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Abstract We present a new construction of continuous ARMA processes based
on iterating an Ornstein–Uhlenbeck operator OU ! that maps a random variable
y.t/ onto OU !y.t/ D

R t
!1 e!!.t!s/dy.s/. This construction resembles the procedure

to build an AR( p) from an AR(1) and derives in a parsimonious model for
continuous autoregression, with fewer parameters to compute than the known
CARMA obtained as a solution of a system of stochastic differential equations.
We show properties of this operator, give state space representation of the iterated
Ornstein–Uhlenbeck process and show how to estimate the parameters of the model.

1 Introduction

The link between discrete ARMA processes and stationary processes with contin-
uous time has been of interest for many years; see, e.g., [3, 6, 7]. Also, there is a
recent upsurge of interest in continuous time models, because they can be used in
presence of irregularly spaced data, and in non Gaussian processes mainly due to
the fact that jumps play an important role in realistic modeling in finance and other
fields of applications. One approach is via the stochastic volatility model from [2],
in which the volatility process V and the log asset price G satisfy:

dV.t/ D !"V.t/Cdƒ.t/ and dG.t/ D .#CˇV.t//dtC
p
V.t/dW.t/C$dƒ.t/;
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where ! > 0, ƒ is a non-decreasing Lévy process, and W is a standard Brownian
motion independent ofƒ. The volatility V is a Lévy driven Ornstein–Uhlenbeck (or
OU) process, or a continuous time autoregression of order 1. The autocorrelations
of V decay exponentially, hence they constitute a very restrictive family.

In order to include a wider family of covariances, econometric or physical models
apply frequently linear combinations (superpositions) of OU processes driven by
either uncorrelated or correlated noise

Pp
jD1 aj

R t
!1 e!"j.t!s/dƒj.s/ (see, e.g., [8]);

or models that replace the finite linear combination by a continuous version

Z t

sD!1

Z

<."/>0
e!".t!s/dƒ.s; "/I

see [3–5]. In particular, Brockwell [4, 5] proposes to define CARMA processes via
a state space representation of the formal equation a.D/Y.t/ D #b.D/Dƒ.t/, where
# > 0 is a scale parameter,D denotes differentiationwith respect to t,ƒ is a second-
order Lévy process, a is a polynomial of order p, and b is a polynomial of order
q ! p " 1 with coefficient bq D 1. When the zeroes of the AR polynomial are
all different, he obtains a representation of the CARMA as a sum of Lévy driven
Ornstein–Uhlenbeck processes. Brockwell estimates the CARMA parameters by
adjusting an ARMA( p; q), q < p, to regularly spaced data and then obtain the
parameters of the CARMA whose values at the observation times have the same
distribution of the fitted ARMA.

We propose in [1] a parsimonious model for continuous autoregression, with
fewer parameters, able to adjust slowly decaying covariances. The model is obtained
by a procedure that resembles the one that allows to build an AR( p) from an AR(1),
that we summarize in the sequel.

2 Iterated Lévy Driven Ornstein–Uhlenbeck Processes

The AR( p) process Xt D Pp
jD1 $jXt!j C #%t or $.B/Xt D #%t , where $.z/ D

1 " Pp
jD1 $jz

j D Qp
jD1.1 " z=&j/ has roots &j D e"j , is obtained by applying

the composition of the moving averages MA.1=&j/ to the noise, that is, Xt D
#
Qp

jD1MA.1=&j/%t, where MA.1=&/ is the moving average that maps %t onto
MA.1=&/%t D

P1
jD0

1
& j %t!j.

Let us denote MA" D MA.e!"/. A continuous version of the operator MA"

mapping %t onto MA"%t D P
l"t;integer e

!".t!l/%l is OU " that maps y.t/ onto
OU"y.t/ D

R t
!1 e!".t!s/dy.s/ and this suggests the use of the model OU( p) with a

second order Lévy processƒ,

x!;# .t/ D #

pY

jD1
OU "jƒ.t/ with parameters ! D ."1; : : : ; "p/; #: (1)
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Theorem 1 (OU( p) as a superposition of OU(1)) The Ornstein–Uhlenbeck
process (1) can be written as a linear combination of p processes of order 1:

.i/ when the components of ! are pairwise different, the linear combination is
x!;" D Pp

jD1 Kj.!/!"j , where !"j.t/ D
R t
!1 e!"j.t!s/d.#ƒ.s//, and coefficients

are Kj.!/ D 1=
Q
"l 6D"j.1 ! "l="j/;

.ii/ when ! has components "h repeated ph times (h D 1; 2; : : : ; q,
Pq

hD1 ph D p)
the linear combination is x!;" DPq

hD1 Kh.!/
Pph!1

jD0
!ph!1

j

"
!
. j/
"h , where !

. j/
"h .t/ DR t

!1 e!"h.t!s/ .!"h.t!s//
j

jŠ d.#ƒ.s//.

The autocovariances of x!;# are

%!;# .t/D
qX

h0D1

ph0!1X

i0D0

qX

h00D1

ph00!1X

i00D0
Kh0.!/ NKh00.!/

!ph0!1
i0
"!ph00!1

i00
"
%
.i0;i00/
"h0 ;"h00 ;# .t/:

3 A State Space Representation of the OU( p) Process

The decomposition of the OU. p/ process x!;# .t/ as a linear combination of simpler
processes of order 1, leads to an expression of the process by means of a state space
model. State space modelling provides us with a unified approach for computing
the likelihood of x!;# .t/ through a Kalman filter, and with a tool to show that the
covariances of x!;# .t/ coincide with those of an ARMA( p; p ! 1/ whose coefficients
can be computed from !.

In the sequel, in order to ease notation, we consider that the components of !
are all different. The decomposition of x!;# .t/ D

Pp
jD1 Kj!"j .t/ as a linear combination

of the OU(1) processes, given by Theorem 1, with innovations #! with components
&"j.t/ D

R t
t!1 e

!"j.t!s/dƒ.s/, provides a representation of the OU( p) process in the
space of states !! D .!"1 ; : : : ; !"p/

tr. The transitions in the state space are

$!.t/ D diag.e!"1 ; : : : ; e!"p /$!.t! 1/C#!.t/

and

x.t/ D Ktr.!/$.t/:

The assumption Eƒ.1/2 D 1 implies that the innovations have variance Var.#!;%.t// D
..vj;l//, where vj;l D E

R t
t!1 e

!."jCN"l/.t!s/ds D .1 ! e!."jCN"l//=."j C N"l/.
Now apply the AR operator

Qp
jD1.1 ! e!"jB/ to x! and obtain

pY

jD1

.1! e!"j B/x!.t/ D
pX

jD1

KjGj.B/&"j .t/ DW '.t/;

with Gj.z/ D
Q

l6Dj.1! e!"l z/ WD 1 !Pp!1
lD1 gj;lz

l.
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This process has the same second-order moments as the ARMA( p; p! 1). When
ƒ is a Wiener process, it is in fact an ARMA( p; p ! 1),

pY

jD1

.1! e!!j B/x!.t/ D
p!1X

jD0

"j#.t ! j/ DW $0.t/;

(# is a white noise) when the covariances cj D E$.t/ N$.t! j/ and c0j D E$ 0.t/ N$ 0.t! j/
coincide. The covariances c0j and cj are given respectively by the generating
functions

 p!1X

hD0
"hzh

! p!1X

kD0
N"kz!h

!
D

p!1X

lD!pC1
c0lz

l

and

J.z/ WD
pX

jD1

pX

lD1
Kj NKlGj.z/ NGl.1=z/vj;l D

p!1X

lD!pC1
clzl:

Since J.z/ can be computed once ! is known, the coefficients " D
."0; "1; : : : ; "p!1/ are obtained by identifying the coefficients of the polynomials
zp!1.

Pp!1
hD0 "hz

h/.
Pp!1

kD0 N"kz!h/ and zp!1J.z/.
A state space representation and its implications on the covariances of the OU

process in the general case are slightly more complicated.

4 Estimation

Though %.t/ depends continuously on !, the same does not happen with each term
in the expression for the covariance, because of the lack of boundedness of the
coefficients of the linear combination when two different values of the components
of ! approach each other. Since we wish to consider real processes x and the process
itself and its covariance %.t/ depend only on the unordered set of the components
of !, we shall reparameterize the process. With the notation

Kj;i D
1

.!!j/i
Q

l6Dj.1 ! !l=!j/
;

(in particular, Kj;0 is the same as Kj), the processes xi.t/ D Pp
jD1 Kj;i&j.t/ and

the coefficients # D .'1; : : : ;'p/ of the polynomial g.z/ D Qp
jD1.1 C !jz/ D

1 ! Pp
jD1 'jz

j satisfy
Pp

iD1 'ixi.t/ D x.t/. Therefore, the new parameter
# D .'1; : : : ;'p/ 2 Rp is adopted.
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4.1 The Gaussian Case

From the observations f! C x.i/ W i D 0; 1; : : : ; ng, we obtain the likelihood L of
the vector x D .x.1//; : : : ; x.n//,

logL.xI!; "/ D ! n
2
log.2#/! 1

2
log.det.V.!; "// ! 1

2
xtr.V.!; "//!1x;

with V.!; "/ equal to the n"nmatrix with componentsVh;i D $.jh!ij/, that reduce
to $.0/ at the diagonal, $.1/ at the first sub- and super-diagonals, and so on. Obtain
via numerical optimisation the MLE O! of ! and O"2 of "2. The estimations O" follow
by solving

Qp
jD1.1C O%jz/ D 1 !Pp

jD1 O&jzj.
The parameters "; " determine the Gaussian likelihood of OU";"w, and are

estimated by the values O" and O" that maximize that likelihood.

4.2 A Non Gaussian Example

Let us assume that the noise is given by ƒ.t/ D "w.t/ C c.N.t/ ! 't/, where
w is a standard Wiener process and N is a Poisson process with intensity '. The
family of possible noises depends on the three parameters .";'; c/. In this case, the
characteristic exponent has a simple form,

 ƒ.1/.iu/ D !"
2u2

2
C '.eiuc ! iuc ! 1/

hence,

 #.iu/ D
Z 1

0

!
!"

2u2g2.s/
2

C '.eiug.s/c ! iug.s/c ! 1/

"
ds:

With gh D
R 1
0 gh.s/ds,

 #.iu/ D !"
2u2g2
2

C '

!
!u2g2c2

2
! i

u3g3c3

6
C u4g4c4

24
C # # #

"
:

Then we propose to estimate the parameters by equating the coefficients of
u2; u3; u4 in  #.iu/ with the corresponding ones in the logarithm of the empirical
characteristic function of the residuals. Assuming that the mean of the residuals
r1; r2; : : : ; rn is zero, their empirical characteristic function is

1

n

nX

hD1
eiurh D 1 ! 1

2
u2R2 ! 1

6
iu3R3 C

1

24
u4R4 C # # # ;



106 A. Arratia et al.

where Rm D .
Pn

hD1 r
m
h /=n. Then, the logarithm has the expansion

log
1

n

nX

hD1
eiurh D !1

2
u2R2 ! 1

6
iu3R3 C

1

24
u4R4 ! 1

8
u4R22 C " " " :

Consequently, the estimation equations are .!2 C "c2/g2 D R2, "c3g3 D R3, and
"c4g4 D R4 ! 3R22, from which the estimators follow:

Qc D R4 ! 3R22
R3

g3
g4
; Q" D R43

.R4 ! 3R22/3
g34
g43
; Q!2 D R2

g2
! R23
.R4 ! 3R22/

g4
g23
:

5 Conclusions

We have proposed a family of continuous time stationary processes, based on
p iterations of the linear operator that maps a Lévy process onto an Ornstein–
Uhlenbeck process. These operators have some nice properties, such as being
commutative, and their p-compositions decompose as a linear combination of
simple operators of the same kind. An OU. p/ process depends on pC 1 parameters
that can be easily estimated by either maximum likelihood (ML) or by matching
correlations procedures. Matching correlation estimators provide a fair estimation
of the covariances of the data, even if the model is not well specified. When sampled
on equally spaced instants, the OU. p/ family can be written as a discrete time state
space model; i.e., a VARMA model in a space of dimension p. As a consequence,
the families of OU. p/models are a parsimonious subfamily of the ARMA. p; p!1/
processes in the Gaussian case. Furthermore, the coefficients of the ARMA can be
deduced from those of the correspondingOU. p/. We have found time series data for
which the ML-estimated OU model is able to capture a long term dependence that
the ML-estimated ARMA model does not show; see [1]. This leads to recommend
the inclusion of OU models as candidates to represent stationary series to the users
interested in such kind of dependence.
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