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Abstract

This work describes the application of a powerful Re-
current Neural Network (RNN) approach, the Long
Short Term Memory (LSTM) architecture proposed by
Hochreiter and Schmidhuber, to a signal forecasting
task in an environmental domain. More specifically,
we have applied LSTM to the prediction of maximum
ozone(O3) concentrations in the East Austrian region.
In this paper the results of LSTM on this task are com-
pared with those obtained previously using other types
of neural networks (Multi-layer Perceptrons (MLPs),
Elman Networks (ENs) and Modified Elman Networks
(MENs)) and the Fuzzy Inductive Reasoning (FIR)
methodology. The different models used were ozone,
temperature, cloud cover and wind data. The perfor-
mance of the best LSTM networks inferred are equiva-
lent to the best FIR models and slightly better than
the other Neural Networks (NNs) studied (MENs, ENs
and MLPs, in decreasing order of performance).

Keywords: Recurrent neural networks, Long Short
Term Memory, Forecasting, Environmental modeling,
Ozone concentration.

1 Introduction

This work deals with the prediction of ozone O3 gas,
which is considered one of the most common and da-
maging air contaminants. Air pollution is an impor-
tant environmental problem that has worsened in most
large cities, a situation driven by population growth,
industrialization, and increased vehicle use.

Pure air is a gas mixture composed of 78% of ni-
trogen, 21% of oxygen and 1% of different components
such as carbon dioxide, argon and ozone. The atmo-
spheric contamination is defined as any change in the
equilibrium of these components that produces a modi-

fication of the physical and chemical properties of the
air. O3 is a secondary pollutant which is formed in the
troposphere when sunlight causes complex photoche-
mical reactions involving two or more primary contam-
inants such as volatile organic compounds and nitrogen
dioxide. The health consequences of exposure to high
concentrations of O3 are dangerous, since it can impair
lung function and cause irritation of the respiratory
system and eyes.

In order to provide adequate early warnings, it is
valuable to have accurate and reliable forecasts of fu-
ture high ozone levels. Therefore, the construction of
ozone models that capture as precisely as possible the
behavior of this gas in the atmosphere is of great inte-
rest for environmental scientists and government agen-
cies.

In recent years, some studies using different ap-
proaches have been carried out to obtain models for
forecasting ozone levels in local regions [1, 5, 13, 15, 16].
In particular, different types of neural networks, both
feed-forward and partially recurrent nets, were inves-
tigated in [15] for predicting the maximum ozone con-
centration in the East Austrian region. More recently,
new results have been reported on the same data using
the Fuzzy Inductive Reasoning (FIR) methodology [5].

The main goal of this work has been to study the
prediction performance on the same task of a power-
ful type of recurrent neural network called Long Short
Term Memory (LSTM) and to compare its results with
those reported previously on the same data. The
LSTM architecture was proposed by Hochreiter and
Schmidhuber [7] to overcome error back-flow proble-
ms that are typical in most recurrent neural networks
(RNNs).

RNNs can be partially or fully recurrent. The for-
mer [6] are feed-forward nets that include feedback con-
nections from a set of units called context units and



Figure 1: Example of LSTM net with 2 memory cell blocks of size 2 (from [3]).

are trained by conventional back-propagation methods,
that do not include any recurrence term in the learn-
ing rule. These models are able to learn simple tasks
that only need very short term memory, since their
training algorithm does not accomplish a real gradi-
ent descent calculation with respect to the weights, but
rather makes only an approximation, which is based on
not considering the terms originated by the influence
of the weights in previous time steps (truncated gradi-

ent). The Elman Network (EN) [2] and the Modified
Elman Network (MEN) [10] are among these partially
recurrent architectures.

The fully recurrent nets are trained by gradient-
descent based algorithms that correctly calculate the
real gradient of the error [9]. In practice they have
some drawbacks, since it has been demonstrated that
the the error signal “flowing backwards in time” in
gradient-based algorithms (Back-Propagation Through
Time (BPTT), Real-Time Recurrent Learning (RTRL)
and others [9]) tend to either, blow up or vanish [7].
The most usual case is the latter (if a sigmoid activa-
tion function is used, for example), in which the gra-
dient magnitude decreases exponentially in time, pre-
venting the net from learning long-term dependencies
and from reaching the optimal task performance.

LSTM solves the vanishing gradient, because the
combination of its architecture and its gradient descent
training algorithm facilitates a constant error flowing
in time. LSTM have been quite successfully applied to
standard benchmarks related to classification problems
[7, 4] and more recently to signal forecasting problems
[3, 11].

In the following section we describe the LSTM ar-
chitecture. In section 3 the experimental procedure is
described and the obtained results are presented in sec-

tion 4. Finally, some conclusions are given in section
5.

2 The LSTM Approach

LSTM [7, 4] belongs to a class of recurrent networks
that has time-varying inputs and targets. That is,
points in the time series or input sequence are pre-
sented to the network one at a time. The network
can be asked to predict the next point in the future
or classify the sequence or to perform some dynamic
input/output association. Error signals will either be
generated at each point of the sequence or at the end
of the sequence.

A fully connected LSTM architecture is a three-layer
neural network composed of an input layer, a hidden
layer and an output layer. The hidden layer has a feed-
back loop to itself, i.e., at time step t of a sequence
with n time steps, presented to the network, the hid-
den layer receives as input the activation values of the
input layer and the activation values of the hidden layer
at time step t − 1. The basic unit in the hidden layer
is known as a memory cell block. Figure 1 illustrates
an LSTM net with a fully connected hidden layer con-
sisting of two memory blocks, each one consisting of
two cells. The LSTM showed has an input dimension
of two and an output dimension of one. Only a limited
subset of connections are shown. A memory cell block
(Figure 2) consists of S memory cells and three multi-
plicative gates, called the input gate, output gate, and
forget gate. Each memory cell has at its core a recur-
rently self-connected linear unit called “Constant Error
Carousel” (CEC), whose activation is called the cell
state. The CECs solve the vanishing error problem:
in the absence of a new input or error signals to the



Figure 2: Memory block with its respective gates (from [3]).

cell, the CEC’s local error back flow remains constant,
neither growing nor decaying. Input and output gates
regulate write and read access to a cell whose state is
denoted Sc. The CEC is protected from both flowing
activation and backward flowing error by the input and
output gates respectively. When gates are closed (ac-
tivation around zero), irrelevant inputs and noise do
not enter the cell, and the cell state does not perturb
the remainder of the network. The forget gate feed
the self-recurrent connection with its output activation
and is responsible for do not allow the internal state
values of the cells grow without bound by resetting the
internal states Sc as long as it needs. In addition to
the self-recurrent connection, the memory cells receive
input from input units, other cells and gates.

While the cells are responsible for maintaining infor-
mation over long periods of time, the responsibility for
deciding what information to store, and when to apply
that information lies with the input and output gate
units, respectively.

A single step involves the update of all units (for-
ward pass) and the computation of error signals for all
weights (backward pass). At time t, input gate acti-
vation yinj (t) and output gate activation youtj (t) are
computed as follows:

netinj
(t) =

∑

m

winjmym(t − 1),

yinj (t) = finj
(netinj

(t)) (1)

netoutj
(t) =

∑

m

woutjmym(t − 1),

youtj (t) = foutj
(netoutj

(t)) (2)

The wjm is the weight on the connection from unit
m to unit j. The summation indices m may stand for

input units, memory cells, or even conventional hidden
units if there are any. All these different types of units
may convey useful information about the current state
of the net.

The forget gate activation yϕj (t) is calculated like
the other gates above:

netϕj
(t) =

∑

m

wϕjmym(t − 1),

yϕj (t) = fϕj
(netϕj

(t)) (3)

where netϕj
is the input from the network to the for-

get gate. For all gates, the squashed function f is the
logistic sigmoid with range [0,1].

For t > 0, the internal state of the memory cell Sc(t)
is calculated by adding the squashed, gated to the input
to the state at the previous time step Scv

j
(t− 1), which

is gated by the forget gate activation:

netcv
j
(t) =

∑

m

wcv
j
mym(t − 1),

Scv
j
(t) = yϕj(t)Scv

j
(t − 1) + yinj (t)g(netcv

j
(t)) (4)

where j indexes memory blocks, v indexes memory cells
in block j, such that cv

j denotes the v-th cell of the j-
th memory block. The cell initial state is given by
Scv

j
(0) = 0.

The cell’s input squashing function g used is a sig-
moid function with range [−1, 1]. The cell output yc

is calculated by squashing the internal state Sc via the
output squashing function h and then multiplying (gat-
ing) it by the output gate activation yout.

ycu
j
(t) = youtj (t) h(scu

j
(t)) (5)

Here we used the identity function as output squash-
ing function h.



Lastly, assuming a layered network topology with a
standard input layer, a hidden layer consisting of mem-
ory blocks, and a standard output layer. The equations
for the output units k are:

netk(t) =
∑

m

wkmym(t − 1),

yk(t) = fk(netk(t)) (6)

where m ranges over all units feeding the outputs units.
As activation functions fk use the linear identity func-
tion.

LSTM’s backward pass [7] is basically a fusion of
slightly modified truncated backpropagation through
time (BPTT) [14], which is obtained by truncating the
backward propagation of error information, and a cus-
tomized version of RTRL [12] which properly takes into
account the altered dynamics caused by input and out-
put gates (see details in appendix of [7]).

LSTM’s learning algorithm is local in space and time;
its computational complexity per time step and weight
is O(1), that means O(n2) where n is the number of
hidden units if we measure the complexity per time
step. This is very efficient in comparison to the RTRL
algorithm. The time step complexity is essentially that
of BPTT, but unlike BPTT, LSTM only needs to store
the derivatives of the CECs, this is a fixed-size storage
requirement independent of the sequence length.

3 Experimental Procedure

The data available for this study is the same used by
[15, 5] and stem from the East Austrian region. It was
registered, mostly, in summer season, since O3 occurs
in highest concentrations during this season. The ozone
values, measured in ppb (parts per billion), are calcu-
lated as the average of five measurement points provid-
ing three hours fixed average values. Additionally to
the O3 measurements, other three measures were pro-
vided, which are temperature (K), cloud cover (ranging
from 0, no clouds, to 1 completely cloudy) and wind
speed (m/s). These last values were originated from
the weather prediction model of the European Center
for Medium Range Weather forecast.

Ozone and weather data were available for two peri-
ods. The longest period, which covers the period 1-5-
1996 to 30-9-1996 (149 values), was used as training set
for inferring the models. The other one, which covers
the period 7-7-1995 to 25-9-1995 (81 values), was used
as test set to estimate the forecasting performance of
the inferred models, that is to estimate their general-
ization ability.

Hence, in order to predict the maximum ozone con-
centration of a given day Oz(t) (associated with dis-
crete time step t), the models can make use of the

ozone measurements from the previous days as well
as the temperature, cloud cover and wind values both
from the previous days an the current day. That
is, given four finite sequences Oz(1), . . . , Oz(t − 1)
(ozone), T (1), . . . , T (t) (temperature), C(1), . . . , C(t)
(cloud cover) and W (1), . . . ,W (t) (wind), predict the
value Oz(t) of the maximum ozone concentration for
the current day. For all the tested approaches (FIR,
MLPs, ENs, MENs and LSTM), different models corre-
sponding to different choices of the system input values
were assessed. Specifically, Table 1 displays the set of
input variables used in the predictions of the ozone at
time t for each model, where the symbol • means that
the corresponding value was used. However, it must
be noted that, while FIR and MLPs are not capable
to remember any previous information apart from the
given input values, RNNs are theoretically capable of
storing useful information from the observed past val-
ues (ENs and MENs to a limited extent and LSTM for
much longer time lags) that may help to improve the
predictions.

To prepare the data conveniently for LSTM, we have
replaced the original target output Oz(t) by the dif-
ference between Oz(t) and Oz(t − 1) multiplied by a
scaling factor fs, so that the target is calculated as
tg(t) = fs ∗ (Oz(t) − Oz(t − 1)) = 4Oz(t) ∗ fs and
fs scales 4Oz(t) between −1 and 1. This scheme is
illustrated in Figure 3.

Figure 3: Setup for the output signals.

For each LSTM net that was built, there was one
output unit and as many input units as required to in-
troduce the values shown in Table 1 for each model.
Nevertheless, for every model, just one hidden layer
with j memory blocks of size 1 was used. This is a
free parameter that must be set up aiming at finding a
configuration that could result in the best overall per-
formance for each model. Specifically, Table 2 shows
the number of memory blocks selected for each model
as well as the learning rate, momentum and number
of epochs parameters that were given to the training
algorithm.

For all the LSTM nets, the input units were fully
connected to the hidden layer. The cell outputs were
fully connected to the cell inputs, to all gates, and to
the output unit. All gates, the cell itself and the output
unit were biased.

The bias weights were fixed for input and output
gates in successive blocks as: −0.5, −1.0, −1.5, and so



Ozone Temperature Cloud Wind

Model t − 3 t − 2 t − 1 t t − 3 t − 2 t − 1 t t − 3 t − 2 t − 1 t t − 3 t − 2 t − 1 t

OCW1 − − • − − − − − − − − • − • − •

OTCW1 − − • − − • • − − − − • − − − •

OT1 − − • − − − − • − − − − − − − −

OTW1 − − • − − − − • − − − − − • − −

OT2 − • • − − − • • − − − − − − − −

OTC1 − − • − − − − • − • − − − − − −

OTCW2 − • • − − − − • − − − • − − − •

OT3 − − • − − − • • − − − − − − − −

OT4 − − • − • − − • − − − − − − − −

OT5 − • • − − − − • − − − − − − − −

OTCW3 − − • − − − − • − − − • − − − •

OT6 − • • − − • − • − − − − − − − −

OTCW4 − • • − − − • • − − • • − − • •

OT7 • • • − − • • • − − − − − − − −

OTCW5 − − • − − • • • − • • • − • • •

OTCW6 − − • − − • • − − • • − − • • −

Table 1: Models setup.

Model Epochs MB α Momentum

OCW1 3, 000 4 0.0035 0.98

OTCW1 1, 000 2 0.01 0.70

OT1 1, 500 1 0.001 0.90

OTW1 1, 000 2 0.015 0.50

OT2 1, 500 5 0.012 0.20

OTC1 1, 000 4 0.001 0.99

OTCW2 500 1 0.001 0.98

OT3 1, 500 6 0.00125 0.90

OT4 2, 000 1 0.012 0.98

OT5 5, 000 1 0.001 0.94

OTCW3 1, 500 5 0.013 0.90

OT6 500 3 0.001 0.98

OTCW4 1, 000 3 0.001 0.99

OT7 2, 500 1 0.015 0.45

OTCW5 2, 000 2 0.00125 0.98

OTCW6 3, 500 3 0.00125 0.98

Table 2: LSTM setup for each model, showing the
epochs ran, the number of memory blocks (MB), the
learning rate (α) and the momentum values.

forth. The initialization of output gates pushes initial
memory cells activations towards zero, whereas that
of the input gates prevents memory cells from being
modified by incoming inputs. As training progresses,
the biases become progressively less negative, allowing
the serial activation of cells as active participants in
the network computation.

The forget gates were initialized with symmetric pos-
itive values: +0.5 for the first block, +1.0 for the sec-
ond, +1.5 for the third, and so forth. The bias initial-
ization must be positive in this case, since it prevents
the cells from forgetting everything [3], i.e., when posi-
tive signal is used the gates are open what means that
no gates are used.

The cell’s input squashing function g used was a lo-
gistic sigmoid in [−1, 1] and both the output squashing
function h and the activation function of the output

unit were fixed as the linear identity function. The ran-
dom weight initialization was in the range [−0.1, 0.1].

The error criterion used in order to evaluate the fore-
casting results was the root mean square error (RMSE):

RMSE =

√∑N

i=1
(Oz(t) − Ôz(t))2

N
(7)

where Oz(t) is the measured (target) value of the ozone

concentration, Ôz(t) is the predicted value and N is the
number of observations.

4 Results

Here the results obtained throughout the current work
are presented and compared with those reported in pre-
vious studies on the same task [5, 15], where the former
was carried out using FIR methodology and the later
using several types of Neural Networks (NNs). FIR [8]
is a qualitative modeling and simulation methodology
that is based on observation of input/output behav-
ior of a system to be modelled. The first goal of the
FIR methodology is to identify qualitative causal re-
lations between the system variables, and the second
one is the prediction of future behavior on the basis of
past observations. In addition to the error measure on
the test set, FIR provides other measure called quality,
which is based on an entropy reduction measure, and
serves to point out which model has the best forecasting
performance taking into account only the training set.
The NNs used by [15] were a MLP [6], an EN [2] and
a MEN [10]. MLPs are well-known feedforward nets;
ENs are a class of partially recurrent neural nets, and
MENs are an extension of ENs in which state neurons
are connected with themselves, thus getting a certain
inertia, which increase the capabilities of the network
to dynamically memorize data.



FIR MLP EN MEN LSTM

Model Quality Test Train Test Train Test Train Test Train Test

OCW1 0.4306 13.6768 − − − − − − 8.5868 12.1854

OTCW1 − − 8.2406 10.8132 − − − − 8.5095 11.5100

OT1 − − 9.4942 11.2004 9.0740 10.3186 8.9964 10.5150 9.5170 11.4916

OTW1 0.3456 10.1110 − − − − − − 9.3882 11.3920

OT2 0.2866 9.7577 − 10.9327 − − − − 9.0629 10.8715

OTC1 − − − − − − − − 8.7930 10.7130

OTCW2 − − − 11.3329 − − − − 8.0063 10.6352

OT3 0.2830 9.8270 − 11.0501 − − − − 9.5208 10.4955

OT4 0.3566 10.0220 − − − − − − 8.6739 10.4449

OT5 0.3680 10.5508 − 11.1407 − − − − 9.0524 10.4329

OTCW3 − − − 12.3596 − − 7.3741 9.9579 8.2071 10.3020

OT6 − − − 11.3501 − − − − 7.6893 9.9676

OTCW4 − − − − − − − − 6.5071 9.9644

OT7 − − − − − − − − 7.9025 9.9640

OTCW5 − − − − − − − − 6.4669 9.9216

OTCW6 − − − − − − − − 7.8340 9.7961

Table 3: RMSE errors for predictions.
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Figure 4: Prediction of training signals.

In Table 3, the RMSE errors for the training and test
sets obtained by [5, 15] are compared to those achieved
by LSTM. It must be noted, however, that in the case
of FIR results, the RMSE of the training set (which is
always zero because the training data is memorized) is
replaced by the quality measure of the model estimated
from the training set.

Figures 4 and 5 illustrate the prediction of output
signal on training and test sets, respectively, carried
out by the LSTM showing the best test RMSE. The
target output signal is shown as dashed line and the
predicted signal as solid line.

5 Conclusions

In this work we have tested Long Short Term Mem-
ory (LSTM), a powerful type of recurrent neural net-
work, for forecasting the maximum ozone concentration
in the East Austrain region from different sets of fea-
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Figure 5: Prediction of test signals.

tures. LSTM uses some basic structures called mem-
ory cell blocks to allow the net remember significant
events distant in the past sequence of inputs. This in-
formation can be used to predict the future values of
the sequence or time series being learned. In previous
studies [7, 4], LSTM has demonstrated an impressive
performance and has been shown to solve complex, ar-
tificial long time lag tasks that had never been solved
by previous recurrent network algorithms. Here, we
were interested in assessing the LSTM performance on
a real forecasting problem, in which, however, it was
thought that there is no need to store information over
extended time intervals, but just to take into account
the more recent history of previous input and output
values.

We have shown that LSTM is capable of capturing
the dynamic behavior of the system under study as
accurately as other inductive approaches tested previ-
ously (other types of neural nets [15], FIR [5]). The
performance of the best LSTM networks inferred are



equivalent to the best FIR models and slightly better
than the other neural networks applied (Modified El-
man Nets, Elman Nets and Multi-Layer Perceptrons,
in decreasing order of performance). However, the er-
rors obtained using the best models are still quite high
(an RMSE of 9.7961 for LSTM, 9.7577 for FIR and
9.9579 for MEN). Therefore, it seems that either the
available data is not good enough (few observations,
noisy measurements, use of model forecasts instead of
real measured data for some variables) or some impor-
tant variables to predict the ozone concentrations are
not taken into account. On the other hand, the fact
that a powerful RNN like LSTM is not able to improve
significantly the results obtained by static approaches
like FIR and MLPs may confirm the hypothesis that
just a very few previous values of the involved vari-
ables are enough to predict the local maximum ozone
concentration.
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