedures. Matching correlation estimators
provide a fair estimation of the covariances of the data, even if the
model is not well specified.



Conclusions

•When sampled on equally spaced instants, the OU(p) family can
be written as a discrete time state space model; i.e., a VARMA
model in a space of dimension p. As a consequence, the families of
OU(p) models are a parsimonious subfamily of the ARMA(p, p−1)
processes in the Gaussian case.
• Furthermore, the coefficients of the ARMA can be deduced from
those of the corresponding OU(p).
•We have shown examples for which the ML-estimated OU model
is able to capture a long term dependence that the ML-estimated
ARMA model does not show. This leads to recommend the inclu-
sion of OU models as candidates to represent stationary series to
the users interested in such kind of dependence.


