Contents

1 An Abridged Introduction to Finance ... 1
 1.1 Financial Securities ... 1
 1.1.1 Bonds and the Continuous Compounding of Interest Rates 2
 1.1.2 Stocks: Trade, Price and Indices 4
 1.1.3 Options and Other Derivatives 12
 1.1.4 Portfolios and Collective Investment 18
 1.2 Financial Engineering .. 19
 1.2.1 Trading Positions and Attitudes 19
 1.2.2 On Price and Value of Stocks. The Discounted Cash Flow model 22
 1.2.3 Arbitrage and Risk-Neutral Valuation Principle 25
 1.2.4 The Efficient Market Hypothesis and Computational Complexity 31
 1.3 Notes, Computer Lab and Problems 33

2 Statistics of Financial Time Series ... 37
 2.1 Time Series of Returns .. 37
 2.2 Distributions, Density Functions and Moments 43
 2.2.1 Distributions and Probability Density Functions 43
 2.2.2 Moments of a Random Variable 45
 2.2.3 The Normal Distribution .. 49
 2.2.4 Distributions of Financial Returns 51
 2.3 Stationarity and Autocovariance 56
 2.4 Forecasting .. 60
 2.5 Maximum Likelihood Methods .. 62
 2.6 Volatility ... 64
 2.7 Notes, Computer Lab and Problems 67

3 Correlations, Causalities and Similarities 71
 3.1 Correlation as a Measure of Association 72
 3.1.1 Linear Correlation .. 72
 3.1.2 Properties of a Dependence Measure 76
 3.1.3 Rank Correlation ... 77
3.2 Causality ... 78
 3.2.1 Granger Causality 79
 3.2.2 Non Parametric Granger Causality 81
3.3 Grouping by Similarities 84
 3.3.1 Basics of Data Clustering 85
 3.3.2 Clustering Methods 87
 3.3.3 Clustering Validation and a Summary of Clustering Analysis 94
 3.3.4 Time Series Evolving Clusters Graph 95
3.4 Stylized Empirical Facts of Asset Returns 103
3.5 Notes, Computer Lab and Problems 104

4 Time Series Models in Finance ... 109
 4.1 On Trend and Seasonality 110
 4.2 Linear Processes and Autoregressive Moving
 Averages Models 111
 4.3 Nonlinear Models ARCH and GARCH 124
 4.3.1 The ARCH Model 124
 4.3.2 The GARCH Model 127
 4.4 Nonlinear Semiparametric Models 130
 4.4.1 Neural Networks 131
 4.4.2 Support Vector Machines 134
 4.5 Model Adequacy and Model Evaluation 136
 4.5.1 Tests for Nonlinearity 137
 4.5.2 Tests of Model Performance 138
 4.6 Appendix: NNet and SVM Modeling in R 140
 4.7 Notes, Computer Lab and Problems 142

5 Brownian Motion, Binomial Trees and Monte Carlo Simulation 145
 5.1 Continuous Time Processes 145
 5.1.1 The Wiener Process 146
 5.1.2 Itô’s Lemma and Geometric Brownian Motion 149
 5.2 Option Pricing Models: Continuous and Discrete Time 153
 5.2.1 The Black-Scholes Formula for Valuing
 European Options 154
 5.2.2 The Binomial Tree Option Pricing Model 158
 5.3 Monte Carlo Valuation of Derivatives 164
 5.4 Notes, Computer Lab and Problems 172
6 Trade on Pattern Mining or Value Estimation

6.1 Technical Analysis

6.1.1 Dow’s Theory and Technical Analysis Basic Principles

6.1.2 Charts, Support and Resistance Levels, and Trends

6.1.3 Technical Trading Rules

6.1.4 A Mathematical Foundation for Technical Analysis

6.2 Fundamental Analysis

6.2.1 Fundamental Analysis Basic Principles

6.2.2 Business Indicators

6.2.3 Value Indicators

6.2.4 Value Investing

6.3 Notes, Computer Lab and Problems

7 Optimization Heuristics in Finance

7.1 Combinatorial Optimization Problems

7.2 Simulated Annealing

7.2.1 The Basics of Simulated Annealing

7.2.2 Estimating a $GARCH(1, 1)$ with Simulated Annealing

7.3 Genetic Programming

7.3.1 The Basics of Genetic Programming

7.3.2 Finding Profitable Trading Rules with Genetic Programming

7.4 Ant Colony Optimization

7.4.1 The Basics of Ant Colony Optimization

7.4.2 Valuing Options with Ant Colony Optimization

7.5 Hybrid Heuristics

7.6 Practical Considerations on the Use of Optimization Heuristics

7.7 Notes, Computer Lab and Problems

8 Portfolio Optimization

8.1 The Mean-Variance Model

8.1.1 The Mean-Variance Rule and Diversification

8.1.2 Minimum Risk Mean-Variance Portfolio

8.1.3 The Efficient Frontier and the Minimum Variance Portfolio

8.1.4 General Mean-Variance Model and the Maximum Return Portfolio

8.2 Portfolios with a Risk-Free Asset

8.2.1 The Capital Market Line and the Market Portfolio

8.2.2 The Sharpe Ratio

8.2.3 The Capital Asset Pricing Model and the Beta of a Security
Computational Finance
An Introductory Course with R
Arratia, A.
2014, X, 301 p. 41 illus., 26 illus. in color., Hardcover
ISBN: 978-94-6239-069-0
A product of Atlantis Press