First Order Extensions of Residue Classes and Uniform Circuit Complexity

Argimiro Arratia

argimiro@lsi.upc.edu

LARCA. Laboratory for Relational Algorithmics, Complexity and Learning

Joint work with Carlos E. Ortiz (Arcadia U., USA) ortiz@arcadia.edu

A. Arratia & C. E. Ortiz FO extensions of residue classes and circuit complexity

Main goal

To develop new tools to study separation problems for a collection of logics that are extensions of first order logic and whose models are finite residue classes.

Motivations

- Limitations of working with standard finite structures with built-in linear order in Descriptive Complexity Theory.
- Separation questions in the Circuit Complexity Hierarchy.
- There is a deep corpus of results from number theory on residue classes.

Continue

$$AC^0 \subseteq ACC(q) \subseteq ACC \subseteq TC^0$$

 AC^0 = class of languages accepted by poly. size, constant depth circuits w/ NOT gates, unbounded fan-in AND, OR gates. $ACC(q) = AC^0$ plus MOD_q gates. $TC^0 = AC^0$ plus MAJ gates. • Go Back

Logics $\mathcal{R}ing(0, +, *)$ and $\mathcal{R}ing(0, +, *, <)$

For $m \in \mathbb{N}$, \mathbb{Z}_m is the finite residue class ring of *m* elements. As an algebraic structure, \mathbb{Z}_m consists of set of elements $\{0, 1, \dots, m-1\}$, constant 0 and two binary functions + and * (corresponding to addition and multiplication mod *m*).

Definition: Logic of finite residue class rings

 $\mathcal{R}ing(0, +, *)$ denote the collection of first order sentences over the set of built-in predicates $\{0, +, *\}$, where 0 is a constant symbol, and + and * are binary function symbols. The models of $\mathcal{R}ing(0, +, *)$ are the finite residue class rings \mathbb{Z}_m .

Definition: Logic of finite residue class rings with order

 $\mathcal{R}ing(0, +, *, <)$ denote the logic $\mathcal{R}ing(0, +, *)$ extended with a built-in order relation <. In this extension each finite ring \mathbb{Z}_m is endowed with an order of its residue classes, given by the natural ordering of the representatives of each class from $\{0, 1, \ldots, m-1\}$. The constant 0 represents the first element in

Modular Quantifiers

Notation given fmla $\phi(x, \overline{y})$, structure \mathcal{A} and tuple \overline{a} of elements in \mathcal{A} , $\phi(\mathcal{A}, \overline{a}) := \{b \in \mathcal{A} : \mathcal{A} \models \phi(b, \overline{a})\}.$

Definition

For every integer n > 0, $\mathcal{R}ing(0, +, *) + MOD(n)$ and $\mathcal{R}ing(0, +, *, <) + MOD(n)$ are the extensions of $\mathcal{R}ing(0, +, *)$ and $\mathcal{R}ing(0, +, *, <)$ obtained by the additional requirement that these logics be closed, $\forall r < n$, for the quantifiers $\exists^{(r,n)}x$, interpreted as follows:

$$\mathbb{Z}_m \models \exists^{(r,n)} x \phi(x,\overline{a}) \text{ iff } |\phi(\mathbb{Z}_m,\overline{a})| \equiv_n r$$

$$\begin{split} \mathcal{R}ing(0,+,*) + MOD &= \bigcup_{n>0} \mathcal{R}ing(0,+,*) + MOD(n), \\ \mathcal{R}ing(0,+,*,<) + MOD &= \bigcup_{n>0} \mathcal{R}ing(0,+,*,<) + MOD(n). \end{split}$$

Note: Further extensions are obtained with *Majority* quantifiers, but we would not deal with them.

Theorem

 DLOGTIME-uniform AC⁰ is definable by Ring(0,+,*,<).
 DLOGTIME-uniform ACC(q) is definable by Ring(0,+,*,<) + MOD(q), for every natural q.
 DLOGTIME-uniform ACC is definable by Ring(0,+,*,<) + MOD.

Remark: a property of integers P(x) is definable in $\mathcal{R}ing(0, +, *, <)$, or any fragment \mathcal{L} , means that there exists a sentence φ of \mathcal{L} such that $\forall m, P(m)$ holds in $\mathbb{Z} \iff \mathbb{Z}_m \models \varphi$. Circuit class \mathcal{C} is definable in the ring logic \mathcal{L} if every property P(x) decidable in \mathcal{C} is definable in \mathcal{L} and, for all sentence φ in \mathcal{L} , the set of natural numbers m such that $\mathbb{Z}_m \models \varphi$, is decidable in \mathcal{C} .

Definition

The prime spectrum of a sentence σ of $\mathcal{R}ing(0, +, *, <) + MOD$, is the set of prime numbers

$$Sp(\sigma) = \{ p \in \mathbb{P} : \mathbb{Z}_p \models \sigma \}$$

Notation Two sets $A, B \subset \mathbb{N}$ are almost identical, $A =^* B$ if and only if they differ by only a finite number of elements.

Example

From the Quadratic Reciprocity Law:

$$Sp(\exists x(x^2+1=0)) =^* \{p \in \mathbb{P} : p \equiv_4 1\}$$

Theorem (James Ax, 1968, Annals Math.)

The spectrum $Sp(\sigma)$ of any sentence σ of $\mathcal{R}ing(0, +, *)$ is, up to finitely many exceptions, a Boolean combination of sets of the form $Sp(\exists t(f(t) = 0))$, where $f(t) \in \mathbb{Z}[t]$ is a polynomial with integer coefficients.

Hence, to characterize the spectra of sentences of $\mathcal{R}ing(0, +, *)$ it is sufficient to analyze the spectra of sentences of the form $\exists x(f(x) = 0)$ for polynomials $f \in \mathbb{Z}[x]$.

Boolean algebra on ring spectra

Consider systems of polynomial congruences:

$$(S): \qquad f_1(x_1,\ldots,x_n) \equiv_p 0,\ldots,f_m(x_1,\ldots,x_n) \equiv_p 0$$

with $f_i \in \mathbb{Z}[x_1, \ldots, x_n]$. Let $\Sigma(S) = \{p \in \mathbb{P} : (S) \text{ is solvable }\}$. Let \mathcal{B} be the Boolean algebra of subsets of \mathbb{P} generated by all the sets $\Sigma(S)$, and let B_k be the Boolean algebra generated by sets $\Sigma(S)$, where the polynomials in *S* are restricted to have at most *k* variables, i.e.,

$$f_1(x_1,\ldots,x_k) \equiv_p 0,\ldots,f_m(x_1,\ldots,x_k) \equiv_p 0 \tag{1}$$

The Boolean algebra \mathcal{B} corresponds to the collection of spectra of sentences in $\mathcal{R}ing(0, +, *)$ which, by Ax's Theorem, collapses to its first level B_1 .

Lagarias characterization of sets of prime congruences in $\mathcal B$

Theorem (J. C. Lagarias, 1983, Illinois J. Math.)

For any pair of integers *a* and *d*, the set $\{p \in \mathbb{P} : p \equiv_d a\}$ is in the Boolean algebra \mathcal{B} if and only if (a, d) > 1 or *a* is of order 1 or 2 in \mathbb{Z}_d (i.e. $a \equiv_d 1$ or $a^2 \equiv_d 1$)

Rephrasing this theorem in terms of spectra of sentences we obtain:

Theorem

For any pair of positive integers *a* and *d*, with 1 < a < d, the set $\{p \in \mathbb{P} : p \equiv_d a\}$ is the spectrum of a sentence in $\mathcal{R}ing(0, +, *)$ if and only if $a^2 \equiv_d 1$ or (a, d) > 1.

We use this theorem to separate $\mathcal{R}ing(0, +, *)$ from $\mathcal{R}ing(0, +, *) + MOD(d)$ for *d* an arbitrary positive integer.

Separating $\mathcal{R}ing(0, +, *)$ from $\mathcal{R}ing(0, +, *) + MOD(d)$

Remark

In $\mathcal{R}ing(0, +, *) + MOD(d)$ we have $\forall a < d$,

$$Sp\left(\exists^{a,d}(x=x)\right) =^* \{p \in \mathbb{P} : p \equiv_d a\}.$$

Hence, by Lagarias, find for every *d* an 1 < a < d such that (a,d) = 1, and $a^2 \not\equiv_d 1$ Then we have a set of primes definable in

 $\mathcal{R}ing(0,+,*) + MOD(d)$ that is not definable in $\mathcal{R}ing(0,+,*)$.

Separation result for $\mathcal{R}ing(0, +, *) + MOD(n)$

Remark

For every natural number $n \neq 2^{\alpha}3^{\beta}$, $0 \leq \alpha \leq 3$, $0 \leq \beta \leq 1$ there exists a < n with gcd(a, n) = 1 and $a^2 \not\equiv_n 1$.

Theorem

For every natural number $n \neq 2, 3, 4, 6, 8, 12, 24$ there exists a < n such that there is no sentence $\theta \in \mathcal{R}ing(0, +, *)$ equivalent to $\exists^{a,n}(x = x)$. Hence, in terms of expressive power, for every $n \neq 2, 3, 4, 6, 8, 12, 24$, $\mathcal{R}ing(0, +, *) \subsetneq \mathcal{R}ing(0, +, *) + MOD(n)$.

Note The above theorem can be extended to n = 2, 3, 4, 6, 8, 12, 24

Asymptotic analysis: Density of prime spectra

Notation: $\pi_{S}(t) = |\{p \in S : p < t\}|, \pi(t) = |\{p \in \mathbb{P} : p < t\}|$

Natural density

For $S \subset \mathbb{P}$, the *natural density* of *S* is

$$\delta(S) = \lim_{t \to \infty} \frac{\pi_S(t)}{\pi(t)} = \lim_{t \to \infty} \frac{|\{p \in S : p < t\}|}{|\{p \in \mathbb{P} : p < t\}|}$$

Observations: 1) If *S* is finite then $\delta(S) = 0$ 2) If $S =^* T$ then $\delta(S) = \delta(T)$ 3) Using the Prime Number Thm $\left(\lim_{t\to\infty} \frac{\pi(t)}{t/\ln t} = 1\right)$, $\delta(S) = \lim_{t\to\infty} \left(\frac{\ln t}{t}\right) \cdot |\{p \in S : p < t\}|$

Example (From Dirichlet's Thm & Quadratic Reciprocity Law)

$$\delta\left(Sp\left(\exists x(x^2+1=0)\right)\right) = \delta\left(\{p \in \mathbb{P} : p \equiv_4 1\}\right) = \frac{1}{2}$$

Theorem (Weak Cĕbotarev Theorem)

If f(x) is an irreducible polynomial in $\mathbb{Z}[x]$ of degree n, then $\delta(Sp(f)) = 1/n$.

Corollary

Every element of the Boolean algebra B_1 has rational density, and it is 0 if and only if the set is finite.

Put together with Ax's Thm to obtain:

Theorem

The spectrum of any sentence in $\mathcal{R}ing(0, +, *)$ has rational density, and this density is 0 if and only if the spectrum is finite.

Infinite spectrum, zero density in $\mathcal{R}ing(0, +, *, <)$

The set of primes

$$FI := \{ p \in \mathbb{P} : p = a^2 + b^4, \ a, b \in \mathbb{Z} \}$$

is infinite and has density $\delta(FI) = 0$. This follows from

Theorem (Friedlander and Iwanec, 1997)

There are infinitely many primes p of the form $p = a^2 + b^4$, for integers a and b, and the number of these primes p < t is $O(t^{3/4})$. (Hence, $\delta(FI) = \lim_{t\to\infty} \frac{\ln t}{t^{1/4}} = 0$)

By Thm on spectra of ring (w/o order), *FI* can not be the spectrum of a sentence in $\mathcal{R}ing(0, +, *)$.

We show that *FI* is definable in $\mathcal{R}ing(0, +, *, <)$.

Theorem

For every polyn. $f(x, y) = h(x) + g(y) \in \mathbb{Z}[x, y]$ there exists a sentence $\phi_f \in \mathcal{R}ing(0, +, *, <)$ s.t. for all m: $\mathbb{Z}_m \models \phi_f \iff \text{"m is prime and } \exists a, c < m \text{ s.t. } f(a, c) = m".$

Theorem

 $\mathcal{R}ing(0,+,*)$ is properly contained in $\mathcal{R}ing(0,+,*,<)$.

Theorem

There are sentences in $\mathcal{R}ing(0, +, *, <) + MOD$ whose spectrum has no density.

Proof sketch:

- There exists sentence θ in *Ring*(0, +, *, <) that is *thin* = the distance between consecutive primes in the spectrum increases exponentially.
- Using θ, let ψ be the statement:
 "The size of the model is a prime q and the number of primes p < q such that Z_p ⊨ θ is even".
- ψ is expressible in *Ring*(0,+,*,<) + *MOD*(2)
 Note: ψ asserts a property of Z_p for p < q. We need to code the modular semantics of *Ring*(0,+,*,<) within itself (Coding Thm.)

On spectra without density

Proof sketch:

• Coding Thm: For all $\varphi(\bar{x})$ in $\mathcal{R}ing(0, +, *, <)$ there exists a fmla $TRAN_{\varphi}(\bar{x}, y)$ in $\mathcal{R}ing(0, +, *, <)$ s.t. $\forall q, \forall p < q, \forall \bar{a} < q, \mathbb{Z}_p \models \varphi(\bar{a}) \iff \mathbb{Z}_q \models TRAN_{\varphi}(\bar{a}, p).$ Then

 $\psi := PRIME \land \exists^{0,2} y \left(TRAN_{\theta}(y) \land TRAN_{PRIME}(y) \right)$

• Density of $Sp(\psi)$ does not exists.

Intuition: the increasing sequence of all primes alternates between intervals of exponential length where any prime in it satisfies ψ , followed by intervals of exponential length where no prime in it satisfies ψ . Thus the lim sup of $\delta(Sp(\psi))$ is strictly greater than 1/2 but the lim inf is strictly less than 1/2.

Want more details? (continue or jump to <a>conclusions)

Details of no density for some modular spectrum

Definition (Thin spectrum)

 θ in $\mathcal{R}ing(0, +, *, <) + MOD$ has a thin spectrum if $|Sp(\theta)| = \omega$ and $\exists r \ge 2$ s.t. on a list of elements of $Sp(\theta)$: $p_1 < p_2 < \ldots < p_n < \ldots$, we have $\forall^*n, rp_n < p_{n+1}$.

$\theta \in \mathcal{R}ing(0, +, *, <)$ thin

For *q* prime, let $FIRSTPRIME_q$ be the property:

The cardinality of the structure is a prime number pand, if $q^k for some positive integer <math>k$, then there is no prime h such that $q^k < h < p$.

This is def. in $\mathcal{R}ing(0, +, *, <)$ since "*x* is a power of *y*" (i.e., usual exp. in \mathbb{Z}) is definable. For q > 6, *FIRSTPRIME*_q has thin spectrum.

ETC ETC

Conclusions

Recap: We have established tools for discerning expressive power of subclasses of $\mathcal{R}ing(0, +, *, <) + MOD$ from: number theory, prime spectra of sentences and natural density.

- (J. Ax) $Spectra(\mathcal{R}ing(0,+,*)) = Bool(Sp(\exists t(f(t)=0)))).$
- $\forall 1 < a < d, \{p \in \mathbb{P} : p \equiv_d a\} \in Spectra(\mathcal{R}ing(0, +, *)) \iff a^2 \equiv_d 1 \text{ or } (a, d) > 1.$
- $\forall n > 1, \mathcal{R}ing(0, +, *) \subsetneq \mathcal{R}ing(0, +, *) + MOD(n).$
- Spectra of *Ring*(0,+,∗) has rational density, and is 0 ⇐⇒ the spectrum is finite.
- \exists set definable in $\mathcal{R}ing(0, +, *, <)$, infinite and density 0
- $\mathcal{R}ing(0, +, *) \subsetneq \mathcal{R}ing(0, +, *, <).$
- *Ring*(0,+,*,<) + *MOD* has sentences whose spectrum has no density.

Some open problems:

Does every spectrum in *Ring*(0,+,*,<) has a density? If so, then this logic differs from *Ring*(0,+,*,<) + *MOD*(2) This has important implications to circuit complexity :

DLOGTIME-uniform $AC^0 \neq DLOGTIME$ -uniform ACC(2),

- Characterize the spectra of sentences in *Ring*(0,+,*) + *MOD*(*n*). The goal is to separate *Ring*(0,+,*) + *MOD*(*n*) from *Ring*(0,+,*) + *MOD*(*m*), for *m* ≠ *n* positive integers.
- Characterize the spectra of sentences in *Ring*(0, +, *, <) + *Maj*. Here might need a different concept from natural density to study these spectra.

This is the END

A. Arratia & C. E. Ortiz FO extensions of residue classes and circuit complexity