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A class of languages is defined from the operations of union, intersec-

tion, complement, concatenation and a new operation which, for two given

languages A and B, and a fixed language V , called the context, builds the

set of words whose number of possible factorizations as three factors, the

prefix in A, the suffix in B, and the middle in the context, is congruent

to an integer modulus. An appropriate family of generalized quantifiers is

defined that, when added to first order logic, captures exactly the aforesaid

class of languages with respect to finite linearly ordered structures. It is

shown, using model theoretical tools, that our languages so constructed are

regular and how particular cases of this construction corresponds to various

classes of regular languages. The main tool that we have developed is a

theorem that characterizes equivalence of formulas in our logics in terms of

games, and in terms of satisfiability of suitable isomorphism types.
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1. INTRODUCTION

The logical characterization of different classes of regular languages has its origins

in a paper by Büchi [1]. There, it is shown that a language is regular if, and only

if, it is definable by a sentence in a monadic second order theory of linear order.

Following that work, McNaughton and Papert showed that the star–free regular

languages are exactly those definable by sentences in a first order theory of linear

order (see [6]). It was natural then to believe that an increase in expressive power of

first order logic plus ordering by means of adding some logical construct, definable

in monadic second order logic but not in first order logic, would yield logics that

corresponds to classes of regular languages above the class of star–free, in a way
1
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much the same as first order logic corresponds to star-free languages and monadic

second order logic to all the regular languages.

One method of increasing the expressive power of logics (not just first order) was

provided by Lindström in [5] (but see [3] for a more updated account), and has

come to be known as the method of adding generalized (or Lindström) quantifiers.

Such method was used in [8] to show that the class of regular languages with

corresponding syntactic monoid containing only solvable groups is, precisely, the

class of languages definable by sentences in a first order theory of linear order with

generalized quantifiers that allow counting modulo a prime number. Specifically,

the generalized quantifier introduced by the authors of [8] is denoted by ∃(p,q) (p

and q positive integers) and interpreted as follows. For a formula φ(x) with free

variable x, the formula ∃(p,q)xφ(x) is well-formed and it is true if, and only if, the

number of witnesses for x that makes φ(x) true is congruent to p modulo q. The

idea for the definition of this counting quantifier comes naturally from previous

work by Straubing [7] and Thérien [9], where the class of regular languages with

solvable syntactic monoid was identified as the class of languages containing the

empty and the single letter languages, and closed under the operations of union,

intersection, concatenation, complementation and cyclic counting concatenation.

The latter being defined as follows: if Σ is some finite alphabet, σ a letter in Σ, A

and B languages over Σ, p and q positive integers with p < q, then

〈A, σ,B, p, q〉 = {w ∈ Σ∗ : the number of factorizations of w

in the form w = vσu with v ∈ A and u ∈ B

is congruent to p modulo q}.

Now, the problem of characterizing classes of regular languages whose syntactic

monoid contains a non solvable group, seems yet open. Such regular languages ex-

ist, for one can take a finite non solvable group as S5 (the group of permutations of

five elements), and build a finite automata with transitions simulating the relations

that a set of generators for this group satisfy. Looking at the known operations

used to obtain new regular languages from known ones, and as described above,

it is natural to conjecture that counting subwords within words is a possible ex-

tension to the operation of letter counting which might yield languages with non

solvable syntactic monoid. This idea is also suggested in [9], and motivated by it

we define, in this paper, an infinite family of classes of languages obtained from

the basic boolean operations and a new operation, which we named cyclic counting

concatenation with respect to a context (section 2). We define an appropriate fam-

ily of generalized quantifiers that, when added to first order logic, give logics that

defines such language constructs (section 3). We then show that our logics only

define languages within the class of regular languages, and show as examples how

to capture the classes of regular languages with corresponding syntactic monoid

containing only solvable groups, or none (the aperiodic languages).

Our terminology and presentation is inspired, to a certain extend, by that in the

book [3], and the reader can find there the basics on logic and finite models. We

are mainly concerned here with developing the appropriate logical machinery for

understanding the structural properties of regular languages, and to set the basis for
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classifying the non solvable regular languages. Our main logical tool (Theorem 3.2)

follows the pattern of similar theorems in [3] where formula equivalence is shown

equivalent to the existence of a winning strategy in a suitable (Ehrenfeucht’s style)

game, and equivalent to satisfiability of a certain isomorphism type (to be defined

in section 3).

2. REGULAR LANGUAGES

Let Σ denote a finite alphabet and Σ∗ the set of finite strings (or words) over Σ

plus e (the empty word); Σ+ := Σ∗ \ {e}. If w ∈ Σ+, |w| is the length of w; |e| = 0.

A subset of Σ∗ is called a language. 2Σ+

denotes the set of all subsets of Σ+.

A regular language is a member of the smallest class of languages that contains

∅, {σ} for every σ ∈ Σ, and is closed under finite union, concatenation, and the

Kleene star.

According to a theorem by Kleene, a regular language is exactly the language

computed by a deterministic finite automata (DFA). If M is a DFA we denote by

L(M) the language computed by M . The details on finite automata and regular

languages can be found in any standard book on theoretical computer sciences (e.g.,

[4]). We will use Kleene’s machine characterization of regular languages to show

that the languages definable by the logics that we construct in this paper are all

regular (this is Theorem 4.1).

We shall now define our new operation on laguages, which we have named cyclic

counting concatenation with respect to a context. Fix V a language over Σ. For any

pair of subsets of Σ∗, A and B, for any pair of positive integers p and q, with p < q,

we define the language

〈A, V,B, p, q〉 = {w ∈ Σ∗ : the number of factorizations of w

in the form w = vzu with v ∈ A, u ∈ B, and

some z ∈ V is > 0 and congruent to p modulo q}.

Definition 2.1. Let P ⊆ Z
+ and Γ ⊆ 2Σ+

. AC(P,Γ) is the smallest class

of languages over Σ that contains ∅, {σ} for all σ ∈ Σ, closed under finite union,

finite concatenation and complement; and it is also closed under cyclic counting

concatenation with context in Γ and modulus in P ; that is, given A,B ∈ AC(P,Γ),

V ∈ Γ, q ∈ P , and p < q, 〈A, V,B, p, q〉 ∈ AC(P,Γ).

(The notation AC is taken from [8], where it is justified as follows: A stands for

aperiodic and C for counting. We found this symbology appropriate and thus use

it.)

3. THE LOGIC FRAMEWORK

Let Σ be a finite alphabet. Let τ
Σ

= {<} ∪ {Pσ : σ ∈ Σ}, where < is a binary

relation symbol and each Pσ a unary relation symbol. To each word w ∈ Σ+, one

associates the (finite) τ
Σ
–structure

Aw = 〈|Aw|, <
Aw , PAw

σ : σ ∈ Σ〉
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where |Aw| = {1, 2, . . . , |w|}, <Aw is interpret as linear order on the naturals, and

PAw

σ = {j ∈ |Aw| : the j-th letter of w (from left to right) is σ}.

Consider the extended vocabulary τ = τ
Σ
∪ {U1, U2}, where U1 and U2 are new

unary relation symbols. For V ⊆ Σ+, p and q positive integers with p < q, define

the class of τ -structures

Q
(p,q)
V = { 〈Aw, U

Aw

1 , UAw

2 〉 : w ∈ Σ+, UAw

i ⊆ |Aw|, and the number of

intervals [i, j] ⊆ |Aw| with i ∈ UAw

1 and j ∈ UAw

2 such that

〈[i, j], <Aw , PAw

σ : σ ∈ Σ〉 ∼= Az for some z ∈ V is > 0 and

congruent to p modulo q}.

From the class of τ -structures Q
(p,q)
V one defines a quantifier (following Lind-

ström’s idea), which we denote also by Q
(p,q)
V , and add it to FO to enrich its

expressive power. FO is first order logic with equality, and FO(τ) is first order

logic with equality plus the predicate symbols in the vocabulary τ . This is the set

of formulas constructed from the basic set of boolean connectives (∧, ∨, ¬), first

order quantifiers, equality, and the elements in τ .

For P ⊆ Z
+, Γ ⊆ 2Σ+

, define the logic over the vocabulary τ , QP
Γ [FO](τ), as

follows.

Syntax: (1) FO(τ) ⊆ QP
Γ [FO](τ) (i.e. every formula in FO(τ) is a formula in

QP
Γ [FO](τ));

(2) If φ, ψ ∈ QP
Γ [FO](τ) then so are ¬φ, φ ∧ ψ and ∃xφ;

(3) If φ(x), ψ(y) are formulas in QP
Γ [FO](τ), V ∈ Γ, q ∈ P , p < q, then the formula

Q
(p,q)
V [xφ(x), y ψ(y)]

is in QP
Γ [FO](τ).

(The quantifier Q
(p,q)
V binds the variables x and y; any other variable distinct from

x and y that shows free in φ or ψ is a free variable in Q
(p,q)
V [xφ(x), y ψ(y)].)

Semantics: for (1) and (2) is as usual; for (3) consider w ∈ Σ+ and Aw its

associated τ
Σ
–structure, UAw

1 = {j ∈ |Aw| : Aw |= φ(j)} and UAw

2 = {j ∈ |Aw| :

Aw |= ψ(j)}, then

Aw |= Q
(p,q)
V [xφ(x), y ψ(y)] ⇐⇒ 〈Aw, U

Aw

1 , UAw

2 〉 ∈ Q
(p,q)
V .

In the theorem below, and elsewhere, we will use the following “logical short-

hands”:

x ≤ y for x = y ∨ x < y

min.is(x) for ∀y(x ≤ y) (“x is the minimum”)

max.is(x) for ∀y(y ≤ x) (“x is the maximum”)

s(x, y) for x < y ∧ ∀z(x < z −→ y ≤ z) (“y is the successor of x”)

[x, y] −→ φ for ∀z(x ≤ z ∧ z ≤ y −→ φ)
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Theorem 3.1. Let P ⊆ Z
+, Γ ⊆ 2Σ+

, and L ⊆ Σ+. If L ∈ AC(P,Γ) then L is

definable in QP
Γ [FO](τ).

Proof. Induction on L. According to the form that L has, we must write a

sentence ΦL in QP
Γ [FO](τ) such that, for any word w ∈ Σ+,

w ∈ L ⇐⇒ Aw |= ΦL.

If L = ∅, the corresponding ΦL is ∃x¬(x = x).

If L = {σ}, for σ ∈ Σ, ΦL := ∃x∀y(x = y ∧ Pσ(x)).

Inductively, assume A and B are languages in AC(P,Γ), and ΦA and ΦB are their

respective defining sentences.

If L = A ∪ B, ΦL := ΦA ∨ ΦB . If L = Σ+ \A, ΦL := ¬ΦA.

If L = AB,

ΦL := ∃x∃y∃z(min.is(x) ∧max.is(z) ∧

∀v(x ≤ v ∧ v < y −→ ΦA) ∧

∀v(y ≤ v ∧ v ≤ z −→ ΦB)).

Finally, if L = 〈A, V,B, p, q〉 , for some V ∈ Γ, q ∈ P and p < q, then

ΦL := Q
(p,q)
V [y1 (∃x1∃x2∃x3∃x4(ψ1(x1, x2, x3, x4) ∧ s(x2, y1))),

y2 (∃x1∃x2∃x3∃x4(ψ1(x1, x2, x3, x4) ∧ s(y2, x3)))]

∨ Q
(p,q)
V [y1 (∃x1∃x2(ψ2(x1, x2) ∧min.is(y1))),

y2 (∃x1∃x2(ψ2(x1, x2) ∧ s(y2, x1)))]

∨ Q
(p,q)
V [y1 (∃x1∃x2(ψ3(x1, x2) ∧ s(x2, y1))),

y2 (∃x1∃x2(ψ3(x1, x2) ∧max.is(y2)))]

where

ψ1(x1, x2, x3, x4) := x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4 ∧min.is(x1) ∧max.is(x4) ∧

[x1, x2] −→ ΦA ∧ [x3, x4] −→ ΦB ,

ψ2(x1, x2) := x1 ≤ x2 ∧max.is(x2) ∧ [x1, x2] −→ ΦB , and

ψ3(x1, x2) := x1 ≤ x2 ∧min.is(x1) ∧ [x1, x2] −→ ΦA.

The correcteness of the sentence ΦL can be seen from the following argument:

w ∈ L ⇐⇒ w = vzu = v1 · · · vnzn+1 · · · zmum+1 · · ·uk, with v ∈ A, u ∈ B, z ∈ V

and the number of these factorizations is congruent to p modulo q.

The sentence ΦL expresses precisely the above situation:

Aw |= ΦL ⇐⇒ the universe |Aw| is divided in 3 intervals [min, n],
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[r,m], [t,max] such that r = n+ 1 and t = m+ 1,

[min, n] −→ ΦA and [t,max] −→ ΦB , and

〈[r,m], <Aw , PAw

σ : σ ∈ Σ〉 ∼= Az, with the number of

such intervals [r,m] being congruent to p modulo q.

(The sentence ΦL also takes into consideration the cases of r = min or m = max,

wheremin - resp. max - stands for the minimal - resp. maximal - element of the uni-

verse. Observe that these elements are definable in FO(τ).)

For the converse we need to develop more model theory.

3.1. Isomorphism types

Let Γ ⊆ 2Σ+

and P ⊆ Z
+. For the remainder of the paper ∆ denotes the following

alphabet of quantifiers:

∆ := {∃,¬∃} ∪ {Q
(p,q)
V ,¬Q

(p,q)
V : V ∈ Γ, q ∈ P, p < q}.

Fix s a positive integer. We define sets of formulas in s variables in QP
Γ [FO](τ)

according to the kind of quantifiers that appears in these formulas. Below α denotes

a finite word over ∆ (i.e., α ∈ ∆∗) and x = (x1, . . . , xs) a tuple of s variables.

Let α = e (the empty word). Then Fe(x) is the set of all quantifier free formulas

in the variables x1, . . . , xs in FO(τ).

Let α = Qβ, with Q ∈ ∆ and β ∈ ∆∗. We have two cases:

Case 1. If Q = ∃ or Q = ¬∃, then Fα(x) is the closure with respect to the

connectives ∨ and ∧ of formulas of the form ∃xs+1ψ(x, xs+1) with ψ ∈ Fβ(x, xs+1),

or formulas of the form ¬∃xs+1ψ(x, xs+1) with ¬ψ ∈ Fβ(x, xs+1), or formulas in

Fβ(x).

Case 2. If Q = Q
(p,q)
V or Q = ¬Q

(p,q)
V , for some V ∈ Γ, q ∈ P and p < q,

then Fα(x) is the closure with respect to the connectives ∨ and ∧ of formulas of

the form Q
(p,q)
V [xs+1 ψ1(x, xs+1), ys+1 ψ2(x, ys+1)] with ψ1 ∈ Fβ(x, xs+1) and ψ2 ∈

Fβ(x, ys+1), or formulas of the form ¬Q
(p,q)
V [xs+1 ψ1(x, xs+1), ys+1 ψ2(x, ys+1)] with

¬ψ1 ∈ Fβ(x, xs+1) and ¬ψ2 ∈ Fβ(x, ys+1), or formulas in Fβ(x).

Now, fix w ∈ Σ+ and let Aw be its associated τ -structure. Fix s a positive

integer, and a = (a1, . . . , as) ∈ |Aw|s. We look at the maximal consistent set of

τ -formulas, with s free variables and given quantifier sequence α ∈ ∆∗, satisfied by

a. This is the type of a, denoted by T α
w,a(x1, . . . , xs), and defined below. As before,

x stands for the tuple of variables (x1, . . . , xs).

If α = e,

T e
w,a(x1, . . . , xs) := {ψ(x1, . . . , xs) : ψ is atomic or

negated atomic and Aw |= ψ(a)}

If α = Qβ, with Q ∈ ∆ and β ∈ ∆∗, we have two cases.
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Case 1. Q ∈ {∃,¬∃}. Then

Tα
w,a(x1, . . . , xs) := {∃xs+1ψ(x1, . . . , xs, xs+1) : for some a ∈ |Aw|,

ψ(x, xs+1) ∈ T
β
w,aa(x, xs+1)} ∪

{¬∃xs+1ψ(x1, . . . , xs, xs+1) : for all a ∈ |Aw|,

¬ψ(x, xs+1) ∈ T
β
w,aa(x, xs+1)} ∪

T
β
w,a(x)

Case 2. Q ∈ {Q
(p,q)
V ,¬Q

(p,q)
V : V ∈ Γ, q ∈ P, p < q}. Then

Tα
w,a(x1, . . . , xs) := {Q

(p,q)
V [xs+1ψ1(x, xs+1), ys+1ψ2(x, ys+1)] : for some set

S ⊆ {(i, j) ∈ |Aw|
2 : i ≤ j}, |S| = pmod q and, for all (i, j)

in S, ψ1 ∈ T
β
w,ai(x, xs+1) and ψ2 ∈ T

β
w,aj(x, ys+1)

and 〈[i, j], <Aw , PAw

σ : σ ∈ Σ〉 ∼= Az for some z ∈ V } ∪

{¬Q
(p,q)
V [xs+1ψ1(x, xs+1), ys+1ψ2(x, ys+1)] : for every set

S ⊆ {(i, j) ∈ |Aw|
2 : i ≤ j}, |S| 6= pmod q or, for some (i, j)

in S, ¬ψ1 ∈ T
β
w,ai(x, xs+1) or ¬ψ2 ∈ T

β
w,aj(x, ys+1)

or 〈[i, j], <Aw , PAw

σ : σ ∈ Σ〉 6∼= Az for any z ∈ V } ∪

T
β
w,a(x)

For fixed s ≥ 0, there are only finitely many atomic or negated atomic formulas

in s many variables. Therefore, inductively, for fixed s ≥ 0 and quantifier sequence

α ∈ ∆∗, each Tα
w,a(x1, . . . , xs) is a finite set; hence, the conjunction of all formulas

in Tα
w,a(x1, . . . , xs) is a well defined formula in QP

Γ [FO](τ). Furthermore,

Proposition 3.1. For fixed s ≥ 0 and quantifier sequence α ∈ ∆∗, the set

of formulas {
∧
Tα

w,a(x1, . . . , xs) : w ∈ Σ+ and a ∈ |Aw|s} is finite, up to logical

equivalence.

The proof is a counting argument on all the possible different ways of writing a

syntactically correct formula (or well formed formula) using s variables, the quan-

tifiers in α and the finitely many relations in τ .

3.2. Games

Let P ⊆ Z
+, Γ ⊆ 2Σ+

, ∆ := {∃,¬∃} ∪ {Q
(p,q)
V ,¬Q

(p,q)
V : V ∈ Γ, q ∈ P, p < q},

w, u ∈ Σ+, α a finite sequence of quantifiers from ∆. The game on the structuresAw

and Au of |α| moves with context in Γ and modulus in P , denoted G(w, u, α,Γ, P ),

is played by Spoiler and Duplicator, who alternate in pebbling elements in each

of these structures according to the following rules. Spoiler is always the first to

play. A move consists of a play by Spoiler followed by a play by Duplicator. The

moves are determined by the letters in the word α, and these are performed by

going through α from left to right; hence, say α = α1α2 · · ·αk (and, so, |α| = k),
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where each αi ∈ ∆, then the first move of the game is α1, the second move α2, and

so on through αk. Each move is as follows:

∃ move: Spoiler places an unused pebble on an element a in Aw. Duplicator

responds by placing an unused pebble on an element b in Au.

¬∃ move: similar to the ∃ move, but Spoiler plays on Au and Duplicator plays

on Aw.

Q
(p,q)
V move: Spoiler selects a set of pairs S ⊆ {(x1, x2) ∈ |Aw|2 : x1 ≤Aw x2},

such that |S| = pmod q. Duplicator selects a set D ⊆ {(x1, x2) ∈ |Au|2 : x1 ≤Au

x2}, such that |D| = pmod q. Then Spoiler places a pair of pebbles on two elements

b1 and b2 in Au. Duplicator responds by placing a pair of pebbles on two elements

a1 and a2 in Aw, and such that

(a1, a2) ∈ S and 〈[a1, a2], <
Aw , PAw

σ : σ ∈ Σ〉 ∼= Az for some z ∈ V

if, and only if,

(b1, b2) ∈ D and 〈[b1, b2], <Au , PAu

σ : σ ∈ Σ〉 ∼= Az for some z ∈ V .

¬Q
(p,q)
V move: similar to the Q

(p,q)
V move, but with the roles of Aw and Au in-

terchange.

As usual, Duplicator wins if, and only if, at the end of the game (i.e., after the |α|-

th move), the elements in Aw and in Au where pebbles were placed on, determined

a partial isomorphism of Aw into Au. Duplicator has a winning strategy if, for

every move of Spoiler, he has a corresponding move that will lead him to a win.

Let s be a positive integer. If a ∈ |Aw|
s and b ∈ |Au|

s, then G((w, a), (u, b), α, Γ,

P ) denotes the game on the extended structures 〈Aw, a〉 and 〈Au, b〉 of |α| moves

with context in Γ and modulus in P .

3.3. The main logical tool and consequences

Theorem 3.2. Let s be a positive integer. Let w, u ∈ Σ+, a = (a1, . . . , as) ∈

|Aw|s, b = (b1, . . . , bs) ∈ |Au|s, Γ ⊆ 2Σ+

, P ⊆ Z
+ and α a finite sequence of

quantifiers from ∆ := {∃,¬∃} ∪ {Q
(p,q)
V ,¬Q

(p,q)
V : V ∈ Γ, q ∈ P, p < q}. The

following are equivalent:

(i)Duplicator has a winning strategy in the game G((w, a), (u, b), α,Γ, P );

(ii)for every formula φ(x1, . . . , xs) ∈ Fα(x1, . . . , xs),

Aw |= φ(a) ⇐⇒ Au |= φ(b) ;

(iii)Au |=
∧
Tα

w,a(b) and Aw |=
∧
Tα

u,b
(a).

Proof. [(i) −→ (ii)]: By induction on α, being the case α = e trivial. Suppose

|α| > 0, and without loss of generality we can assume α = Q
(p,q)
V β with β ∈ ∆∗ since

the other cases have analogous proof. Suppose there exists a formula Φ(x1, . . . , xs)

in Fα(x1, . . . , xs), such that

Aw |= Φ(a) and Au |= ¬Φ(b). (1)
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We will arrive to a contradiction of the fact that Duplicator has a winning strategy

in the game G((w, a), (u, b), α,Γ, P ). We have that Φ(x) is a boolean combination

of formulas that are either of the form Q
(p,q)
V [xs+1 ψ1(x, xs+1), ys+1 ψ2(x, ys+1)], or

¬Q
(p,q)
V [xs+1 θ1(x, xs+1), ys+1 θ2(x, ys+1)], or of the form ψ(x), with ψ in Fβ(x).

By (1), at least one of these formulas that compose Φ(x) is true in 〈Aw, a〉 and

false in 〈Au, b〉 , or vice versa. Suppose it is one of the form Q
(p,q)
V [xs+1 ψ1(x, xs+1),

ys+1 ψ2(x, ys+1)], and let us denote it by Θ(x). Suppose also that

Aw |= Θ(a) and Au |= ¬Θ(b).

Since Aw |= Θ(a), we have 〈Aw, U
Aw

1 , UAw

2 〉 ∈ Q
(p,q)
V , where

UAw

1 = {a1 ∈ |Aw| : Aw |= ψ1(a, a1)} and UAw

2 = {a2 ∈ |Aw| : Aw |= ψ2(a, a2)}

The Spoiler selects

S = (UAw

1 × UAw

2 ) ∩ {(i, j) ∈ |Aw|
2 : i ≤Aw j and

〈[i, j], <Aw , PAw

σ : σ ∈ Σ〉 ∼= Az for some z ∈ V }.

S 6= ∅ and |S| = pmod q. Since Au |= ¬Θ(b), whatever D ⊆ {(y1, y2) ∈ |Au|2 :

y1 ≤Au y2} Duplicator selects (following his winning strategy), there will be a pair

(b1, b2) ∈ D such that

Au |= ¬(ψ1(b, b1) ∧ ψ2(b, b2)) or 〈[b1, b2], <
Au , PAu

σ : σ ∈ Σ〉 6∼= Az for any z ∈ V.

Spoiler places pebbles on (b1, b2). Duplicator responds with some pair (a1, a2) in

S, according to his winning strategy. Then Duplicator has a winning strategy in

the game G((w, a, a1, a2), (u, b, b1, b2), β,Γ, P ), and by inductive hypothesis,

Aw |= φ(a, a1, a2) ⇐⇒ Au |= φ(b, b1, b2),

for every formula φ(x, x1, x2) ∈ Fβ(x, x1, x2). Taking φ(x, x1, x2) := ψ1(x, x1) ∧

ψ2(x, x2) we get the desired contradiction.

Similar reasoning resolves the other cases of Θ(x).

[(ii) −→ (iii)]:
∧
Tα

w,a(x1, . . . , xs) is a formula in Fα(x) and Aw |=
∧
Tα

w,a(a). By

(ii), Au |=
∧
Tα

w,a(b). Similarly, Au |=
∧
Tα

u,b
(b) and, by (ii), Aw |=

∧
Tα

u,b
(a).

[(iii) −→ (i)]: By induction on length of α. If |α| = 0, we get from the hy-

pothesis that the application a 7→ b is a partial isomorphism from Aw to Au.

Hence, Duplicator wins the game of 0 move. If |α| > 0, Duplicator’s strategy

is described by the equations Au |=
∧
Tα

w,a(b) and Aw |=
∧
Tα

u,b
(a). Indeed, for

whatever elements Spoiler pebbles, Duplicator can compute their type and play

accordingly to satisfiability in the structures Aw and Au; hence, guaranteeing

partial isomorphism among the substructures induced by the pebbled elements.

A consequence of the previous theorem is the following normal form for formulas

in the logic QP
Γ [FO](τ).
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Proposition 3.2. Let φ(x1, . . . , xs) ∈ QP
Γ [FO](τ) a formula with s free variables

and quantifier sequence α ∈ ∆∗. Then, for all u ∈ Σ+ and b ∈ |Au|s,

Au |= φ(b) ⇐⇒ Au |=
∨
{
∧
Tα

w,a(b) : w ∈ Σ+, a ∈ |Aw|
s and Aw |= φ(a)}.

Note that by Proposition 3.1 the disjunction on the right of the above equivalence

is finite. The proof of Proposition 3.2 is straightforward. Nonetheless, we would

like to point out the following connection to lattices and boolean algebras, since we

believe that this algebraic point of view enhances the understanding of the already

laid logical framework. For the needed background the reader can consult [2].

For fixed s ≥ 0 and α ∈ ∆∗, the set of QP
Γ [FO](τ)–formulas Fα(x1, . . . , xs) is a

finite distributive lattice with partial order ψ ≤ φ defined by

for all w ∈ Σ+ and a ∈ |Aw|s

Aw |= ψ(a) ∧ φ(a) ←→ ψ(a)

Then, for each φ ∈ Fα(x1, . . . , xs), the set

Tα
s (φ) := {

∧
Tα

w,a(x1, . . . , xs) : w ∈ Σ+,

a ∈ |Aw|
s and Aw |= φ(a)}

is the set of all join irreducible elements ≤ φ (because of the equivalence (ii) ←→

(iii) in Theorem 3.2). Consequently, Proposition 3.2 is just a particular application

of a theorem of representation of elements in any finite lattice.

We recall from [3] that the ordered sum of two τ -structures A and B, is the

structure A � B with universe |A| ∪ |B| and relation RA�B := RA ∪ RB, for all

relation symbol R ∈ τ , except for the order which is set to <A�B:=<A ∪ <B

∪{(a, b) : a ∈ |A|, b ∈ |B|}. An important fact is that, for two words w and v, the

concatenation wv corresponds to the ordered sum Aw �Av.

Definition 3.1. Let w, u ∈ Σ+, Γ ⊆ 2Σ+

, P ⊆ Z
+ and α a finite sequence of

quantifiers from ∆ = {∃,¬∃} ∪ {Q
(p,q)
V ,¬Q

(p,q)
V : V ∈ Γ, q ∈ P, p < q}. We say w

is (Γ, P, α)–equivalent to v, and denote it as w ≡
(Γ,P )
α v, if and only if for every

sentence Φ ∈ QP
Γ [FO](τ) with quantifier sequence α,

Aw |= Φ ⇐⇒ Au |= Φ.

(By Theorem 3.2, this is equivalent to verifying if Duplicator has a winning strategy

in the game G(w, u, α,Γ, P ).)

Properties of ≡
(Γ,P )
α .

• ≡
(Γ,P )
α is an equivalence relation.

Follows from definition.

• ≡
(Γ,P )
α is right invariant, i.e., if w ≡

(Γ,P )
α v then, for any z ∈ Σ∗, wz ≡

(Γ,P )
α vz
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Immediate, using the game characterization of ≡
(Γ,P )
α , and that wz corresponds

to the ordered sum Aw � Az. Thus, a winning strategy for Duplicator in the

game G(wz, vz, α,Γ, P ) consists on playing his winning strategy for the game

G(w, v, α,Γ, P ), given by hypothesis, whenever Spoiler plays in Aw or in Av, and

play identical over Az .

• ≡
(Γ,P )
α has finite index.

This is proved using a counting argument similar to the one for Proposition 3.1.

We denote the ≡
(Γ,P )
α –equivalence classes by [w]

(Γ,P )
α , but usually α and (Γ, P )

are clear from context, and in those cases we will just write [w].

We are ready for the converse of Theorem 3.1.

Theorem 3.3. Let P ⊆ Z
+, Γ ⊆ 2Σ+

, and L ⊆ Σ+. If L is definable in

QP
Γ [FO](τ) then L ∈ AC(P,Γ).

Proof. By hypothesis L = {w : Aw |= Φ} for some Φ ∈ QP
Γ [FO](τ). If

Φ is in FO(τ) we proceed as in the literature ([3],[8]); hence, we assume Φ :=

Q
(p,q)
V [xψ1(x), y ψ2(y)] with ψ1 ∈ Fβ(x) and ψ2 ∈ Fγ(y); so, Φ ∈ Fα with

α = Q
(p,q)
V βγ. By Proposition 3.2, for all w ∈ Σ+ and a ∈ |Aw|,

Aw |= ψ1(a) ⇐⇒ Aw |= T̂ β
w1,a1

(a) ∨ T̂ β
w2,a2

(a) ∨ . . . ∨ T̂ β
wk,ak

(a),

where T̂ β
wi,ai

(x) =
∧
T β

wi,ai
(x) and Awi

|= ψ1(ai), for i = 1, 2, . . . , k. Intuitively, ψ1

is in the class of formulas satisfied by some of the structures 〈Aw1
, a1〉 , 〈Aw2

, a2〉 ,

. . . , 〈Awk
, ak〉 , in the sense that any other pair (w, a), whose associated struc-

ture 〈Aw, a〉 satisfies ψ1(x), is ≡
(Γ,P )
β –equivalent to one of the pairs (wi, ai), i =

1, 2, . . . , k (Theorem 3.2). Similarly, for all u ∈ Σ+ and b ∈ |Au|,

Au |= ψ2(b) ⇐⇒ Au |= T̂
γ
u1,b1

(b) ∨ T̂ γ
u2,b2

(b) ∨ . . . ∨ T̂ γ
ur,br

(b),

where T̂ γ
ui,bi

(x) =
∧
T

γ
ui,bi

(x) and Aui
|= ψ2(bi), for i = 1, 2, . . . , r. So, ψ2 is in

the class of formulas satisfied by some of the structures 〈Au1
, b1〉 , 〈Au2

, b2〉 , . . . ,

〈Aur
, br〉 . Let W := {(w1, a1), (w2, a2), . . . , (wk, ak)} and U := {(u1, b1), (u2, b2),

. . . , (ur, br)}. Let

Ŵ := {(w, a) : (w, a) ≡
(Γ,P )
β (wi, ai), for some (wi, ai) ∈W} and

Û := {(u, b) : (u, b) ≡(Γ,P )
γ (ui, bi), for some (ui, bi) ∈ U}.

Let R be the set of triples ((w, a), v, (u, b)) such thatAw�Av�Au |= Φ, (w, a) ∈ Ŵ ,

(u, b) ∈ Û , v ∈ V , and 〈[i, j], <, Pσ : σ ∈ Σ〉 ∼= Av, where i (resp. j) is the successor

of a (resp. predecessor of b) in the order <Aw�Av�Au . The cardinality of R is at

least p modulo q. We then choose p modulo q many pairwise non ≡
(Γ,P )
α –equivalent

triples from R to form the set R̂. Let

Φ1 :=
∨
{
∧
T β

w,a(a+ 1) : ((w, a), v, (u, b)) ∈ R̂ for some v ∈ V, (u, b) ∈ Σ+ × N}

and

Φ2 :=
∨
{
∧
T

γ
u,b(b− 1) : ((w, a), v, (u, b)) ∈ R̂ for some v ∈ V, (w, a) ∈ Σ+ × N}
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(a + 1 and b − 1 abbreviates, respectively, the successor element of a and the

predecessor element of b, in the order <Aw�Av�Au . Note that these elements are

definable in FO(τ)).

For i = 1, 2, let LΦi
= {w : Aw |= Φi}. Then, for any z ∈ Σ+,

Az |= Φ ⇐⇒ z ∈ 〈LΦ1
, V, LΦ2

, p, q〉 .

This completes the proof of the theorem.

4. FROM LOGIC TO REGULAR EXPRESIONS

Theorem 4.1. Let P ⊆ Z
+, L ⊆ Σ+, and Γ ⊆ 2Σ+

. If L is definable in

QP
Γ [FO](τ) then L is regular.

Proof. Let a sentence Φ ∈ QP
Γ [FO](τ) be such that

w ∈ L if, and only if, Aw |= Φ.

Let α be the quantifier sequence that shows in Φ, and for w ∈ Σ∗ let [w] denote

the equivalence class of w with respect to the relation ≡
(Γ,P )
α . Define the DFA

MΦ := 〈Σ, Q, δ, s, F 〉 , where

Q := {[w] : w ∈ Σ+} ∪ {s}

s := [e]

F := {[w] : Aw |= Φ}, and

δ : Q× Σ→ Q is defined as

δ(s, σ) := [σ], for all σ ∈ Σ

δ([w], σ) := [wσ], for all w ∈ Σ+ and σ ∈ Σ

Then L = L(MΦ), so L is regular.

An interesting application of Theorem 4.1 is the following. If V is not regular

language then, taking Γ = {V }, we get that the language 〈A, V,B, p, q〉 is regular,

for A and B regular languages and p and q arbitrary integers with p < q. Thus,

one can say that cyclic counting is a “regularizing” operation.

Other particular cases that can be derived from our work, and which were pre-

viously known, are the following:

If Γ = ∅ and P = ∅, then AC(P,Γ) is the class of star-free languages and its

associated logic is just FO(τ
Σ
) (see [3]).

If Γ = {{σ} : σ ∈ Σ} and P is the set of all prime numbers, then AC(P,Γ)

is the class of regular languages with corresponding syntactic monoid finite and
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solvable. The associated logic QP
Γ [FO](τ) is the extension of first-order logic with

cyclic counting quantifiers studied in [8].

Final Remarks. Since, for Γ1 := {{σ} : σ ∈ Σ} and P the set of prime integers,

we have that the logic QP
Γ1

[FO](τ) defines all regular languages with corresponding

syntactic monoid containing only solvable groups, a non solvable regular language

would be a set L ⊆ Σ∗, such that for some Γ ⊆ 2Σ+

with Γ 6= Γ1, and some

Q ⊆ Z
+, L is definable in QQ

Γ [FO](τ) but L is not definable in QP
Γ1

[FO](τ). From

Theorem 3.2 we get the following characterization for non–definability (Q and Γ

are arbitrary):

L is not definable in QQ
Γ [FO](τ) if, and only if,

for every α ∈ ∆∗ there exists words wα ∈ L, vα 6∈ L with wα ≡
(Γ,Q)
α vα.

Further work is to study the structural properties of the operation 〈A, V,B, p, q〉

for various kinds of context V . In particular to study the algebraic structure of the

syntactic monoid associated to 〈A, V,B, p, q〉 for various V . These ideas are the

subject of forth coming papers.

REFERENCES
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