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Why finite residue classes

Main goal
To develop new tools to study separation problems for a
collection of logics that are extensions of first order logic and
whose models are finite residue classes.

Motivations
Limitations of working with standard finite structures with
built-in linear order in Descriptive Complexity Theory.
Separation questions in the Circuit Complexity
Hierarchy. Go

There is a deep corpus of results from number theory on
residue classes.

Continue
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Circuit complexity hierarchy

AC0 ⊆ ACC(q) ⊆ ACC ⊆ TC0

AC0 = class of languages accepted by poly. size, constant depth
circuits w/ NOT gates, unbounded fan-in AND, OR gates.
ACC(q) = AC0 plus MODq gates.
TC0= AC0 plus MAJ gates. Go Back
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Logics Ring(0,+, ∗) and Ring(0,+, ∗, <)

For m ∈ N, Zm is the finite residue class ring of m elements.
As an algebraic structure, Zm consists of set of elements
{0, 1, . . . ,m− 1}, constant 0 and two binary functions + and ∗
(corresponding to addition and multiplication mod m).

Definition: Logic of finite residue class rings

Ring(0,+, ∗) denote the collection of first order sentences over
the set of built-in predicates {0,+, ∗}, where 0 is a constant
symbol, and + and ∗ are binary function symbols. The models
of Ring(0,+, ∗) are the finite residue class rings Zm.

Definition: Logic of finite residue class rings with order

Ring(0,+, ∗, <) denote the logic Ring(0,+, ∗) extended with a
built-in order relation <. In this extension each finite ring Zm is
endowed with an order of its residue classes, given by the
natural ordering of the representatives of each class from
{0, 1, . . . ,m− 1}. The constant 0 represents the first element in
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Modular Quantifiers

Notation given fmla φ(x, y), structure A and tuple a of elements
in A, φ(A, a) := {b ∈ A : A |= φ(b, a)}.

Definition
For every integer n > 0, Ring(0,+, ∗) + MOD(n) and
Ring(0,+, ∗, <) + MOD(n) are the extensions of Ring(0,+, ∗)
and Ring(0,+, ∗, <) obtained by the additional requirement that
these logics be closed, ∀r < n, for the quantifiers ∃(r,n)x,
interpreted as follows:

Zm |= ∃(r,n)xφ(x, a) iff |φ(Zm, a)| ≡n r

Ring(0,+, ∗) + MOD =
⋃

n>0Ring(0,+, ∗) + MOD(n),
Ring(0,+, ∗, <) + MOD =

⋃
n>0Ring(0,+, ∗, <) + MOD(n).

Note: Further extensions are obtained with Majority quantifiers, but
we would not deal with them.
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Definability of Circuit Complexity Classes

Theorem

1) DLOGTIME-uniform AC0 is definable by Ring(0,+, ∗, <).
2) DLOGTIME-uniform ACC(q) is definable by
Ring(0,+, ∗, <) + MOD(q), for every natural q.
3) DLOGTIME-uniform ACC is definable by
Ring(0,+, ∗, <) + MOD.

Remark: a property of integers P(x) is definable in Ring(0,+, ∗, <),
or any fragment L, means that there exists a sentence ϕ of L such
that ∀m, P(m) holds in Z ⇐⇒ Zm |= ϕ.

Circuit class C is definable in the ring logic L if every property P(x)

decidable in C is definable in L and, for all sentence ϕ in L, the set of
natural numbers m such that Zm |= ϕ, is decidable in C.
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Prime Spectra of sentences

Definition
The prime spectrum of a sentence σ of Ring(0,+, ∗, <) + MOD,
is the set of prime numbers

Sp(σ) = {p ∈ P : Zp |= σ}

Notation Two sets A,B ⊂ N are almost identical, A =∗ B if and
only if they differ by only a finite number of elements.

Example
From the Quadratic Reciprocity Law:

Sp
(
∃x(x2 + 1 = 0)

)
=∗ {p ∈ P : p ≡4 1}
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Characterizing spectra of sentences of Ring(0,+, ∗)

Theorem (James Ax, 1968, Annals Math.)

The spectrum Sp(σ) of any sentence σ of Ring(0,+, ∗) is, up to
finitely many exceptions, a Boolean combination of sets of the
form Sp(∃t(f (t) = 0)), where f (t) ∈ Z[t] is a polynomial with
integer coefficients.

Hence, to characterize the spectra of sentences of Ring(0,+, ∗)
it is sufficient to analyze the spectra of sentences of the form
∃x(f (x) = 0) for polynomials f ∈ Z[x].
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Boolean algebra on ring spectra

Consider systems of polynomial congruences:

(S) : f1(x1, . . . , xn) ≡p 0, . . . , fm(x1, . . . , xn) ≡p 0

with fi ∈ Z[x1, . . . , xn].
Let Σ(S) = {p ∈ P : (S) is solvable }.
Let B be the Boolean algebra of subsets of P generated by all
the sets Σ(S), and let Bk be the Boolean algebra generated by
sets Σ(S), where the polynomials in S are restricted to have at
most k variables, i.e.,

f1(x1, . . . , xk) ≡p 0, . . . , fm(x1, . . . , xk) ≡p 0 (1)

The Boolean algebra B corresponds to the collection of spectra
of sentences in Ring(0,+, ∗) which, by Ax’s Theorem, collapses
to its first level B1.
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Lagarias characterization of sets of prime congruences in B

Theorem (J. C. Lagarias, 1983, Illinois J. Math.)

For any pair of integers a and d, the set {p ∈ P : p ≡d a} is in
the Boolean algebra B if and only if (a, d) > 1 or a is of order 1
or 2 in Zd (i.e. a ≡d 1 or a2 ≡d 1)

Rephrasing this theorem in terms of spectra of sentences we
obtain:

Theorem

For any pair of positive integers a and d, with 1 < a < d, the set
{p ∈ P : p ≡d a} is the spectrum of a sentence in Ring(0,+, ∗)
if and only if a2 ≡d 1 or (a, d) > 1.

We use this theorem to separate Ring(0,+, ∗) from
Ring(0,+, ∗) + MOD(d) for d an arbitrary positive integer.
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Separating Ring(0,+, ∗) from Ring(0,+, ∗) + MOD(d)

Remark
In Ring(0,+, ∗) + MOD(d) we have ∀a < d,

Sp
(
∃a,d(x = x)

)
=∗ {p ∈ P : p ≡d a}.

Hence, by Lagarias, find for every d an 1 < a < d such that
(a, d) = 1, and a2 6≡d 1

Then we have a set of primes definable in
Ring(0,+, ∗) + MOD(d) that is not definable in Ring(0,+, ∗).
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Separation result for Ring(0,+, ∗) + MOD(n)

Remark

For every natural number n 6= 2α3β, 0 ≤ α ≤ 3, 0 ≤ β ≤ 1 there
exists a < n with gcd(a, n) = 1 and a2 6≡n 1.

Theorem
For every natural number n 6= 2, 3, 4, 6, 8, 12, 24 there exists
a < n such that there is no sentence θ ∈ Ring(0,+, ∗)
equivalent to ∃a,n(x = x).
Hence, in terms of expressive power, for every
n 6= 2, 3, 4, 6, 8, 12, 24, Ring(0,+, ∗) ( Ring(0,+, ∗) + MOD(n).

Note The above theorem can be extended to
n = 2, 3, 4, 6, 8, 12, 24
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Asymptotic analysis: Density of prime spectra

Notation: πS(t) = |{p ∈ S : p < t}|, π(t) = |{p ∈ P : p < t}|

Natural density
For S ⊂ P, the natural density of S is

δ(S) = lim
t→∞

πS(t)
π(t)

= lim
t→∞

|{p ∈ S : p < t}|
|{p ∈ P : p < t}|

Observations: 1) If S is finite then δ(S) = 0
2) If S =∗ T then δ(S) = δ(T)

3) Using the Prime Number Thm
(

limt→∞
π(t)
t/ ln t = 1

)
,

δ(S) = lim
t→∞

(
ln t
t

)
· |{p ∈ S : p < t}|

Example (From Dirichlet’s Thm & Quadratic Reciprocity Law)

δ
(
Sp
(
∃x(x2 + 1 = 0)

))
= δ ({p ∈ P : p ≡4 1}) =

1
2
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Density of Ring(0,+, ∗) spectra

Theorem (Weak Cĕbotarev Theorem)

If f (x) is an irreducible polynomial in Z[x] of degree n, then
δ(Sp(f )) = 1/n.

Corollary
Every element of the Boolean algebra B1 has rational density,
and it is 0 if and only if the set is finite.

Put together with Ax’s Thm to obtain:

Theorem
The spectrum of any sentence in Ring(0,+, ∗) has rational
density, and this density is 0 if and only if the spectrum is
finite.
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Infinite spectrum, zero density in Ring(0,+, ∗, <)

The set of primes

FI := {p ∈ P : p = a2 + b4, a, b ∈ Z}

is infinite and has density δ(FI) = 0. This follows from

Theorem (Friedlander and Iwanec, 1997)

There are infinitely many primes p of the form p = a2 + b4, for
integers a and b, and the number of these primes p < t is
O(t3/4). (Hence, δ(FI) = limt→∞

ln t
t1/4 = 0)

By Thm on spectra of ring (w/o order), FI can not be the
spectrum of a sentence in Ring(0,+, ∗).

We show that FI is definable in Ring(0,+, ∗, <).
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FI is definable in Ring(0,+, ∗, <)

Theorem
For every polyn. f (x, y) = h(x) + g(y) ∈ Z[x, y] there exists a
sentence φf ∈ Ring(0,+, ∗, <) s.t. for all m:
Zm |= φf ⇐⇒ “m is prime and ∃a, c < m s.t. f (a, c) = m”.

Theorem
Ring(0,+, ∗) is properly contained in Ring(0,+, ∗, <).
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On spectra without density

Theorem
There are sentences in Ring(0,+, ∗, <) + MOD whose
spectrum has no density.

Proof sketch:
There exists sentence θ in Ring(0,+, ∗, <) that is thin ≡
the distance between consecutive primes in the spectrum
increases exponentially.
Using θ, let ψ be the statement:
“The size of the model is a prime q and the number of
primes p < q such that Zp |= θ is even”.
ψ is expressible in Ring(0,+, ∗, <) + MOD(2)
Note: ψ asserts a property of Zp for p < q. We need to code the
modular semantics of Ring(0,+, ∗, <) within itself (Coding Thm.)

A. Arratia & C. E. Ortiz FO extensions of residue classes and circuit complexity



On spectra without density

Proof sketch:
Coding Thm: For all ϕ(x) in Ring(0,+, ∗, <) there exists a
fmla TRANϕ(x, y) in Ring(0,+, ∗, <) s.t. ∀q, ∀p < q, ∀a < q,
Zp |= ϕ(a) ⇐⇒ Zq |= TRANϕ(a, p).
Then

ψ := PRIME ∧ ∃0,2y (TRANθ(y) ∧ TRANPRIME(y))

Density of Sp(ψ) does not exists.
Intuition: the increasing sequence of all primes alternates
between intervals of exponential length where any prime in
it satisfies ψ, followed by intervals of exponential length
where no prime in it satisfies ψ. Thus the lim sup of
δ(Sp(ψ)) is strictly greater than 1/2 but the lim inf is strictly
less than 1/2.

Want more details? (continue or jump to CONCLUSIONS )
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Details of no density for some modular spectrum

Definition (Thin spectrum)

θ in Ring(0,+, ∗, <) + MOD has a thin spectrum if |Sp(θ)| = ω
and ∃ r ≥ 2 s.t. on a list of elements of Sp(θ):
p1 < p2 < . . . < pn < . . ., we have ∀∗n, rpn < pn+1.

θ ∈ Ring(0,+, ∗, <) thin

For q prime, let FIRSTPRIMEq be the property:

The cardinality of the structure is a prime number p
and, if qk < p < qk+1 for some positive integer k, then
there is no prime h such that qk < h < p.

This is def. in Ring(0,+, ∗, <) since “x is a power of y” (i.e.,
usual exp. in Z) is definable.
For q > 6, FIRSTPRIMEq has thin spectrum.

ETC ETC
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Conclusions

Recap: We have established tools for discerning expressive
power of subclasses of Ring(0,+, ∗, <) + MOD from: number
theory, prime spectra of sentences and natural density.

(J. Ax) Spectra(Ring(0,+, ∗)) = Bool(Sp(∃t(f (t) = 0))).
∀1 < a < d, {p ∈ P : p ≡d a} ∈ Spectra(Ring(0,+, ∗)) ⇐⇒
a2 ≡d 1 or (a, d) > 1.
∀n > 1, Ring(0,+, ∗) ( Ring(0,+, ∗) + MOD(n).
Spectra of Ring(0,+, ∗) has rational density, and is 0 ⇐⇒
the spectrum is finite.
∃ set definable in Ring(0,+, ∗, <), infinite and density 0
Ring(0,+, ∗) ( Ring(0,+, ∗, <).
Ring(0,+, ∗, <) + MOD has sentences whose spectrum
has no density.
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Conclusions

Some open problems:

Does every spectrum in Ring(0,+, ∗, <) has a density? If
so, then this logic differs from Ring(0,+, ∗, <) + MOD(2)
This has important implications to circuit complexity :

DLOGTIME-uniform AC0 6= DLOGTIME-uniform ACC(2),

Characterize the spectra of sentences in
Ring(0,+, ∗) + MOD(n). The goal is to separate
Ring(0,+, ∗) + MOD(n) from Ring(0,+, ∗) + MOD(m), for
m 6= n positive integers.
Characterize the spectra of sentences in
Ring(0,+, ∗, <) + Maj. Here might need a different concept
from natural density to study these spectra.
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This is the END
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