
IRRS: Information Retrieval and
Recommender Systems

FIB, Master in Data Science

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2022
http://www.cs.upc.edu/~ir-miri

1 / 36

http://www.cs.upc.edu/~ir-miri

9. Recommender Systems

Outline

1. Recommending: What and why?
2. Collaborative filtering approaches
3. Content-based approaches
4. Recommending in social networks

(Slides based on a presentation by Irena Koprinska (2012), with thanks)

3 / 36

Recommender Systems

Recommend items to users
I Which digital camera should I buy?
I What is the best holiday for me?
I Which movie should I rent?
I Which websites should I follow?
I Which book should I buy for my next holiday?
I Which degree and university are the best for my future?

Sometimes, items are people too:
I Which Twitter users should I follow?
I Which writers/bloggers should I read?

4 / 36

Why?

How do we find good items?
I Friends
I Experts
I Searchers: Content-based and link based
I . . .

5 / 36

Why?

The paradox of choice:

I 4 types of jam or 24 types of jam?

6 / 36

Why?

I The web has become the main source of information

I Huge: Difficult to find “best” items - can’t see all

I Recommender systems help users to find products,
services, and information, by predicting their relevance

7 / 36

Recommender Systems vs. Search Engines

8 / 36

How to recommend

The recommendation problem:
Try to predict items that will interest this user
I Top-N items (ranked)
I All interesting items (few false positives)
I A sequence of items (music playlist)

Based on what information?

9 / 36

User profiles
Ask the user to provide information about him/herself and
interests

But:
People won’t bother
People may have multiple profiles

10 / 36

Ratings

I Explicit (1..5, “like”)
I hard to obtain many

I Implicit (clicks, page views, downloads)
I unreliable
I e.g. did the user like the book he bought?
I did s/he buy it for someone else?

11 / 36

Methods

I Baseline: Recommend most popular items

I Collaborative filtering

I Content-based

I Hybrid

12 / 36

Collaborative Filtering

I Trusts wisdom of the crowd

I Input: a matrix of user-to-item ratings, an active user

I Output: top-N recommendations for active user

13 / 36

Main CF methods

I Nearest neighbors:
I user-to-user: uses the similarity between users
I item-to-item: uses the similarity between items

I Others:
I Matrix factorization: maps users and items to a joint factor

space
I Clustering
I Probabilistic (not explained)
I Association rules (not explained)
I . . .

14 / 36

User-to-user CF: Basic idea

Recommend to you what is rated high by people with ratings
similar to yours

I If you and Joe and Jane like band X,
I and if you and Joe and Jane like band Y ,
I and if Joe and Jane like band Z, which you never heard

about,
I then band Z is a good recommendation for you

15 / 36

Nearest neighbors

User-to-user:
1. Find k nearest neighbors of active user

2. Find set C of items bought by these k users, and their
frequencies

3. Recommend top-N items in C that active user has not
purchased

Step 1 needs “distance” or “similarity” among users

16 / 36

User-to-user similarity

Correlation as similarity:
I Users are more similar if their common ratings are similar
I E.g. User 2 most similar to Alice

17 / 36

User-to-user similarity

ri,s: rating of item s by user i
a, b: users
S: set of items rated both by a and b
r̄a, r̄b: average of the ratings by a and b

sim(a, b) =

∑
s∈S(ra,s − r̄a) · (rb,s − r̄b)√∑

s∈S(ra,s − r̄a)2 ·
√∑

s∈S(rb,s − r̄b)2

Cosine similarity or Pearson correlation

18 / 36

Combining the ratings

How will a like item s?
I Simple average among similar users b

I Average weighted by similarity of a to b

I Adjusted by considering differences among users

pred(a, s) = r̄a +

∑
b sim(a, b) · (rb,s − r̄b)∑

b sim(a, b)

19 / 36

Variations

I Number of co-rated items: Reduce the weight when the
number of co-rated items is low

I Case amplification: Higher weight to very similar neighbors
I Not all neighbor ratings are equally valuable

I E.g. agreement on commonly liked items is not so
informative as agreement on controversial items

I Solution: Give more weight to items that have a higher
variance

20 / 36

Evaluation

Main metrics: Mean Average Error, average value of

| pred(a, s)− ra,s|

Others:
I Diversity: Don’t recommend Star Wars 3 after 1 and 2
I Surprise: Don’t recommend “milk” in a supermarket
I Trust: For example, give explanations

21 / 36

Item-to-item CF

I Look at columns of the matrix
I Find set of items similar to the target one
I e.g., Items 1 and 4 seem most similar to Item 5

I Use Alice’s users’ rating on Items 1 and 4 to rate Item 5
I Formulas can be as for user-to-user case

22 / 36

Can we precompute the similarities?

Rating matrix: a large number of items and a small number of
ratings per user User-to-user collaborative filtering:

I Similarity between users is unstable (computed on few
commonly rated items)

I → pre-computing the similarities leads to poor
performance

Item-to-item collaborative filtering
I Similarity between items is more stable
I We can pre-compute the item-to-item similarity and the

nearest neighbours
I Prediction involves lookup for these values and computing

the weighed sum (Amazon does this)

23 / 36

Matrix Factorization Approaches

Singular Value Decomposition Theorem (SVD):

Theorem: Every n×m matrix M of rank K can be
decomposed as M = UΣV T where
I U is n×K and orthonormal
I V is m×K and normal
I Σ is K ×K and diagonal

Furthermore, if we keep the k < K highest values of Σ and
zero the rest, we obtain the best approximation of M with a
matrix of rank k

24 / 36

Matrix Factorization: Intepretation

I There are k latent factors - topics or explanations for
ratings

I U tells how much each user is affected by a factor
I V tells how much each item is related to a factor
I Σ tells the weight of each different factor

25 / 36

Matrix Factorization: Method

Offline: Factor the rating matrix M as UΣV T

I This is costly computationally, and has a problem

Online: Given user a and item s, interpolate M [a, s] from U,Σ, V

pred(a, s) = U [a] · Σ · V T [s]

=
∑
k

Σk · U [a, k] · V [k, s]

= How much a is about each factor, times how much s is,
summed over all latent factors

26 / 36

Matrix Factorization: Problem

Matrix M has (many!) unknown, unfilled entries

Standard algorithms for finding SVD assume no missing values

→ Formulate as a (costly) optimization problem: stochastic
gradient descent, to minimize error on available ratings

State of the art method for CF, accuracywise

27 / 36

Clustering

I Cluster users according to their ratings (form
homogeneous groups)

I For each cluster, form the vector of average item ratings
I For an active user U , assign to a cluster, return items with

highest rates in cluster’s vector

Simple and efficient, but not so accurate

28 / 36

CF - pros and cons

Pros:
I No domain knowledge: what “items” are, why users

(dis)like them, not used
Cons:
I Requires user community
I Requires sufficient number of co-rated items
I The cold start problem:

I user: what do we recommend to a new user (with no ratings
yet)

I item: a newly arrived item will not be recommended (until
users begin rating it)

I Does not provide explanation for the recommendation

29 / 36

Content-based methods

Use information about the items and not about the user
community
I e.g. recommend fantasy novels to people who liked fantasy

novels in the past

What we need:
I Information about the content of the items (e.g. for movies:

genre, leading actors, director, awards, etc.)
I Information about what the user likes (user preferences,

also called user profile) - explicit (e.g. movie rankings by
the user) or implicit

I Task: recommend items that match the user preferences

30 / 36

Content-based methods (2)

The rating prediction problem now:
Given an item described as a vector of (feature,value) pairs,
predict its rating (by a fixed user)

Becomes a Classification / Regression problem, that can be
addressed with Machine Learning methods (Naive Bayes,
support vector machines, nearest neighbors, . . .)

Can be used to recommend documents (= tf-idf vectors) to
users

31 / 36

Content-based: Pros and Cons

Pros:
I No user base required
I No item coldstart problem: we can predict ratings for new,

unrated, items
(the user coldstart problem still exists)

Cons:
I Domain knowledge required
I Hard work of feature engineering
I Hard to transfer among domains

32 / 36

Hybrid methods

For example:
I Compute ratings by several methods, separately, then

combine

I Add content-based knowledge to CF

I Build joint model
Shown to do better than one method alone

33 / 36

Recommendation in Social Networks

Two meanings:
I Recommend to you “interesting people you should

befriend / follow”
I Use your social network to recommend items to you

Common principle:
I We tend to like what our friends like (more than random)

34 / 36

The filter bubble

Potential problem pointed out by Eli Pariser:
As algorithms select information for us based on what
they expect us to like, we become more separated from
information that disagrees with our viewpoints, beco-
ming isolated in our own cultural and ideological bub-
bles.

Some studies disagree: recommendation does not distort that
much results on a user-per-user basis

http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles.html

35 / 36

http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles.html

Further topics in RS

I Scalability, real-time
I Explanation
I Mobile, context-aware recommendations
I Diversity. Serendipity
I Two-way recommendations (e.g. dating sites)
I Team formation
I Group recommendations
I Privacy, robustness

36 / 36

	9. Recommender Systems

