Transfer Learning Algorithms for Image Classification

Ariadna Quattoni
MIT, CSAIL

Advisors:
Michael Collins
Trevor Darrell
Motivation

Goal:

- We want to be able to build classifiers for thousands of visual categories.
- We want to exploit rich and complex feature representations.

Problem:

- We might only have a few labeled samples per category.
Thesis Contributions

- We study efficient transfer algorithms for image classification which can exploit supervised training data from a set of related tasks.

- Learn an image representation using supervised data from auxiliary tasks automatically derived from unlabeled images + meta-data.

- A feature sharing transfer algorithm based on joint regularization.

- An efficient algorithm for training jointly sparse classifiers in high dimensional feature spaces.
Outline

- A joint sparse approximation model for transfer learning.
- Asymmetric transfer experiments.
- An efficient training algorithm.
- Symmetric transfer image annotation experiments.
Transfer Learning: A brief overview

- The goal of transfer learning is to use labeled data from related tasks to make learning easier. Two settings:

- Asymmetric transfer:
 Resource: Large amounts of supervised data for a set of related tasks.
 Goal: Improve performance on a target task for which training data is scarce.

- Symmetric transfer:
 Resource: Small amount of training data for a large number of related tasks.
 Goal: Improve average performance over all classifiers.
Transfer Learning: A brief overview

- Three main approaches:
 - Learning priors over parameters: [Raina 2006, Lawrence et al. 2004]
 - Learning relevant shared features via joint sparse regularization: [Torralba 2004, Obozinsky 2006]
Feature Sharing Framework:

- Work with a rich representation:
 - Complex features, high dimensional space
 - Some of them will be very discriminative (hopefully)
 - Most will be irrelevant

- Related problems may share relevant features.

- If we knew the relevant features we could:
 - Learn from fewer examples
 - Build more efficient classifiers

- We can train classifiers from related problems together using a regularization penalty designed to promote joint sparsity.
<table>
<thead>
<tr>
<th>Church</th>
<th>Airport</th>
<th>Grocery Store</th>
<th>Flower-Shop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related Formulations of Joint Sparse Approximation

- Torralba et al. [2004] developed a joint boosting algorithm based on the idea of learning additive models for each class that share weak learners.

- Obozinski et al. [2006] proposed L_{1-2} joint penalty and developed a blockwise boosting scheme based on Boosted-Lasso.
Our Contribution

A new model and optimization algorithm for training jointly sparse classifiers in high dimensional feature spaces.

- Previous approaches to joint sparse approximation (Torralba et al., 2004, Obozinski et al., 2006;) have relied on greedy coordinate descent methods.

- We propose a simple an efficient global optimization algorithm with guaranteed convergence rates $O\left(\frac{1}{\varepsilon^2}\right)$

- Our algorithm can scale to large problems involving hundreds of problems and thousands of examples and features.

- We test our model on real image classification tasks where we observe improvements in both asymmetric and symmetric transfer settings.

- We show that our algorithm can successfully recover jointly sparse solutions.
Notation

Collection of Tasks

\[\mathbf{D} = \{D_1, D_2, \ldots, D_m\} \]

\[D_k = \{(x_1^k, y_1^k), \ldots, (x_{n_k}^k, y_{n_k}^k)\} \]

\[\mathbf{x} \in \mathbb{R}^d \quad \mathbf{y} \in \{+1, -1\} \]

\[
W \rightarrow \\
\begin{bmatrix}
W_{1,1} & W_{1,2} & \cdots & W_{1,m} \\
W_{2,1} & W_{2,2} & \cdots & W_{2,m} \\
\vdots & \vdots & \ddots & \vdots \\
W_{d,1} & W_{d,2} & \cdots & W_{d,m}
\end{bmatrix}
\]
Single Task Sparse Approximation

- Consider learning a single sparse linear classifier of the form:
 \[f(x) = w \cdot x \]

- We want a few features with non-zero coefficients

- Recent work suggests to use L$_1$ regularization:

 \[
 \arg \min_w \sum_{(x,y) \in D} l(f(x), y) + \lambda \sum_{j=1}^d |w_j|
 \]

 - Classification error
 - L$_1$ penalizes non-sparse solutions

- Donoho [2004] proved (in a regression setting) that the solution with smallest L$_1$ norm is also the sparsest solution.
Joint Sparse Approximation

Setting: Joint Sparse Approximation

\[f_k(x) = w_k \cdot x \]

\[
\arg\min_{w_1, w_2, \ldots, w_m} \sum_{k=1}^{m} \frac{1}{|D_k|} \sum_{(x,y) \in D_k} l(f_k(x), y) + Q R(w_1, w_2, \ldots, w_m)
\]

- Average Loss on training set \(k \)
- Penalizes solutions that utilize too many features
Joint Regularization Penalty

- How do we penalize solutions that use too many features?

\[
\begin{bmatrix}
W_{1,1} & W_{1,2} & \cdots & W_{1,m} \\
W_{2,1} & W_{2,2} & \cdots & W_{2,m} \\
\vdots & \vdots & \ddots & \vdots \\
W_{d,1} & W_{d,2} & \cdots & W_{d,m}
\end{bmatrix}
\]

Coefficients for classifier 2

\[R(W) = \# non-zero rows \]

- Would lead to a hard combinatorial problem.
Joint Regularization Penalty

- We will use a $L_{1-\infty}$ norm [Tropp 2006]

$$R(W) = \sum_{i=1}^{d} \max_{k} |W_{ik}|$$

- This norm combines:

 The L_{∞} norm on each row promotes non-sparsity on the rows. \rightarrow Share features

 An L_{1} norm on the maximum absolute values of the coefficients across tasks promotes sparsity. \rightarrow Use few features

- The combination of the two norms results in a solution where only a few features are used but the features used will contribute in solving many classification problems.
Joint Sparse Approximation

- Using the $L_{1-\infty}$ norm we can rewrite our objective function as:

$$
\min_w \sum_{k=1}^{m} \frac{1}{D_k} \sum_{(x,y) \in D_k} l(f_k(x), y) + \Omega \sum_{i=1}^{d} \max(|W_{ik}|)
$$

- For any convex loss this is a convex objective.

- For the hinge loss: $l(f(x), y) = \max(0, 1 - yf(x))$
 the optimization problem can be expressed as a linear program.
Joint Sparse Approximation

- Linear program formulation (hinge loss):

 - Objective:
 \[
 \min_{[w,\varepsilon,t]} \sum_{k=1}^{m} \frac{1}{|D_k|} \sum_{j=1}^{|D_k|} \varepsilon_j^k + Q \sum_{i=1}^{d} t_i
 \]

 - Max value constraints:
 \(for\; k = 1 : m \; \text{and} \; for\; i = 1 : d\)

 \[-t_i \leq w_{ik} \leq t_i\]

 - Slack variables constraints:
 \(for\; k = 1 : m \; \text{and} \; for\; j = 1 : |D_k|\)

 \[y_j^k f_k(x_j^k) \geq 1 - \varepsilon_j^k\]

 \[\varepsilon_j^k \geq 0\]
Outline

- A joint sparse approximation model for transfer learning.
- Asymmetric transfer experiments.
- An efficient training algorithm.
- Symmetric transfer image annotation experiments.
Setting: Asymmetric Transfer

- SuperBowl
- Sharon
- Danish Cartoons
- Australian Open
- Trapped Miners
- Golden globes
- Grammys
- Figure Skating
- Iraq
- Academy Awards

- Train a classifier for the 10th held out topic using the relevant features R only.

- Learn a representation using labeled data from 9 topics.

- Learn the matrix W using our transfer algorithm.

- Define the set of relevant features to be: $R = \{ r : \max_k (|w_{rk}|) > 0 \}$
Results

The graph illustrates the average AUC (Area Under the Curve) for different numbers of training samples. The graph compares the performance of Baseline Representation and Transferred Representation in the context of Asymmetric Transfer.

- Baseline Representation: Black line
- Transferred Representation: Red line

The x-axis represents the number of training samples, ranging from 4 to 140. The y-axis represents the average AUC, starting from 0.52 and going up to 0.72.
An efficient training algorithm

- The LP formulation can be optimized using standard LP solvers.

- The LP formulation is feasible for small problems but becomes intractable for larger data-sets with thousands of examples and dimensions.

- We might want a more general optimization algorithm that can handle arbitrary convex losses.
Outline

- A joint sparse approximation model for transfer learning.
- Asymmetric transfer experiments.
- An efficient training algorithm.
- Symmetric transfer image annotation experiments.
L$_{1-\infty}$ Regularization: Constrained Convex Optimization Formulation

$$\arg\min_w \sum_{k=1}^{m} \frac{1}{|D_k|} \sum_{(x,y)\in D_k} l(f_k(x), y) \quad \text{A convex function}$$

$$\text{s.t.} \sum_{i=1}^{d} \max_{k}(|W_{ik}|) \leq C \quad \text{Convex constraints}$$

- We will use a Projected SubGradient method. Main advantages: simple, scalable, guaranteed convergence rates.

- Projected SubGradient methods have been recently proposed:
 - L$_2$ regularization, i.e. SVM [Shalev-Shwartz et al. 2007]
 - L$_1$ regularization [Duchi et al. 2008]
Euclidean Projection into the $L_{1-\infty}$ ball

Snapshot of the idea:

- We map the projection to a simpler problem which involves finding new maximums for each feature across tasks and using them to truncate the original matrix.

- The total mass removed from a feature across tasks should be the same for all features whose coefficients don’t become zero.
Euclidean Projection into the $L_{1-\infty}$ ball

\[
P_{1,\infty} : \min_{B, \mu} \frac{1}{2} \sum_{i,j} (B_{i,j} - A_{i,j})^2
\]

s.t.
\[\forall i, j \ B_{i,j} \leq \mu_i\]
\[\sum_i \mu_i = C\]
\[\forall i, j \ B_{i,j} \geq 0\]
\[\forall i \ \mu_i \geq 0\]
Characterization of the solution

Lemma 1 Let μ_i be the optimal maximums of problem $P_{1,\infty}$. The optimal matrix B of $P_{1,\infty}$ satisfies that:

\[
\begin{align*}
A_{i,j} \geq \mu_i & \implies B_{i,j} = \mu_i \\
A_{i,j} \leq \mu_i & \implies B_{i,j} = A_{i,j} \\
\mu_i = 0 & \implies B_{i,j} = 0
\end{align*}
\]
Lemma 2 At the optimal solution of $P_{1,\infty}$ there exists a constant $\theta \geq 0$ such that for every i: either (a) $\mu_i > 0$ and $\sum_j (A_{i,j} - B_{i,j}) = \theta$; or (b) $\mu_i = 0$ and $\sum_j A_{i,j} \leq \theta$.

![Feature I](image1.png) Feature II
![Feature III](image2.png) Feature VI

$$\sum_{j} > 2,2$$
Mapping to a simpler problem

- We can map the projection problem to the following problem which finds the optimal maximums μ:

$$\mathbf{M}_{1,\infty}: \quad \text{find } \mu, \theta$$

s.t. \[
\sum_i \mu_i = C
\]

\[
\sum_{j: A_{i,j} \geq \mu_i} (A_{i,j} - \mu_i) = \theta, \ \forall i \ \text{s.t. } \mu_i > 0
\]

\[
\sum_j A_{i,j} \leq \theta, \ \forall i \ \text{s.t. } \mu_i = 0
\]

\[
\forall i, \mu_i \geq 0; \ \theta \geq 0
\]

Lemma 3 For a matrix A and a constant $C < ||A||_{1,\infty}$, there is a unique solution μ^*, θ^* to the problem $\mathbf{M}_{1,\infty}$.
Efficient Algorithm for: $M_{1,\infty}$, in pictures

4 Features, 6 problems, $C=14 \sum_{i=1}^{d} \max_k |A_{ik}| = 29$
Complexity

- The total cost of the algorithm is dominated by a sort of the entries of A.

- The total cost is in the order of: $O(dm \log(dm))$.

- Notice that we only need to consider non-zero entries of A, so the computational cost is dominated by the number of non-zero.
Outline

- A joint sparse approximation model for transfer learning.

- Asymmetric transfer experiments.

- An efficient training algorithm.

- Symmetric transfer image annotation experiments.
Synthetic Experiments

- Generate a jointly sparse parameter matrix W:

- For every task we generate pairs: (x_i^k, y_i^k)
 where $y_i^k = \text{sign}(w_k^t x_i^k)$

- We compared three different types of regularization (i.e. projections):

 - $L_{1-\infty}$ projection
 - L2 projection
 - L1 projection
Synthetic Experiments

Test Error

Performance on predicting relevant features

Synthetic Experiments Results: 60 problems 200 features 10% relevant

Feature Selection Performance

Precision L1-INF
Recall L1
Precision L1
Recall L1-INF
Dataset: Image Annotation

- 40 top content words
- Raw image representation: Vocabulary Tree (Grauman and Darrell 2005, Nister and Stewenius 2006)
- 11000 dimensions
Experiments: Vocabulary Tree representation

- Find patches
- Map each patch to a feature vector.
- Perform hierarchical k-means

To compute a representation for an image:

- Find patches.
- Map each patch to its closest cluster in each level.

\[
x = [\#c_1, \#c_2, \ldots, c_{p_1}, \ldots, \#c_1, \#c_2, \ldots, \#c_{p_l}]
\]
Results

Performance Comparison

- L1INF
- L1
- L2

Average AUC vs. # training samples
Results
Results:
Summary of Thesis Contributions

- We presented a method that learns efficient image representations using unlabeled images + meta-data.

- We developed a feature sharing transfer based on performing a joint loss minimization over the training sets of related tasks with a shared regularization.

- Previous approaches to joint sparse approximation have relied on greedy coordinate descent methods.

- We propose a simple an efficient global optimization algorithm for training joint models with $L_{1-\infty}$ constraints.

- We provide a tool that makes implementing a joint sparsity regularization penalty as easy and almost as efficient as implementing the standard L1 and L2 penalties.

- We show the performance of our transfer algorithm on real image classification tasks for both an asymmetric and symmetric transfer setting.
Future Work

- Online Optimization.
- Task Clustering.
- Combining feature representations.
- Generalization properties of $L_{1-\infty}$ regularized models.
Thanks!