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Abstract

We show how the fact that there is a first-order projection with successor from the problem
TC (transitive closure) to some other problem (2 enables us to automatically deduce that a
natural game problem, £G(2), whose instances are labelled instances of 2, is complete for
PSPACE (via log-space reductions). Our analysis is strongly dependent upon the reduction
from TC to Q being a logical projection in that it fails should the reduction be, for example,
a log-space reduction or a quantifier-free first-order translation with successor.

1 Introduction

In this note, we show how the existence of a first-order projection with successor (a
very restricted type of logical reduction) from the problem TC (transitive closure) to
some other problem (2 enables one to automatically deduce that a natural game prob-
lem, £G (), whose instances are labelled instances of 2, is complete for PSPACE
(via log-space reductions). Many problems have been shown to be complete for NL,
and for complexity classes containing NL, via first-order projections with successor,
and so there is a wealth of contenders for the problem € (as TC is in NL). It turns
out that the notion of a first-order projection with successor is ezactly the notion we
require for our main result to hold and for it to be widely applicable. Completeness
via stronger reductions, such as log-space or polynomial-time reductions, or other
logical reductions, such as quantifier-free first-order translations with successor, does
not suffice.
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2 Logical reductions

We begin with some definitions. The reader is referred to [1, 4] for more details. A
signature o is a tuple (Ry,...,Ry,,C1,...,C.), where each R; is a relation symbol,
of arity a; > 0, and each C; is a constant symbol. A finite structure A over the
signature o, or o-structure, consists of a finite universe or domain |A| together with
a relation R; of arity a;, for every relation symbol R;, and a constant C; € |A],
for every constant symbol C; (we do not distinguish between relations and relation
symbols and between constants and constant symbols). A finite structure .4 whose
domain consists of n distinct elements has size n, and we denote the size of A by |A]
also (this does not cause confusion). We only ever consider finite structures of size
at least 2, and the class of all finite structures of size at least 2 over the signature o
is denoted STRUCT (o). A problem over some signature o consists of a sub-class of
STRUCT (o) that is closed under isomorphism; that is, if A is in the problem then so
is every isomorphic copy of A. Throughout, all our structures are finite.

Immerman [3] obtained some very strong complexity-theoretic completeness re-
sults where the notion of reduction was a first-order projection with successor. Rather
than give a general definition of a first-order projection with successor, we shall ex-
plain what it means for such a reduction to exist between two specific problems. The
general definition can be found in detail in [4].

Let the signature o244 consist of the binary relation symbol E and the two con-
stant symbols C' and D. We can think of a o2y 4-structure as a digraph with two
designated vertices (which may be identical). The problem TC consists of all those
09+-structures with the property that there is a path in the digraph from the vertex
C to the vertex D.

Let the signature o2 consist of two binary relation symbols P and N. We can
think of a o2 -structure A as a collection of clauses of Boolean literals as follows.
There is a Boolean variable X,, and a clause C,, for every element u € |A|. The
literal X, is in the clause C, if, and only if, P(u,v) holds in 4; and the literal - X,
is in the clause C, if, and only if, N(u,v) holds in A. The problem SAT consists of
all those o3 2-structures with the property that there is a truth assignment on the
Boolean variables such that at least one literal in every non-empty clause is set at
true.

Suppose that there exists a positive integer k and two first-order formulae pp and
N over the signature oa4 4 such that the free variables of pp and ¢n are amongst
the two k-tuples of variables x and y (all variables are distinct). Let A be a ooy -
structure of size n. We shall use the formulae pp and ¢n to build a o4 s-structure
p(A). The domain of p(A) is |A|* and for every u,v € |Al¥, the literal X,, (resp.
—Xy) is in the clause Cy if, and only if, pp(u,v) (resp. ¢n(u,v)) holds in A. If
it is the case that A € TC if, and only if, p(A4) € SAT then we say that there is a
first-order translation from TC to SAT.

It turns out that first-order translations are too restricted to describe many
complexity-theoretic reductions. However, this difficulty can often be alleviated by
augmenting such translations with a built-in successor relation. Let succ be a bi-
nary relation symbol and let 0 and maz be two constant symbols (we assume that
suce, 0 and maz do not appear in any signature). Suppose that our formulae ¢p
and ¢y, above, are actually over the signature ooy U {suce,0, maz) and let A be a



024 4-structure of size n. Denote by S(A) the class of expansions of .4 by a successor
relation succ with minimal element 0 and maximal element max; that is, by a relation
succ of the form

{(0,u1), (u1,u2), ..., (Up—2,maz)},

where 0,uy,us,...,u,_2, maz are all distinct. Clearly, by proceeding as above, any
structure (A, suce, 0, maz) in S(A) yields a oy s-structure p(A, succ,0,maz). If it is
the case that for every oq-structure A and for every expansion (A, succ, 0, maz) €

S(A),

e A € TC implies that p(A, succ, 0, mazx) € SAT
and

e A ¢ TC implies that p(A, succ,0, mazx) ¢ SAT

then we say that there is a first-order translation with successor from TC to SAT.
Whilst first-order translations with successor can be used to describe many
complexity-theoretic reductions, we can often get by with restrictions of first-order
translations with successor (but not so that we dispense with a built-in successor
relation). Suppose further that the formulae pp and ¢ are both of the form

Oé()V((Jél/\ﬂl)V(ag/\ﬂz)V...V(Otm/\,Bm),

for some m > 0 (depending upon ¢p or py), where: each «; is a first-order for-
mula over the signature (C, D) U (succ, 0, max); and each §; is an atomic or negated
atomic formula involving the relation symbol E. If it is the case that for every A €
STRUCT (0244 ) and for both pp and ¢y, the formulae ag,ay, ..., a,, are mutually
exclusive, i.e., for every u,v € |A[¥, at most one of ag(u,v),a;(u,v),. .., an(u,v)
holds in A, then we say that there is a first-order projection with successor from TC
to SAT.

We should add that in the general case, when a first-order projection with successor
from a problem over some signature o to a problem over some signature ¢’ is such that
the ‘target’ o’-structure (a o9 2-structure in the illustration above) involves constants
then we diverge from the usual definition (as given in [4], for example). In order to
describe a constant of o', we insist that the describing formula be a first-order formula
1(x), where x is a k-tuple of variables (following in the vein of our illustration above),
where there is exactly one k-tuple u € |A|¥ for which ¢(u) holds in A and where ¢
involves no relation symbols of o. This slight modification will be important later on.

First-order projections with successor are so called for the following reason. Fix
n > 2, a domain U of size n, two elements C and D of U (possibly identical) and
a successor relation succ (with minimal element 0 and maximal element maz) on
this domain. Consider the expansion (A, succ, 0, maz) of the oy -structure A with
domain U and with constants C and D. Let us focus on some literal =X, and clause
Cy, say, of the oy »-structure p(A, succ,0,maz) (with the notation as above). As to
whether the literal - X, appears in the clause C, depends upon two things: whether
some «; in @y is such that a;(u,v) holds (a fact independent of A, in so far as n, C,
D and succ have been fixed); and if so then whether §;(u, v) holds, if ¢ > 0. Note that
whether 3;(u,v) holds depends upon at most one ‘bit’ of .A. Roughly, as to whether



a ‘bit’ of p(A, succ,0, mazx) is ‘on’ or ‘off’ depends upon whether at most one ‘bit’ of
(A, succ,0,mazx) is ‘on’ or ‘off’; hence the name ‘projection’.

Immerman introduced first-order projections with successor in [3] where he exhib-
ited complete problems for the complexity classes L, NL and P via such reductions
(in fact, via quantifier-free projections with successor). Since then, a number of other
such logical completeness results have been obtained (see, for example, [6, 7]). How-
ever, it should be noted that although the built-in successor can be dispensed with
in some logical completeness results for NP (see, for example, [7]), no completeness
results via logical reductions without a built-in successor are known for complexity
classes ‘contained in’ NP, like L, NL and P. Hence, we phrase our results in terms
of first-order projections with successor for wider applicability.

We have one final remark. Even though we have restricted the usual definition of a
first-order projection with successor (in comparison with Immerman’s [4]), it turns out
that many of the concrete first-order projections with successor from the literature
are actually first-order projections with successor according to our definition. For
example, the problem TC is complete for NL via our first-order projections (see [3])
and all the first-order projections with successor in [6, 7] conform to our definition.

3 Labelled structures and games

We begin by explaining how we label structures and how we play games on these
labelled structures. In some o-structure A, if R is a relation symbol of ¢ of ar-
ity a and R(ui,us,...,u,) holds, for some uj,ua,...,u, € |A|, then we say that
R(u1,us,...,u,) is an instantiation of A.

Definition 1 Let .4 be a o-structure, let L be a set of labels and let -L = {~l : l € L}
be another (disjoint) set of labels. A labelled o-structure A(A) is the o-structure A
with some of its instantiations labelled with some label from the set L U L. O

When discussing labelled o-structures, we use the symbols of the signature o to
refer to the underlying instantiations of the labelled o-structure. For example, if R is
a ternary relation symbol in ¢ and A(A) is a labelled o-structure then by ‘R(a, b, c)
holds in A(A)’ we mean ‘R(a,b,c) holds in A and there may or may not be a label
associated with this instantiation’.

Definition 2 Let A(A) be some labelled o-structure (with label set L U —~L). The
labelled game on A(A) is defined as follows. The game is played by amending the
labelled o-structure A(A) and there are two players, Player 1 and Player 2, who make
alternate moves with Player 1 moving first.

e A move by Player 1 is as follows. Player 1 chooses some label [ € L. Player
1 then removes this label from all the instantiations of A(A) which happen to
be labelled with I and also removes any instantiation from A(A) which happens
to be labelled with —l. Hence, after such a move by Player 1: there are no
instantiations labelled [ or —l; every instantiation previously labelled [ appears
in the amended structure without a label; and every instantiation previously
labelled —I no longer appears (labelled or unlabelled) in the amended structure.



e A move by Player 2 is almost identical to a move by Player 1 except that the roles
of L and —L are reversed. That is, Player 2 chooses some label -/ € —L. Player
2 then removes this label from all the instantiations of A(A) which happen
to be labelled with =/ and also removes any instantiation from A(A) which
happens to be labelled with /. Hence, after such a move by Player 2: there
are no instantiations labelled [ or —I; every instantiation previously labelled
-l appears in the amended structure without a label; and every instantiation
previously labelled ! no longer appears (labelled or unlabelled) in the amended
structure.

Players 1 and 2 make moves until there are no more labels left to choose. Once [ € L
or -/ € =L has been chosen by some player, henceforth neither [ nor -l is ever chosen
by any player again. Note that a player might choose a label [ € L or -l € =L and
there might be no instantiations labelled ! or —I: then A\(A) suffers no amendment.
What is left at the end of a play is a o-structure.

The conditions for a play to be a winning play for some player depend on the
context. Let {2 be some problem over o. Player 1 wins a play of the labelled game on
A(A) in the context of Q if, and only if, the resulting o-structure obtained through
the moves of Players 1 and 2 is in Q. 0

Definition 3 Let Q be some problem over . An instance of the problem L£G()
is a labelled o-structure A\(A), and A(A) is a yes-instance if Player 1 has a winning
strategy in the labelled game on A(A) in the context (2. O

Although the sets of labels used in different instances of £G(Q2), where Q is a
problem over o, might be different, we always assume that the size of a label set
associated with any o-structure of size n is bounded by some (fixed) polynomial in n.

Example 4 Consider the labelled o2 -structure A(A) in Fig. 1. One can show that
this is a yes-instance of the problem £G(TC), i.e., that Player 1 has a winning strategy
for the labelled game on A(A) in the context of TC, as follows. Player 1 chooses [
and Player 2 must choose —r as otherwise Player 1 will choose r so as to yield a path
from the source to the sink. Player 1 now chooses ¢ and Player 2 can not choose —p
as this would yield a path from the source to the sink. Player 1 now chooses p. O

source
Figure 1. A labelled digraph.



4 Our main result
Lemma 5 If Q is a problem in PSPACE then £G(Q) is in PSPACE.

Proof (Sketch) Suppose that 2 is a problem over o. In order to verify whether
Player 1 has a winning strategy in the labelled game on some labelled o-structure
in the context of 2, we proceed as follows. Observe that we can store a play of the
game as a list of label choices made by the players. We begin by guessing a choice for
Player 1 and storing this as the first element of our list (note that it suffices to exhibit
a non-deterministic polynomial-space algorithm as PSPACE = NPSPACE). For
every possible choice for Player 2, which we make in turn and record as the second
element of the list, we guess a choice for Player 1, which we record as the third element
of the list, and we continue in this fashion. As 2 is in PSPACE, we can evaluate
using polynomial-space whether the resulting o-structure obtained from a play is in
. The space used in our ‘house-keeping’ (as regards ensuring that we check, for
example, that every possible first choice for Player 2 has actually been checked) is
again polynomial and so the result follows. O

The following problem will be central to what follows. The problem HEX-EDGES
is a problem over the signature o2 and consists of those digraphs G' (equipped with
a source s and a sink t) for which Player 1 has a winning strategy in the following
2-player game called Hez-Edges. A play of the game consists of Player 1 making the
first move and the 2 players moving alternately thereafter until there are no unmarked
edges remaining. Initially, all edges of G are unmarked. A move by Player 1 consists
of marking an unmarked edge of G as ‘retained’; and a move of Player 2 consists of
marking an unmarked edge of G as ‘dispensed’. Player 1 wins a play of the game
if, and only if, when all edges have been marked there is a path of edges marked
‘retained’ leading from the source s to the sink ¢. The problem HEX-EDGES was
proven to be PSPACE-complete by Even and Tarjan [2].

We are now in a position to prove our main result.

Theorem 6 Suppose that there is a first-order projection with successor from TC to
some problem Q. Then there is a log-space reduction from HEX-EDGES to LG().
Hence, LG(Q) is complete for PSPACE wvia log-space reductions.

Proof Let p be our first-order projection with successor from TC to (2, and let us
suppose that 2 is over o. Consider some o2 -structure A of size n. From our earlier
discussion of first-order projections with successor, for any relation symbol R (of arity
a) of o and for any tuple u (of length a) over |A|, as to whether R(u) holds in p(A)
depends upon at most one instantiation of .A. There are four possibilities.

(a) R(u) holds in p(A) if, and only if, E(a,b) holds in A, for some a,b € |A|.
(b) R(u) holds in p(A) if, and only if, =F(a, b) holds in A, for some a,b € |A|.
(¢) For every oaqy-structure B of size n, R(u) holds in p(B).
(d)

d) For every oay-structure B of size n, =R(u) holds in p(B).



Let us construct a labelled o-structure A(p(A)) according to the cases above. For
every relation symbol R (of arity a) of o and for every tuple u (of length a) over

Ip(A)l:

e if case (a) applies and E(a,b) holds in A then R(u) holds in A(p(A)) and we
label this instantiation with the label E(a,b);

e if case (a) applies and =E(a, b) holds in A then R(u) does not hold in A(p(A));

e if case (b) applies and E(a,b) holds in A then R(u) holds in A(p(A)) and we
label this instantiation with the label —E(a, b);

e if case (b) applies and —E(a,b) holds in A then R(u) holds in A(p(A)) and we
do not attach any label to this instantiation;

e if case (c) applies then R(u) holds in A(p(.A)) and we do not attach any label
to this instantiation; and

e if case (d) applies then R(u) does not hold in A(p(A)).

Note that the labels actually appearing in A(p(A)) come from {E(a,b),-E(a,b) :
a,b € |A|, E(a,b) holds in A}; that is, the edges of the digraph A (recall that when
a constant is defined via a first-order projection with successor, the defining formula
contains no symbols from the underlying signature and so a constant in A(p(A))
depends solely on the size of .A). We define the label set L to be {E(a,b) : a,b €
|A|, E(a,b) holds in A} and the label set =L to be {—=FE(a,b) : a,b € |A|, E(a,b) holds
in A}.

We associate moves by the players in the game of Hex-Edges on A and moves by
the players in the labelled game on A\(p(A)) as follows.

e If Player 1 in the game of Hex-Edges on A chooses to include an edge E(a,b) of
the digraph A then Player 1 in the labelled game on A(p(A)) chooses the label
E(a,b).

e If Player 2 in the game of Hex-Edges on A chooses to exclude an edge E(a,b) of
the digraph A then Player 2 in the labelled game on A(p(A)) chooses the label
—|E(a, b) .

e If Player 1 in the labelled game on A\(p(A)) chooses the label E(a,b) then Player
1 in the game of Hex-Edges on A chooses to include the edge E(a,b) of the
digraph A.

e If Player 2 in the labelled game on A(p(A)) chooses the label —E(a,b) then
Player 2 in the game of Hex-Edges on A chooses to exclude the edge E(a,b) of
the digraph .A.

Suppose that Player 1 has a winning strategy in the game of Hex-Edges on A and
suppose that Player 1’s first move in this winning strategy is . Then in the labelled
game on A(p(A)), Player 1’s first move is the dual move §(«) of a (dual according to
the association described above). Suppose that Player 2 replies in the labelled game
on A(p(A)) with the move 8. Make the dual move §(8) by Player 2 in the game of
Hex-Edges on A and suppose that Player 1 replies in the game of Hex-Edges on A



with the move 7. Then in the labelled game on A(p(.A)) make the dual move §(7y) by
Player 1. Thus, by continuing in this fashion, we obtain a strategy for Player 1 in
the labelled game on A(p(A)). However, note how the two remaining structures, i.e.,
the o944 -structure A’ remaining after the play of the game of Hex-edges on A and
the o-structure p(A)' remaining after the play of the labelled game on A(A), are such
that p(A)' is none other than p(A'). Hence, A’ is a yes-instance of TC if, and only
if, p(A)' is a yes-instance of 2, i.e., Player 1 wins the game of Hex-Edges on A if,
and only if, Player 1 wins the labelled game on A(p(A)) in the context of Q. Thus, if
Player 1 has a winning strategy in the game of Hex-Edges on A then Player 1 has a
winning strategy in the labelled game on A(p(A)) in the context of Q. The converse
is obtained similarly and the result follows from Lemma 5 and [2] (as the labelled
o-structure A(p(A)) can clearly be constructed from A using O(logn) space). O

Note in the proof of Theorem 6 our reliance on the reduction from TC to Q2 being
a (first-order) projection with successor. Our target structure A(p(A)) will not be
labelled with one ‘bit’ of the source structure unless our reduction is a projection.
Note also the generality of (the proof of) Theorem 6. Not only can we take the
problem Q to be any problem complete via first-order projections with successor
for some complexity class containing NL (there are many such problems: see, for
example, [4, 6, 7]): the proof also holds in the situation where we have a first-order
projection with successor from any problem Q' to any problem Q. We focus on TC
because the resulting game, that is, Hex-Edges, has been previously studied and its
complexity classified; and we use this classification as our starting point.

As an illustration of how we might apply Theorem 6, by [4] there is a first-order
projection with successor p such that:

e for every ooy -structure A, p(A) is a o2 2-structure such that when considered
as a Boolean formula in conjunctive normal form, every clause has exactly 0 or
2 literals; and

e A€ TCif, and only if, p(A) is satisfiable.

Applying the proof of Theorem 6 to the first-order projection with successor p, we ob-
tain that the following decision problem LABELLED-4-SAT is complete for PSPACE
via log-space reductions.

e An instance is a Boolean formula C in conjunctive normal form where every
clause has exactly 4 literals, the ground literals, over some set of Boolean vari-
ables G, and where associated with each occurrence of a literal in some clause
is another literal, a label literal, over a set L of Boolean variables disjoint from
G such that the label literals associated with some clause are X, =X, Y and
—Y, for some (possibly identical) Boolean variables X and Y from L.

e A yes-instance is an instance where Player 1 has a winning strategy in the
following game:

— Players 1 and 2 alternate in making moves, with Player 1 moving first,
where a move by Player 1 consists of choosing a positive label literal and a
move by Player 2 consists of choosing a negative label literal (where once
a label literal is chosen neither it nor its negation can be chosen by any
player henceforth);



— a play ends when for every Boolean variable Z from L, either Z or —Z has
been chosen by some player; and

— Player 1 wins a play if, and only if, the 2-CNF Boolean formula obtained
from C by only including those occurrences of ground literals in clauses
where the associated label literal has been chosen by either Player 1 or
Player 2 is satisfiable.

Example 7 Consider the labelled conjunctive normal form formula in Fig. 2. If
Player 1 begins by choosing the label literal Z then no matter how Player 2 plays,
Player 1 can choose a positive label literal so that the resulting conjunctive normal
form formula (obtained at the end of the play) has exactly two ground literals in
each of its clauses and is satisfiable. Hence, the instance in Fig. 2 is a yes-instance of
LABELLED-4-SAT. O

Z ~Z XX X X Y Y Z —/Z Y Y
(cOaOaUa)O(b0OcO-b0Ob) O(—cU—a b O—a)
Figure 2. An instance of LABELLED-4-SAT.

The problem LABELLED-4-SAT can be further transformed into a problem whose
instances involve only (unlabelled) Boolean formulae; for we can transform the label
literals into ground literals. Consider some instance I of LABELLED-4-SAT in which
some ground literal ~y, say, is labelled with the label literal A. We can replace this
occurrence in the clause with the formula (AA«). Hence, the instance I can be thought
of as a conjunction of disjunctions of 4 conjunctions involving 2 literals where the two
literals come from disjoint sets, the first being a label literal and the second being
a ground literal. Furthermore, the label literals of each pair in a disjunction of 4
conjunctions are always of the form X, Y, =X and —Y, for some Boolean variables
X and Y from @. Call this new instance f(I). It is straight-forward to see that I is
a yes-instance of LABELLED-4-SAT if, and only if, Player 1 has a winning strategy
in the following two-player game:

e Players 1 and 2 alternate in making moves, with Player 1 moving first, where a
move by Player 1 consists of setting a positive label literal to true and a move
by Player 2 consists of setting a negative label literal to true;

e 3 play ends when every label literal has been set as either true or false; and

e Player 1 wins a play if, and only if, the 2-CNF Boolean formula remaining is
satisfiable (note that the remaining CNF Boolean formula is indeed a 2-CNF
Boolean formula and can be evaluated in polynomial-time).

As further applications of Theorem 6, consider the following two problems. The
problem 2AD2 consists of those o2 4 -structures which, when realised as digraphs: are
acyclic; are such that every vertex has in- and out-degree at most 2; and have a path
from vertex C to vertex D. Define o2 = (E), where E is a binary relation symbol. The
problem STRONG consists of those o2-structures which, when realised as digraphs,
are strongly connected. Both 2AD2 and STRONG were proven in [7] to be complete
for NL via first-order projections with successor. Moreover, it was shown that any



problem 2 in NL can be reduced to 2AD2 by a first-order projection with successor
so that any instance of © (yes or no) is reduced to an acyclic digraph for which
every vertex has in- and out-degree at most 2. Theorem 6 implies that the problems
LG(2AD2) and LG(STRONG) are PSPACE-complete via log-space reductions.

5 Some additional remarks

We have seen that we can use the existence of a first-order projection with successor
from TC to a problem  to automatically show that the problem £G(Q) is PSPACE-
complete. Our approach is applicable to many problems 2. However, using this
approach, the computational complexity of Q will always be NL-hard. A question
arises as to whether there exist problems {2 of ‘lower’ complexity, e.g., in L, for which
the problem £G(Q) is still PSPACE-complete. The answer is ‘yes’.

Consider the following problem BAGS over the signature o2 2 = (P, N) (where P
and N are relation symbols of arity 2). We interpret a o2 2-structure A as a description
of whether certain persons either put a peach or a nectarine in a collection of bags
via: if P(4,7) holds in 4 then person i puts a peach into bag j; and if N (%, ) holds
in A then person ¢ puts a nectarine in bag j. A o3 s-structure A is in BAGS if, and
only if, A describes a collection of bags with the property that every non-empty bag
contains at least one peach. The problem BAGS can be described by the following
first-order sentence:

Vy(Fz(P(z,y) V N(z,y)) = Iz P(z,y)).

It is easy to see that there is an encoding of the problem BAGS as a set of strings over
{0,1} and a deterministic Turing machine M running in constant space such that M
accepts exactly those strings encoding yes-instances of BAGS.

We shall now show that £G(BAGS) is PSPACE-complete. In order to do this, we
shall use the fact that the following problem VPTA (standing for Variable-Partition-
Truth-Assignment) is PSPACE-complete. A go-structure 4 can be interpreted as a
collection of clauses of Boolean variables via: E(, j) holds in A if, and only if, Boolean
variable X; appears in clause Cj. The problem VPTA consists of those o,-instances
for which Player 1 has a winning strategy in the following two-player game:

e Players 1 and 2 alternate in making moves, with Player 1 moving first, where a
move by Player 1 consists of setting a Boolean variable to true and a move by
Player 2 consists of setting a Boolean variable to false;

e a play ends when every Boolean variable has been set as either true or false;
and

e Player 1 wins a play if, and only if, the resulting truth assignment is a satisfying
truth assignment of the original collection of clauses.

The problem VPTA was proven to be PSPACE-complete by Shaefer [5].

We shall now show that there is a log-space reduction from VPTA to LG(BAGS).
Consider an instance I of VPTA. If the Boolean variable Xj; is in clause C; then we
shall insist that person ¢ place a peach in bag j and we shall label this peach with
the Boolean variable X;, and we shall also insist that person ¢ places a nectarine in
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bag 7 and we shall label this nectarine with the Boolean literal —X;. This results in
an instance f(I) of LG(BAGS). Note that the non-empty bags of f(I) correspond in
a one-to-one way with the non-empty clauses in I; and that no matter what the play
in the game LG(BAGS) on f(I), the resulting non-empty bags will be exactly the
non-empty bags at the beginning. It is trivial to see that I is a yes-instance of VPTA
if, and only if, f(I) is a yes-instance of LG(BAGS). Hence, we obtain the following.

Proposition 8 LG(BAGS) is PSPACE-complete. O

We conclude that there does not appear to be any obvious link between the com-
plexity of a problem Q and the complexity of the resulting game-problem L£G().

The reader may be attempting to apply the following line of reasoning. “If there
is a first-order projection with successor from BAGS to some problem ) then there
must be alog-space reduction from £G(BAGS) to LG(Q2). As LG(BAGS) is PSPACE-
complete then so £LG(2) is PSPACE-complete. As there is a first-order projection
with successor from BAGS to TC and first-order projections with successor are tran-
sitive then Theorem 6 should be phrased around BAGS instead of TC (for more
applicability).” However, the very first assumption in this line of reasoning fails (or
at least it does not follow from the construction in the proof of Theorem 6). Note that
in the proof of Theorem 6, the game we play on an instance of TC, that is, Hex-Edges,
is not the same as the game we play on a labelled digraph: what we exploited was that
the game of Hex-Edges had been previously classified, in a complexity-theoretic sense.
Nevertheless, it still may be the case that the existence of a first-order projection with
successor from BAGS to some problem (2 implies that £G(Q) is PSPACE-complete.
We do not pursue this point any further in this note as our main intention has been
to establish a link between restricted logical reductions and automatic proofs of com-
pleteness.
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