
Title: On methods to assess the significance of community structure
in networks of financial time series

Author: Martí Renedo Mirambell

Advisor: Argimiro Arratia Quesada

Department: Department of Computer Science & BGSMath

Academic year: 2017

Master of Science in
 Advanced Mathematics and
Mathematical Engineering

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Master in Advanced Mathematics and Mathematical Engineering

Master’s thesis

On methods to assess the significance of
community structure in networks of

financial time series.

Mart́ı Renedo Mirambell

Supervised by Argimiro Arratia Quesada
Department of Computer Science & BGSMath

June, 2017

Thanks to Argimiro for helping, giving new ideas and supervising this project.

Abstract

We consider the problem of determining whether the community structure found by a clustering algorithm
applied to financial time series is statistically significant, when no other information than the observed
values and a similarity measure among time series is available. As a subsidiary problem we also analyze the
influence of the choice of similarity measure in the accuracy of the clustering method.

We propose two raw-data based methods for assessing robustness of clustering algorithms on time-
dependent data linked by a relation of similarity: One based on community scoring functions that quan-
tify some topological property that characterizes ground-truth communities, the other based on random
perturbations and quantification of the variation in the community structure. These methodologies are
well-established in the realm of unweighted networks; our contribution are versions of these methodologies
properly adapted to complete weighted networks.

We reinforce our assessment of the accuracy of the clustering algorithm by testing its performance
on synthetic ground-truth communities of time series built through Monte Carlo simulations of VARMA
processes.

Keywords

clustering, financial time series, ground-truth communities, similarity measures, Forex network

1

1. Introduction

We treat in this work the problem of determining the intrinsic structure of clustered data, where the
clusters are based on some measure of similarity affecting all pairs of data points. From a network analysis
perspective we are concerned with assessing the significance of communities formed by some unsupervised
classification algorithm (i.e. clustering procedure) applied to fully-connected weighted networks.

We are motivated by research in community structure and their dynamics in financial market networks,
characterize by a fixed number of nodes, each representing a financial time series, and links among all
pairs of nodes weighted by the values of a measure of similarity, commonly based on pairwise correlation,
between pairs of time series (see, e.g., [1],[2],[3],[4],[5]). In our previous work [6] we presented empirical
evidence of the impact of the chosen similarity measure on the clustering results: In a foreign exchange
(Forex) network, and clustering based on the Girvan-Newman modularity maximization algorithm [7, 8], we
analyzed the qualitative differences in the clusterings obtained under three different correlation measures:
Pearson, Kendall and the most recent distance correlation [9]. As an application of the statistical and
topological criteria that we developed and present here to assess robustness of clustering on weighted
networks, we shall give quantitative measures of the nature of the clustering obtained by considering
similarity either based on Pearson or on distance correlation.

To assess the significance of communities structure in complete weighted networks, we developed a
collection of cluster scoring functions that measure some topological characteristic of the ground-truth
communities as defined by Yang and Leskovec in [10] for unweighted networks. Our scoring functions are
proper adaptation of theirs to weighted networks. We then combined these topological measures of robust-
ness of clusters with an analysis of the variation of successive random perturbations of the original network.
The perturbations consist on changing the weights distribution and in an statistical sense degenerate the
original network, and variation is measure in terms of the change of information (in the sense of Shannon’s
Theory of Information [11]). The idea is that a robust community should differ in its structural properties
from the random perturbations inasmuch as these affect greater proportions of the network.

As a final check of clustering performance we construct synthetic networks with known ground-truth
communities with respect to correlation using a methodology from [12] based on Monte Carlo simulations
of VARMA processes. A good clustering algorithm should consistently detect the ground-truth communities
of time series following an ARMA model.

2. Basic definitions

2.1 The Forex Network

The networks of exchange rates studied in [6][1] are built by considering the exchange rates as vertices and
drawing edges between these vertices, weighted by the similarity between the returns of the pair of chosen
exchange rates. We will focus on two possible similarity measures: one based on the Pearson correlation
and the other based on the distance correlation[9].

For the Pearson similarity network, the adjacency matrix is defined as

Aρij =
1

2
(ρ(r i , r j) + 1)− δij . (1)

This scales the Pearson correlation from [−1, 1] to [0, 1], while the Kronecker delta δij removes self-edges.

2

In the graph with adjacency matrix Aρ exchange rates with positively linearly correlated returns will be
connected by edges of weight close to 1, and weight near 0 if the correlation is negative. Edges connecting
non correlated exchanges will have weights closer to the center of the interval [0, 1].

In the case of the distance correlation, the network is simply built from the matrix of distance correla-
tions, AR by removing self edges. For each pair of exchange rate returns r i , r j ,

ARij = R(r i , r j)− δij (2)

2.2 Community Detection

The partition of the networks into communities is done using the Potts method. It consists on minimizing
an objective function, the Potts Hamiltonian, which evaluates the strength1 of a partition of the graph.
This can be seen as a generalization of the modularity function[7].

Definition 2.1. The modularity of the partition P of a weighted undirected graph with adjacency matrix
A is given by

Q(P) =
1

2m

∑
ij

[Aij − Pij]δ(ci , cj) (3)

where ci is the community of the node i in the partition P (so δ(ci , cj) is 1 when i and j are in the same
community and 0 otherwise), Pij is the expected weight of the edge ij in a null model and m is the sum of
the weights of all edges in the graph.

Definition 2.2. The Hamiltonian of the Potts system of the partition P of a weighted undirected graph
with adjacency matrix A is given by

H(P) = −
∑
ij

[Aij − γPij]δ(ci , cj)

where γ is a parameter which determines how likely vertices are to form communities.

The algorithm used to minimize the Potts Hamiltonian has been adapted from the modularity maxi-
mization algorithm in [8] to suit weighted networks and this objective function.

3. Cluster scoring functions

Here we will provide functions which will evaluate the division of networks into clusters, specifically when
the edges have weights. Using the scoring functions for communities in unweighted networks given in [10]
as a reference, we propose generalizations to extend them to the weighted case.

Basic definitions

Let G (V , E) be an undirected graph of order n = |V | and size m = |E |. In the case of a weighted
graph G̃ (V , Ẽ)2, we will denote m̃ =

∑
e∈Ẽ w(e) the sum of all edge weights. Given S ⊂ G a subset

of vertices of the graph, we have nS = |S |, mS = |{(u, v) ∈ E : u ∈ S , v ∈ S}|, and in the weighted

1Considering a strong partition one that has strong links inside the communities and weak links between them.

3

Significance of Communities in Financial Networks

case m̃S =
∑

(u,v)∈Ẽ :u,v∈S w((u, v)). Note that if we treat an unweighted graph as a weighted graph with

weights 0 and 1 (1 if two vertices are connected by an edge, 0 otherwise), then m = m̃ and mS = m̃S for
all S ⊂ V .

The following definitions will also be needed later on:

• cS = |{(u, v) ∈ E : u ∈ S , v 6∈ S}| is the number of edges connecting S to the rest of the graph.

• c̃S =
∑

(u,v)∈E :u∈S ,v 6∈S wuv is the natural extension of cS to weighted graphs; the sum of weights of
all edges connecting S to G \ S .

• d̃(u) =
∑

v 6=u wuv is the natural extension of the vertex degree d(u) to weighted graphs; the sum of
weights of edges incident to u.

• dS(u) = |{v ∈ S : (u, v) ∈ E}| and d̃S(u) =
∑

v∈S wuv are the (unweighted and weighted,
respectively) degrees3restricted to the subgraph S .

• dm and d̃m are the median values of d(u), u ∈ V .4

Scoring functions

The left column in table 1 shows the community scoring functions for unweighted networks defined in
[10]. These functions characterize some of the properties that are expected in networks with a strong
community structure, with more ties between nodes in the same community than connecting them to the
exterior. There are scoring functions based on internal connectivity (internal density, edges inside, average
degree, fraction over median degree, triangle participation ratio), external connectivity (expansion, cut
ratio) or a combination of both (conductance, normalized cut, and maximum, average and minimum out
degree fractions).

On the right column we propose generalizations to the scoring functions which are suitable for weighted
graphs while most closely resembling their unweighted counterparts. Note that for graphs which only have
weights 0 and 1 (1 indicates that an edge exists, 0 that it doesn’t) each pair of functions is equivalent (any
definition that didn’t satisfy this wouldn’t be a generalization at all).

• Internal density, edges inside, average degree: These definitions are easily and naturally extended
by replacing the number of edges (either inside the given community or adjacent to a given vertex)
by the sum of their weights.

• Fraction Over Median Degree (FOMD): Fraction of vertices which have internal degree dS higher
than dm, the median degree. It can also be extended easily to the weighted case using the corre-
sponding definitions of degree and internal degree in Section 3. However, the financial networks we
want to study have very high degrees in all vertices (which results in high dm), so we can expect very
few vertices to have internal degree (which is bounded by the size of the communities, in most cases
small relative to the size of the graph) higher than that.

2For every variable or function defined over the unweighted graph, will use a ”∼” to denote its weighted counterpart
3We assume the weight function wuv is defined for every pair of vertices u,v of the weighted graph, with wuv = 0 if there

is no edge between them.
4To prevent confusion between the function dS(·) and the median value (which only depends on G) dm we will always refer

to subgraphs of G with uppercase letters.

4

Table 1: Community scoring functions for weighted and unweighted networks.

unweighted weighted

Internal density f (S) = mS
nS (nS−1)/2 f (S) = m̃s

nS (nS−1)/2
Edges Inside f (S) = mS f (S) = m̃S

Average Degree f (S) = 2mS
nS

f (S) = 2m̃S
nS

Fraction Over Median Degree f (S) = |{u∈S :dS (u)>dm}|
ns

f (S) = |{u∈S :d̃S (u)>d̃m}|
ns

Triangle Participation Ratio f (S) = |{u∈S: ∃v ,w∈S, (u,v),(u,w),(v ,w)∈E}|
nS

-

Expansion f (S) = cs
ns

f (S) = c̃s
ns

Cut Ratio f (S) = cs
ns(n−ns) f (S) = c̃s

ns(n−ns)

Conductance f (S) = cs
2ms+cs

f (S) = c̃s
2m̃s+c̃s

Normalized Cut f (S) = cs
2ms+cs

f (S) = c̃s
2m̃s+c̃s

Maximum ODF f (S) = maxu∈S
|{(u,v)∈E :v 6∈S}|

d(u) f (S) = maxu∈S

∑
v 6∈S wuv

d̃(u)

Average ODF f (S) = 1
ns

∑
u∈S

|{(u,v)∈E :v 6∈S}|
d(u) f (S) = 1

ns

∑
u∈S

∑
v 6∈S wuv

d̃(u)

Flake ODF f (S) = |{u∈S :|{(u,v)∈E :v∈S}|<d(u)/2}|
ns

f (S) =
|{u∈S :

∑
v∈S wuv<

∑
v 6∈S wuv}|

ns

• Triangle Participation Ratio (TPR): This scoring function has not been considered because, given
the discrete nature of its definition, no satisfactory extension into the weighted case was found.

• Expansion: Average number of edges connected to the outside of the community, per node. For
weighted graphs, average sum of edges connected to the outside, per node.

• Cut Ratio: Fraction of edges leaving the cluster, over all possible edges. The proposed generaliza-
tion is reasonable because edge weights are upper bounded by 1 and therefore relate easily to the
unweighted case. In more general weigthed networks, however, this could take values well over 1
while lacking many ”potential” edges (as edges with higher weights would distort the measure). In
general bounded networks (with bound other than 1) it would be reasonable to divide the result by
the bound, which would result in the function taking values between 0 and 1 (0 with all possible
edges being 0 and 1 when all possible edges reached the bound).

• Conductance and normalized cut:Again, these definitions are easily extended using the methods
described above.

• Maximum and average Out Degree Fraction: Maximum and average fractions of edges leaving
the cluster over the degree of the node. Again, in the weighted case the number of edges is replaced
by the sum of edge weights.

• Flake Out Degree Fraction: Fraction of nodes that have fewer edges pointing inside of the cluster
than outside. In the weighted case, fraction of nodes with less edge weight pointing inside than
outside.

Here, the modularity function (which is studied on [10]) has not been considered because the our
networks have been split into communities with modularity-based optimization techniques, and therefore
the results would be redundant. Additionally, the fraction over median degree and flake out degree fraction

5

Significance of Communities in Financial Networks

have trivial values (0 and 1 respectively) in all of the networks (see table 5). This happens because in
complete networks the amount of inter-comunity edges is very high compared to the intra-comunity edges.
While this renders these scoring functions useless for the analysis of complete networks, they could be
meaningful when studying more sparse weighted networks.

Clustering coefficient

Another possible scoring function for communities is the clustering coefficient or transitivity: the fraction
of closed triplets over the number of connected triplets of vertices. A high internal clustering coefficient
(computed on the graph induced by the vertices of a community) matches the intuition of a well connected
and cohesive community inside a network, but its generalization to weighted networks is not trivial.

There have been several attempts to come up with a definition of the clustering coefficient for weighted
networks. One of them (which, for instance, is the one implemented in the igraph function transitivity)
was proposed in [13] and is given by ci = 1

d̃(i)(d(i)−1)
∑

j ,h
wij+wih

2 aijajhaih. Note that this gives a local (i.e.

defined for each vertex) clustering coefficient.

While this may work well on some weighted networks, in the case of complete networks, such as those
built from correlation of time series,

ci =
1

d̃(i)(d(i)− 1)

∑
i ,j

wij + wih

2
=

∑
j wij +

∑
h wih

d̃(i)(n − 2) · 2
=

2d̃(i)

d̃(i)(n − 2) · 2
=

1

n − 2
(4)

is constant on all edges and doesn’t give any information about the network.

An alternative was proposed in [14] with complete weighted networks (with weights in the interval
[0, 1]) in mind, which makes it more adequate for our case:

• For t ∈ [0, 1] let At be the adjacency matrix with elements atij = 1 if wij ≥ t and 0 otherwise.

• Let Ct the clustering coefficient of the graph defined by At .

• The resulting weighted clustering coefficient is defined as

C̃ =

∫ 1

0
Ct dt (5)

Since Ct can only take as many different values as the number of different edge weights in the network, the
integral is actually a finite sum. However, computing Ct (which is not computationally trivial) potentially
as many as n(n−1) times would be very costly for large values of n , so this function has been implemented
by approximating the integral dividing the interval [0,1] into n step parts (where n step5is much smaller
than n(n − 1)).

It is worth noting that some of the introduced functions (internal density, edges inside, average de-
gree, FOMD, clustering coefficient) take higher values the stronger the clusterings are, while the others
(expansion, cut ratio, conductance, normalized cut and out degree fractions) do the opposite.

5In thist case we set n step=100. This gives a reasonable resolution while keeping the computations fast.

6

3.1 Variation of information

To compare and measure how similar two clusterings of the same network are, we will use the variation of
information; a criterion introduced in [11] and which is based on information theory.

Definition 3.1. The entropy of a partition P = {P1, ...,PK} of a set is given by:

H(P) = −
K∑

k=1

|Pk |
n

log(
|Pk |

n
), (6)

where n is the size of the set and Pk is the k-th cluster of the partition.

Definition 3.2. Given P(k , k ′) =
|Pk∩P ′

k′ |
n the joint probability distribution of elements belonging to clusters

Pk and Pk ′ , the mutual information is defined as:

I (P,P ′) =
K∑

k=1

K ′∑
k ′=1

P(k , k ′) log
P(k , k ′)

P(k)P ′(k ′)
(7)

Definition 3.3. The variation of information of partitions P and P ′ information is given by:

VI (P,P ′) = H(P) +H(P ′)− 2I (P,P ′) (8)

Intuitively, the mutual information measures how much knowing the membership of an element of the
set in partition P reduces the uncertainty of its membership in P ′. This is consistent with the fact that
the mutual information is bounded between zero and the individual partition entropies

0 ≤ I (P,P ′) ≤ min{P,P ′}, (9)

and the right side equality holds if and only if one of the partitions is a refinement of the other.

Consequently, the variation of information will be 0 if and only if the partitions are equal (up to
permutations of indices of the parts), and will get bigger the more the partitions differ. It also satisfies the
triangle inequality, so it is a metric in the space of clusterings of any given set.

4. Generating a random graph

The algorithm proposed here to generate a random graph which will serve as a null model is a modification
of the switching algorithm described in [15]. Each step of this algorithm involves randomly selecting two
edges AC and BD and replacing them with the new edges AD and BC (provided they didn’t exist already).
This leaves the degrees of each vertex A, B, C and D unchanged while shuffling the edges of the graph.

One way to adapt this algorithm to our weighted graphs (more specifically, complete weighted graphs,
with weights in [0, 1]) is, given vertices A,B,C and D, transfer a certain weight w̄ from wAC to wAD ,
and from wBD to wBC

6. We will select only sets of vertices A, B, C , D such that wAC > wAD and
wBD > wBC , that is, we will be transfering weight from ”heavy” edges to ”weak” edges. For any value of
w̄ , the weighted degree of the vertices remains constant, but if it is not chosen carefully there could have
undesirable consequences.

6Here, wij refers to the weight of the edge between vertices i and j

7

Significance of Communities in Financial Networks

4.1 Election of w̄

Choosing large values of w̄ could result in edge weights falling outside of the [0, 1] interval in which all of
our original values are contained, but small values will hardly have similarly small effects on the network.
Restricting w̄ to be as large as possible without edge weights falling out of [0, 1], however, will favour a
degenerate network in which most of the edge weights are either 0 or 1, which is also undesirable and unlike
any network that could be obtained from correlations of time series.

If we bound the transfered weight to the difference between the strong and weak edges, the new
weights will be upper and lower bounded by the initial strong and weak weights, respectively, which
would avoid this issue entirely. In this case, the maximum transfered weight would have to be w̄ =
min(wAC −wAD , wBD −wBC). This results in one of the pairs of edges being exchanged, while in the other
a certain weight equal or smaller than their difference is transfered. In this second case, it is important to
note that the difference between the new edge weights will be smaller than the difference of the original
weights (strictly smaller if wAC − wAD 6=, wBD − wBC).

The effect this has on the variance of the weights of the network can be seen on Figure 1. Unfortunately,
as soon as the network starts to be significantly shuffled, the variance starts to fall. If we iterate the
algorithm until the variation of information stops increasing, the variance has more than halved in our
sample network.

As an alternative, we can impose the sample variance (given by 1
n−1

∑n
i ,j=1(wi j −m)2, where m is the

mean) to remain invariant after applying the transformation, and find the appropriate value of w̄ . The
variance remains constant if and only if the following equality holds:

(wAC −m)2 + (wBD −m)2 + (wAD −m)2 + (wBC −m)2

= (wAC − w̄ −m)2 + (wBD − w̄ −m)2 + (wAD + w̄ −m)2 + (wBC + w̄ −m)2

⇐⇒ 4w̄2 + 2w̄(−(wAC −m)− (wBD −m) + (wAD −m) + (wBC −m) = 0

⇐⇒ 2w̄2 + w̄(−wAC − wBD + wAD + wBC) = 0. (10)

The solutions to this equation are w̄ = 0 (which is trivial and corresponds to not applying any trans-
formation to the edge weights) and w̄ = wAC+wBD−wAD−wBC

2 .

While this alternative can result in some weights falling outside of the interval [0, 1], in the networks
we studied it is very rare, so it is enough to discard these few steps to obtain the desired results.

Note that if all edge weights are either 0 or 1, in both cases this algorithm is equivalent to the original
switching algorithm for discrete graphs, as in every step the transferred weight will be one if the switch
can be made without creating double edges, or zero otherwise (which corresponds to the case in which the
switch cannot be made).

4.2 Number of iterations

To determine how many iterations of the algorithm are enough to sufficiently ”shuffle” the network, we
study the variation of information of the resulting clustering respect to the initial one (Figure 1). As
the algorithm transfers weight between the edges, the variation of information increases, until it stabilizes
roughly after 104 iterations. Then, running 105 iterations to generate each random graph will be more than
enough (there will be no improvement by iterating further) while still being very fast to compute. This is
also consistent with the number of iterations found to be enough for the discrete case in [15].

8

Figure 1: Normalized variance, Potts Hamiltonian and variation of information after applying the proposed algorithm
with the minimum difference method. Horizontal axis is on logarithmic scale.

Figure 2: Normalized variance, Potts Hamiltonian and variation of information after applying the proposed algorithm
with the constant variance method. Horizontal axis is on logarithmic scale.

9

Significance of Communities in Financial Networks

5. Clustering validation

To check that the results given by the clustering algorithm when applied to our FX networks are significant,
we generate a random network using the method described in Section 4 for every month in the 2009-2016
period. Ideally, we would expect to see that the clusters found in the real networks are much stronger than
those in the randomized networks, which shouldn’t have any meaningful community structure.

Figure 3: Number of appearances of communities of each size across the entire 2009-2016 period.

Figure 4: Hamiltonians for the original and randomized networks (solid and dashed lines, respectively),
for both the distance and Pearson correlation methods.

In Figure 5 we can see that the clusterings of the randomized networks have many isolated vertices, and
those that are grouped together are in smaller clusters than those we find in the original networks. In Figure
3 we verify that, across the entire observed period, the studied FX networks form larger communities than
their randomized counterparts, and the number of nodes which are isolated or on very small communities
is much smaller. Moreover, the value of the FX network Hamiltonian is consistently at least four times
that of its corresponding randomized network using the distance correlation (Figure 4). With the Pearson

10

correlation, the Hamiltonian varies more but is also much lower than in its randomized network. Note
though that the Hamiltonians cannot be compared across the different clustering methods, because with
the Pearson correlation we need to take the inverses of each time series, resulting in a graph twice the
order and four times the size.

Figures 6 and 7 show the evolution of the scoring functions introduced in Section 3. Even though we
have considered several different types of scoring functions, in all cases the values of the original networks
are better than those of their corresponding randomized ones7. Not only are the average scores better,
but the results are consistent across all functions and periods of time. This, together with the much lower
values achieved for the Hamiltonian, the objective function of the clustering algorithms, suggests that the
observed community structure on our networks is significant and consistent.

While most of the values given by the scoring functions cannot be compared accross the two clustering
methods due to differences in the networks (their size, for example), table 5 gives the percentage of increase
of the real networks respect to the randomized models. We have observed the most dramatic increases
on the internal connectivity based functions on the Pearson correlation networks (probably related to the
inclusion of inverse exchange rates in the network), but the decreases in external connectivity (expansion,
cut ratio) are better in the distance correlation networks. The distance correlation method also performs
better with the clustering coefficient, whith an increase that almost doubles that of the Pearson correlation.

As for the improvements in the hamiltonian, the rates of increase for both methods are very similar,
but the consistency observed by the distance correlation as opposed to the highs and lows observed over
time with the Pearson correlation Hamiltonian (figure 4) could make it preferable.

Table 2: Means of the scoring functions over the 2009-2016 period for the randomized and observed
networks, as well as the percentage of increase of the latter respect to the former.

distance correlation Pearson correlation
original randomized variation original randomized variation

internal.density 0.83 0.81 1.90 % 0.85 0.91 -6.33%
edges.inside 24.02 3.00 701.49% 89.21 3.70 2313.02%
av.degree 4.44 1.62 174.37% 8.87 2.07 329.50%
FOMD 0.00 0.00 0.00% 0.00 0.00 0.00%
expansion 16.97 18.70 -9.24% 35.46 37.96 -6.57 %
cut.ratio. 0.23 0.25 -6.87% 0.24 0.25 -3.74%
conductance 0.89 0.95 -6.24% 0.87 0.95 -8.53%
norm.cut 0.91 0.97 -5.37% 0.89 0.96 -7.32%
max.ODF 0.94 0.97 -3.84% 0.92 0.97 -5.41%
average.ODF 0.94 0.97 -3.84% 0.92 0.97 -5.40%
flake.ODF 1.00 1.00 0.00% 1.00 1.00 0.00%
clustering.coef 0.89 0.75 17.82% 0.91 0.83 9.72 %
hamiltonian -79.49 -18.24 335.79% -259.35 -57.89 348.02 %

7Note that for some of the functions higher scores are desirable, while for others lower is better. Note also that most of
the functions are normalized and take values in the interval [0, 1], but the expansion and average degree are not.

11

Significance of Communities in Financial Networks

Figure 5: Plot of the obtained communities for the original and randomized networks of March 2009 using
the distance correlation method.

12

Figure 6: Scoring function values for the distance correlation networks. Solid and dashed lines correspond
to the observed and randomized networks respectively. Scores in which higher values represent stronger
clusters are represented in blue, while those in which lower is better are represented in red.

13

Significance of Communities in Financial Networks

Figure 7: Scoring function values for the Pearson correlation networks. Solid and dashed lines correspond
to the observed and randomized networks respectively. Scores in which higher values represent stronger
clusters are represented in blue, while those in which lower is better are represented in red.

14

6. Cluster detection in simulated networks

The goal of this section is to generate artificial time series with an appropriate model such that some of
them are correlated with each other. Applying the previously introduced methods will result in a network
where the community structure is known, and which can be used to test clustering algorithms. If the
correlations of time series belonging to the same communities are strong enough, we should expect the
clustering methods to successfully and consistenly detect them.

6.1 VARMA model

Vector autoregressive moving average (VARMA) models are an extension of univariate ARMA models
allowing modelling a vector Xt of stationary time series which may influence each other[16]:

Definition 6.1. Xt is a VARMA(p,q) process if it is stationary and if for every t,

Xt − Φ1Xt−1 − ...− ΦpZt−p = Zt + Θ1Zt−1 + ... + ΘqZt−q, (11)

where Zt is white noise

The coefficients of the Φ and Θ matrices will determine the dependencies between time series. For
instance, setting them to diagonal matrices would be equivalent to having separate ARMA models for each
of the series with the only dependencies being of each series with themselves. Alternatively, if they are
block diagonal matrices (up to permutations of their indices, and all with the same block structure), there
will be a community structure where each community will correspond to a block.

6.2 Simulation

The method presented in [12] is used to test the ability of our algorithms to detect existing clusters. Each
step of the simulation involves generating four series following a VARMA(2,1) model with parameters:

Φ1 =

0.5 0.1 0 0 0 0
0.4 0.5 0 0 0 0
0 0 0.2 0.1 0.6 0
0 0 0.3 0.3 0.4 0
0 0 0.4 0.5 0.3 0
0 0 0 0 0 0.1

 , Φ2 =

0.3 0.1 0 0 0 0
0.5 0.4 0 0 0 0
0 0 0.3 0.1 0.3 0
0 0 0.3 0.5 0.4 0
0 0 0.3 0.5 0.3 0
0 0 0 0 0 0.2

 , (12)

Θ1 =

1 θ1 0 0 0 0
θ2 1 0 0 0 0
0 0 1 θ3 θ4 0
0 0 θ4 1 θ5 0
0 0 θ6 θ7 1 0
0 0 0 0 0 1

 (13)

Given the block structure of the matrices, there is one cluster with series 1,2, another with series 3,4,5,
and one with just series 6. The clustering algorithm is applied to check if it detects them. The simulation
is run 1000 times counting the number of successes.

15

Significance of Communities in Financial Networks

To check the performance of the algorithms at different correlation strengths, we set

θ = (θ1, ..., θ7) = α(0.08, 0.06, 0.07, 0.07, 0.09, 0.08, 0.08)

and run the simulation for several values of α. Table 3 contains the results for both the distance and
Pearson correlations, with the number of successful attempts, the mean of the variation of information
between the correct and the observed clusterings, and the number of clusterings with type I and type II
errors8.

Both methods have good rates of success, and in the cases where the correlation is strong they almost
never miss (especially the distance correlation method). The algorithms only start giving questionable
results when the values of θ are so low that the randmness of the simulation has a comparatively strong
effect.

Table 3: Number of successes, mean of the variation of information respect to the correct clustering, and
number of type I and II errors for both the distance and Pearson correlation clusterings.

distance correlation Pearson correlation

α # successes VI mean type I type II # successes VI mean type I type II

1 392 0.3021 176 602 458 0.2461 141 492
2 774 0.1111 73 216 808 0.0800 59 148
5 941 0.0310 23 55 936 0.0294 35 37
10 997 0.0014 3 0 982 0.0092 18 0

7. Conclusions

The analysis of the FX networks with appropriate scoring functions allow us to conclude that they form a
community structure not present in random networks. We have also verified that on networks where the
existing community structure is known, the results given by the algorithms match the expected results.

As for the comparison between the distance and Pearson correlation methods, the results obtained here
back up the validity of both, but the differences between them are small in most cases. The distance
correlation does offer some improvements in the clustering coefficient, one of the most relevant scoring
functions, and the values of its Hamiltonian achieved by the optimization algorithm, while similar on average
to those of the Pearson correlation, are more consistent. Additionally, the fact that it runs the optimization
algorithm on networks of half the number of nodes greatly reduces the computation time.

It is also worth noting that while this project was focused on financial networks, the methods proposed
here are valid for evaluating the results of clustering algorithms on weighted networks in general.

8In this context, a type I error is made when two nodes are found to share a cluster and they don’t in the theoretical and
correct clustering (a false positive). Type II errors are made when two nodes are separated into different clusters while they
shouldn’t (false negatives). Note that there can be clusterings that contain both type I and type II errors.

16

References

[1] Daniel J. Fenn, Mason A. Porter, Peter J. Mucha, Mark McDonald, Stacy Williams, Neil F. Johnson,
and Nick S. Jones. Dynamical clustering of exchange rates. Quantitative Finance, 12(10):1493–1520,
2012.

[2] R. N. Mantegna. Hierarchical structure in financial markets. Eur. Phys. J. B., 11:193–197, 1999.

[3] Peter J Mucha, Thomas Richardson, Kevin Macon, Mason A Porter, and Jukka-Pekka Onnela. Com-
munity structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980):876–878,
2010.

[4] Edoardo Otranto. Clustering heteroskedastic time series by model-based procedures. Computational
Statistics & Data Analysis, 52(10):4685–4698, 2008.

[5] J-P Onnela, Kimmo Kaski, and Janos Kertész. Clustering and information in correlation based financial
networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2):353–362,
2004.

[6] Mart́ı Renedo and Argimiro Arratia. Clustering of exchange rates and their dynamics under different
dependence measures. In Proceedings of the First Workshop on MIning DAta for financial applicationS
(MIDAS 2016) , Riva del Garda, Italy, September 19-23, 2016., pages 17–28, 2016.

[7] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys.
Rev. E, 69:026113, Feb 2004.

[8] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment, 2008.

[9] N. K. Bakirov G. J. Székely, M. L. Rizzo. Measuring and testing dependency by correlation of distances.
The Annals of Statistics, 35(6):2769–2794, 2007.

[10] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181–213, 2015.

[11] Marina Meilă. Comparing clusterings - an information based distance. Journal of Multivariate Analysis,
98(5):873 – 895, 2007.

[12] Argimiro Arratia and Alejandra Cabaña. A graphical tool for describing the temporal evolution of
clusters in financial stock markets. Computational Economics, 41(2):213–231, 2013.

[13] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex
weighted networks. Proceedings of the National Academy of Sciences of the United States of America,
101(11):3747–3752, 2004.

[14] Michael P. McAssey and Fetsje Bijma. A clustering coefficient for complete weighted networks.
Network Science, 3(2):183–195, 2015.

[15] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform generation of
random graphs with prescribed degree sequences. Arxiv preprint cond-mat/0312028, 2003.

17

Significance of Communities in Financial Networks

[16] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting. Springer New
York, 2002.

[17] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2015.

[18] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. Inter-
Journal, Complex Systems:1695, 2006.

[19] Maria L. Rizzo and Gabor J. Szekely. energy: E-Statistics: Multivariate Inference via the Energy of
Data, 2016. R package version 1.7-0.

[20] Gilbert and P. D. Brief User’s Guide: Dynamic Systems Estimation, 2006 or later.

[21] Quandl. Federal reserve economic data.

[22] Arno Fritsch. mcclust: Process an MCMC Sample of Clusterings, 2012. R package version 1.0.

18

A. R codes

The algorithms in this project were implemented in R[17] with the additional packages igraph[18], en-
ergy [19], dse[20], Quandl [21] and mcclust[22].

• rewire.R: Includes the implementation of the switching algorithm described in Section 4.

• rewire test.R This script uses the rewire function to conduct the analysis and comparison of the
original networks and their randomized counterparts found in Section 4.

• scoring functions.R: Includes the implementation of the functions defined in Section 3.

• modularity functions: Includes the implementation of the modularity and Potts Hamiltonian
functions.

• dcor M.R Given a vector of time series computes the matrix of correlations of every pair of series
using the distance correlation metric.

• Hmin dyn optimized.R: Implementation of the minimization algorithm of the Potts Hamiltonian
described in [8].

• exchange rates.R: Contains the function exchange.rates, which given the start and end dates,
as well as the desired frequency, downloads the data from Quandl[21] and returns it as a vector of
time series.

• plot communities.R: Using an auxiliary graph and manipulating edges appropriately, plots the
network partitions avoiding community overlapping (see figure 5).

A.1 rewire.R

library(mcclust)

rewire <- function(M,itermax=10000,symmetric=TRUE, type="const_var",inverses=FALSE){

M: the original adjacency matrix

itermax: the number of iterations

symmetric: if TRUE, each operation on an edge is repeated in its symmetric

↪→ one (so M is kept symmetric)

it should be set to TRUE for undirected graphs

n <- dim(M)[1]

variances <- array(dim=length(itermax)+1)

variances[1]<-var(as.vector(M))

if(inverses){

M[1:(n/2),1:(n/2)] <- rewire(M[1:(n/2),1:(n/2)],symmetric=TRUE,type=type,

↪→ inverses=FALSE)

M[(n/2+1):n,(n/2+1):n] <- M[1:(n/2),1:(n/2)]

M[(n/2+1):n,1:(n/2)] <- 1-M[1:(n/2),1:(n/2)]

M[1:(n/2),(n/2+1):n] <- 1-M[1:(n/2),1:(n/2)]

19

Significance of Communities in Financial Networks

return(M)

}

for (i in 1:itermax){

w <- sample(1:n,4,replace=FALSE) #sample without replacement to avoid self edges

↪→ and duplicate edges

wAC <- M[w[1],w[3]]

wAD <- M[w[1],w[4]]

wBC <- M[w[2],w[3]]

wBD <- M[w[2],w[4]]

if(wAC>wAD & wBD>wBC){

if (type=="const_var") {e <- (wAC+wBD-wAD-wBC)/2}

else {e <- min(wAC-wAD,wBD-wBC)}

if(type!="const_var" | (M[w[1],w[3]]-e>=0 & M[w[2],w[4]]-e>=0 & M[w[1],w[4]]+e

↪→ <=1 & M[w[2],w[3]]+e<=1)){

M[w[1],w[3]] <- M[w[1],w[3]] - e

M[w[1],w[4]] <- M[w[1],w[4]] + e

M[w[2],w[3]] <- M[w[2],w[3]] + e

M[w[2],w[4]] <- M[w[2],w[4]] - e

if (symmetric){ #repeat the switching operation on the symmetric edges

M[w[3],w[1]] <- M[w[1],w[3]]

M[w[4],w[1]] <- M[w[1],w[4]]

M[w[3],w[2]] <- M[w[2],w[3]]

M[w[4],w[2]] <- M[w[2],w[4]]

}

}

}

variances[i+1]<- var(as.vector(M))

}

return(M)

}

rewire_analysis <- function(M,from=10, to=1000000,by=0.20,type="const_var"){

n_iter <- c(0,0,10^(seq(from=log10(from),to=log10(to),by=by)))

d_iter <- diff(n_iter)

n<- dim(M)[1]

P <- sum(M)/(n*(n-1))

c <- matrix(nrow=length(d_iter),ncol=n)

d <- data.frame(n_iter=n_iter[2:length(n_iter)])

for (i in 1:length(d_iter)){

M <- rewire(M,itermax=d_iter[i],type=type)

20

d$var[i]<-var(as.vector(M))

g <- graph.adjacency(M, mode="undirected",weighted=TRUE,add.rownames=TRUE,diag=

↪→ FALSE)

c[i,] <- Hmin(g,P,gamma=gamma,itermax=10)

d$hamiltonian[i] <- H.graph(g,P,c[i,],gamma)

d$vi[i] <- vi.dist(c[1,],c[i,])

}

plot(d$var/max(d$var),type="l",ylim=c(0,1))

lines(d$hamiltonian/max(d$hamiltonian),col="red")

lines(d$vi/max(d$vi),col="blue")

return(d)

}

plot_rewire_analysis <- function(d,legend_x=15000,legend_y=0.6,main="Constant

↪→ variance method"){

plot(dn_iter,dvar/max(d$var),type="l",ylim=c(0,1),log="x",xlab="# iterations",

↪→ ylab="",main=main)

lines(dn_iter,dhamiltonian/max(d$hamiltonian),lty=2)

lines(dn_iter,dvi/max(d$vi),lty=3)

legend(legend_x,legend_y,c("variance","Hamiltonian","variation of information"),

↪→ lty=1:3)

}

join_inverses <- function(v){

n<-length(v)

for (i in 1:(n/2)){

m<-min(v[i],v[n/2+i])

v[i]<-m

v[n/2+i]<-m

}

return(v)

}

A.2 rewire test.R

library(mcclust)

library(igraph)

library(Quandl)

library(energy)

library(linkcomm)

source("modularity_functions.R")

source("exchange_rates.R")

source("Hmin_dyn_optimized.R")

source("dcor_M.R")

21

Significance of Communities in Financial Networks

source("plot_communities.R")

source("rewire.R")

source("scoring_functions.R")

#DATA SET CREATION

startdate <- as.Date("2009-01-01")

enddate <- as.Date("2016-12-31")

freq <- "daily"

seriestype <- "xts"

dyn.step <- 30 #interval of time for which changes in communities are observed

exchange.rates <- exchange.rates(startdate,enddate,freq,seriestype,reduced=FALSE)

returns <- diff(log(exchange.rates))[2:dim(exchange.rates)[1]]

n=dim(exchange.rates)[2]

startdate.dyn <- startdate

enddate.dyn <- as.Date(startdate)+dyn.step

i <- 1

dates <- seq(from=startdate, to=enddate, by=dyn.step)

c <- matrix(nrow=length(dates)-1,ncol=n) #c will contain the community of each

↪→ vertex

c2 <- c

#############################

###CLUSTERING

##parameters

gamma=1.3

scores <- list()

scores_rewired <- list()

while (enddate.dyn<=enddate){

print(paste("time step ",i))

Mcor <- dcor.M(returns[paste0(startdate.dyn,"/",enddate.dyn)]) ##AAQ: use

↪→ distanceCor

M2 <- rewire(Mcor,itermax=1e5)

g <- graph.adjacency(Mcor, mode="undirected",weighted=TRUE,add.rownames=TRUE,diag=

↪→ FALSE)

g2 <- graph.adjacency(M2, mode="undirected",weighted=TRUE,add.rownames=TRUE,diag=

↪→ FALSE)

c[i,] <- Hmin(g,P,gamma=gamma,itermax=10)

c2[i,] <- Hmin(g2,P,gamma=gamma,itermax=10)

print(c("original H:",H.graph(g,P,c[i,],gamma)))

22

print(c("rewired H:",H.graph(g2,P,c2[i,],gamma)))

plot.com(g,c[i,],paste("from ",dates[i]," to ", dates[i+1]))

plot.com(g,c2[i,],paste("from ",dates[i]," to ", dates[i+1]),sub="rewired")

scores[[i]] <- scoring_functions(g,c[i,])

scores_rewired[[i]] <- scoring_functions(g2,c2[i,])

scores[[i]]["global","hamiltonian"] <- H.graph(g,P,c[i,],gamma)

scores_rewired[[i]]["global","hamiltonian"] <- H.graph(g2,P,c2[i,],gamma)

i<- i+1

startdate.dyn <- enddate.dyn

enddate.dyn <- as.Date(enddate.dyn)+dyn.step

}

#############################

Analysis with scoring functions

global_scores <- function(L,dates=NULL){

d <- data.frame(L[[1]]["global",])

for (i in 2:length(L)){

d[i,] <- L[[i]]["global",]

}

if (!is.null(dates)) row.names(d)<-dates[1:length(L)]

return (d)

}

d <- global_scores(scores,dates = dates)

d_rewired <- global_scores(scores_rewired,dates=dates)

d["date"]<-row.names(d)

PLOTS

x<-dates[1:dim(d)[1]]

col1 <- "#377eb8"; col2<-"#e41a1c" #we use col1 when "higher is better" and col2

↪→ otherwise

par(mfrow = c(4, 2),mar = c(2,2,2,1),oma=c(0,0,2.5,0))

plot(x,d[,"internal.density"],type="l",ylim=c(.5,1),xlab="",ylab="",main="internal

↪→ density",col=col1)

lines(x,d_rewired[,"internal.density"],lty=3,col=col1)

plot(x,d[,"av.degree"],type="l",ylim=c(0,6),xlab="",ylab="",main="average degree",

↪→ col=col1)

lines(x,d_rewired[,"av.degree"],lty=3,col=col1)

plot(x,d[,"cut.ratio."],type="l",xlab="",ylab="",main="cut ratio",col=col2) #lower

↪→ is better

lines(x,d_rewired[,"cut.ratio."],lty=3,col=col2)

23

Significance of Communities in Financial Networks

plot(x,d[,"expansion"],type="l",xlab="",ylab="",main="expansion",col=col2) #lower is

↪→ better

lines(x,d_rewired[,"expansion"],lty=3,col=col2)

plot(x,d[,"conductance"],type="l",xlab="",ylab="",main="conductance",ylim=c(.8,1),

↪→ col=col2) #lower is better

lines(x,d_rewired[,"conductance"],lty=3,col=col2)

plot(x,d[,"norm.cut"],type="l",xlab="",ylab="",main="normalized cut",ylim=c(.8,1),

↪→ col=col2) #lower is better

lines(x,d_rewired[,"norm.cut"],lty=3,col=col2)

plot(x,d[,"average.ODF"],type="l",xlab="",ylab="",main="average ODF",ylim=c

↪→ (.85,1.02),col=col2) #lower is better

lines(x,d_rewired[,"average.ODF"],lty=3,col=col2)

plot(x,d[,"clustering.coef"],type="l",xlab="",ylab="",main="clustering coefficient",

↪→ ylim=c(.5,1),col=col1) #higher is better

lines(x,d_rewired[,"clustering.coef"],lty=3,col=col1)

mtext("distance correlation", outer=TRUE, cex=1.4)

A.3 scoring functions.R

library(igraph)

m_subgraph <- function(G,s){ #calculates the number of edges inside the subgraph

↪→ induced by the edges in the list s

ecount(subgraph(G,s))

}

m_subgraph_w <- function(G,s){ #weight of edges inside the subgraph induced by s

sum(G[s,s])/2

}

degree_w <- function(G,v){ #weighted degree of vertex v

sum(G[v,])

}

degree_s <- function(G,v,s){ #weighted degree of v over subgraph s (given by a list

↪→ of vertices)

sum(G[v,s])

}

24

median_degree_w <- function(G){

M <- get.adjacency(g,attr="weight")

median(apply(M,1,sum)) #computes the median of the degree sequence

}

cs_w <- function(G,s){ #sum of weight of edges connecting vertices of s to the rest

↪→ of the graph

sum(g[s,-s])/2 #sum the elements of rows in s and columns not in s (divide by two

↪→ because each edge is counted twice)

}

#network metrics

internal_density_s <- function(G,s){

n <- length(s)

if (n<=1) return(0)

else return(2*m_subgraph_w(G,s)/(n*(n-1)))

}

average_degree <- function(G,s){

2*m_subgraph_w(G,s)/length(s)

}

frac_over_median <- function(G,s,dm="default"){

if(dm=="default") dm <- median_degree_w(G) #if median degree has not been given,

↪→ compute it

if (length(s)>=2)deg.seq <- apply(G[s,s],1,sum)

else deg.seq <- 0

sum(deg.seq>dm)/length(s)

}

expansion <- function(G,s){

cs_w(G,s)/length(s)

}

cut_ratio <- function(G,s){

n <- length(s)

cs_w(G,s)/(n*(gorder(G)-n))

}

conductance <- function(G,s){

cs_w(G,s)/(2*m_subgraph_w(G,s)+cs_w(G,s))

}

normalized_cut <- function(G,s){

cs <- cs_w(G,s)

25

Significance of Communities in Financial Networks

ms <- m_subgraph_w(G,s)

m <- sum(M <- get.adjacency(g,attr="weight"))/2

cs/(2*ms+cs)+cs/(2*(m-ms)+cs)

}

max_odf <- function(G,s){

first <- TRUE

M <- 0

for (i in s){

out_degree <- sum(G[i,-s]) #out degree (sum of edges leaving s) of vertex i

odf <- out_degree/degree_w(G,i)

if (first|odf>M) M <- odf

}

return(M)

}

av_odf <- function(G,s){

sum_odf <- 0

for (i in s){

out_degree <- sum(G[i,-s]) #out degree (sum of edges leaving s) of vertex i

odf <- out_degree/degree_w(G,i)

sum_odf <- sum_odf + odf

}

return(sum_odf/length(s))

}

flake_odf <- function(G,s){

x <- 0

for (i in s){ #x will count how many vertices of s have smaller edge weight sum

↪→ pointing inside than outside

if (sum(G[i,s]<sum(G[i,-s]))) x <- x+1

}

return(x/length(s))

}

clustering_coef_w <- function(G,n_step=100){

average <-0

A <- get.adjacency(G,attr="weight")

for (i in 1:n_step){

t <- i/n_step

At <- A>=t

Gt <- graph.adjacency(At,mode="undirected") #unweighted graphs with edges where

↪→ the weight is above the threshold t

if (ecount(Gt)>1) {

trans <- transitivity(Gt) #if there are no edge we consider the transitivity

↪→ to be 0 (but igraphs transitivity function would return NaN)

26

if (trans!="NaN")average <- average+ trans

}

}

return(average/n_step)

}

clustering_coef_subgraph <- function(G,s,n_step=100){

Gs <- induced_subgraph(G,s)

clustering_coef_w(Gs,n_step)

}

###################

#other

relabel <- function(c){

c2 <- c

j <- 1

for (i in unique(c)){

c2[c==i] <- j

j <- j+1

}

return(c2)

}

##################

scoring_functions <- function(G,com,fix_labels=TRUE){

if (fix_labels) com <- relabel(com)

n_com <- max(com)

function_names <- c("internal density","edges inside","av degree","FOMD","

↪→ expansion",

"cut ratio,","conductance", "norm cut", "max ODF","average ODF",

↪→ "flake ODF","clustering coef","modularity")

D <- data.frame(matrix(nrow=n_com+1,ncol=length(function_names)))

colnames(D) <- function_names

rownames(D) <- c(1:n_com,"global")

for (i in 1:n_com){

s <- which(com==i) #s contains the indices of vertices belonging to cluster i

D[i,]<- c(internal_density_s(G,s),m_subgraph_w(G,s),average_degree(G,s),frac_

↪→ over_median(G,s),expansion(G,s),

cut_ratio(G,s),conductance(G,s),normalized_cut(G,s),max_odf(G,s),av_odf

↪→ (G,s),flake_odf(G,s),

clustering_coef_subgraph(G,s),0)

}

D[n_com+1,]<-colMeans(D[1:n_com,])

D["modularity"]<-"-"

D[n_com+1,"modularity"] <- modularity(G,com,weight=E(G)$weight)

27

Significance of Communities in Financial Networks

D[n_com+1,"clustering coef"]<- sum(D[1:n_com,"clustering coef"])/ sum(D[1:n_com,"

↪→ clustering coef"]>0) #mean of non-zero elements

D[n_com+1,"internal density"]<- sum(D[1:n_com,"internal density"])/ sum(D[1:n_com,

↪→ "internal density"]>0)

D[n_com+1,"edges inside"]<- sum(D[1:n_com,"edges inside"])/ sum(D[1:n_com,"edges

↪→ inside"]>0)

D[n_com+1,"av degree"]<- sum(D[1:n_com,"av degree"])/ sum(D[1:n_com,"av degree"

↪→]>0)

return(D)

}

A.4 modularity functions.R

#returns the matrix with the images of the kronecker delta function of c[i],c[j]

delta <- function(c){

k<-length(c)

d <- diag(k)

for (i in 1:k){

for (j in 1:i){

if(c[i]==c[j]) {

d[i,j] <- 1

d[j,i] <- 1

}

}

}

return (d)

}

#Modularity function defined in (5)

Q <- function(A,P,c){

q <- sum((A-P)*delta(c))

return(q/sum(A))

}

#Hamiltonian of Potts spin glass from adjacency matrix A. For gamma=1, H=2*m*Q

H.matrix <- function(A,P,c,gamma=1){

X <- (A-gamma*P)

X <- data.matrix(X)

diag(X) <- 0

h <- sum(X*delta(c))

return (h)

}

28

H.graph <- function(g,P,c,gamma=1){

#Hamiltonian of Potts spin glass.

g: input graph

P: edge strength of null model. In this network P is constant.

c: vector that for each vertex gives its community

gamma: parameter. For gamma=1, H is proportional to the modularity function.

return(H.matrix(get.adjacency(g,attr="weight"),P,c,gamma))

}

A.5 VARMAtest.R

library(dse)

##array of dim axpxp = a pxp-matrices:

##Below read c(1,.5,.3,...) as entry [1,1] of matrix 1,2,3; and so on by row and

↪→ then columns: entry [1,2] of matrix 1,2,3 ...

AR=array(c(1,.5,.3,0,.1,.1,0,0,0,0,0,0,0,0,0,0,0,0,

0,.4,.5,1,.5,.4,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,.2,.3,0,.1,.1,0,.6,.3,0,0,0,

0,0,0,0,0,0,0,.3,.3,1,.3,.5,0,.4,.4,0,0,0,

0,0,0,0,0,0,0,.4,.3,0,.5,.5,1,.3,.3,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,.1,.2),c(3,6,6))

##select theta parameters

#t1=0.06; t2=0.06; t3=0.07; t4=0.07;

alpha <- 10

t <- alpha*c(.08,.06,.07,.07,.09,.08,.08)

B24=array(c(1,t1,0,0, t2,1,0,0,0,0,1,t3,0,0,t4,1),c(4,4))

B24=array(c(1,t[1],0,0,0,0,

t[2],1,0,0,0,0,

0,0,1,t[3],t[4],0,

0,0,t[4],1,t[5],0,

0,0,t[6],t[7],1,0,

0,0,0,0,0,1),c(6,6))

var2=ARMA(A=AR,B=B24) ##multivariate ARMA(2,1) = VARMA(2,1)

length=30 ##length of simulated series

I= 1000 ##total number of iterations=repeated experiments

correct=0

type1=0 #an error is type1 when 2 nodes share a cluster and shouldn’t

type2=0 #an error is type2 when 2 nodes should share a cluster and don’t

cluster_table<-function(c){ #returns a matrix of "cluster adjacencies" (M[i,j]=1 iff

↪→ i,j are in the same cluster)

29

Significance of Communities in Financial Networks

M<-matrix(nrow=length(c),ncol=length(c))

for(i in 1:length(c)){

M[i,]<- (c[i]==c)

}

return(M)

}

correct_cluster <- c(1,1,2,2,2,3)

table1<-cluster_table(correct_cluster)

varinf <- array(dim=I)

for(i in 1:I){

simdata <- simulate(var2,sampleT=length)

Mcor <- dcor.M(simdata$output)

#Mcor <- cor(simdata$output,method="pearson")

#Mcor <- 0.5*(Mcor+1)

n <- dim(Mcor)[1]

Mcor <- Mcor-diag(n)

P <- (sum(Mcor))/(n*(n-1))

g <- graph.adjacency(Mcor, mode="undirected",weighted=TRUE,add.rownames=TRUE,diag=

↪→ FALSE)

cluster2 <- Hmin(g,P,gamma=1.1,itermax=10)

table2 <- cluster_table(cluster2)

print(cluster2)

if (sum(table2-(table2&table1))>0) type1 <- type1+1

if (sum(table1-(table2&table1))>0) type2 <- type2+1

varinf[i] <- vi.dist(correct_cluster,cluster2)

if (varinf[i]<1e-10) correct = correct+1;

}

print(c("correct: ",correct))

print(c("type 1: ", type1))

print(c("type 2: ", type2))

print(c("VI mean: ",mean(varinf)))

A.6 plot communities.R

#Creates a new graph with an appropiate layout to represent the communities without

↪→ overlapping

library(colorspace)

plot.com <-function(g,c,main="",sub=""){

n <- length(V(g))

30

Mplot <- matrix(ncol=n,nrow=n,0)

colnames(Mplot)<-labels(V(g))

rownames(Mplot)<-labels(V(g))

for(j in 1:n){

b <- TRUE

for(k in 1:n){

if (c[j]==c[k] & b){

Mplot[j,k] <- 1

b <- FALSE

}

}

}

gplot <- graph.adjacency(Mplot, mode="undirected",weighted=TRUE,add.rownames=TRUE,

↪→ diag=FALSE)

l <- layout.fruchterman.reingold(gplot)

groups <- list()

j <- 1 #index of the community

for(i in c){

groups[[j]] <- which(c==i) #adds an element to the list with the indices of

↪→ nodes in community i

j<-j+1

}

lab <- labels(V(gplot))

for (i in 1:n) lab[i] <- paste0(substr(lab[i],1,3),"/",substr(lab[i],4,6))

V(gplot)$name <- lab

colours <- rainbow_hcl(length(groups),start = -1000, end = 300)

plot(gplot,layout=l, vertex.size=4, vertex.label.dist=0.15,vertex.label.degree=pi/

↪→ 2,vertex.label.cex=0.55,

edge.lty="blank",main=main,mark.groups=groups,mark.col=colours,mark.border="

↪→ #383838" ,vertex.color="slategray",

vertex.label.color="black",mark.shape=1/2,mark.expand=17,sub=sub)

}

31

	Introduction
	Basic definitions
	The Forex Network
	Community Detection

	Cluster scoring functions
	Variation of information

	Generating a random graph
	Election of
	Number of iterations

	Clustering validation
	Cluster detection in simulated networks
	VARMA model
	Simulation

	Conclusions
	R codes
	rewire.R
	rewire_test.R
	scoring_functions.R
	modularity_functions.R
	VARMAtest.R
	plot_communities.R

