
CAIM: Cerca i Anàlisi d’Informació Massiva
FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~caim

1 / 1

http://www.cs.upc.edu/~caim

9. Recommender Systems

Outline

1. Recommending: What and why?
2. Collaborative filtering approaches
3. Content-based approaches
4. Recommending in social networks

(Slides based on a presentation by Irena Koprinska (2012), with thanks)

3 / 1

Recommender Systems

Recommend items to users

I Which digital camera should I buy?
I What is the best holiday for me?
I Which movie should I rent?
I Which websites should I follow?
I Which book should I buy for my next holiday?
I Which degree and university are the best for my future?

Sometimes, items are people too:

I Which Twitter users should I follow?
I Which writers/bloggers should I read?

4 / 1

Why?

How do we find good items?

I Friends
I Experts
I Searchers: Content-based and link based
I . . .

5 / 1

Why?

The paradox of choice:

I 4 types of jam or 24 types of jam?

6 / 1

Why?

I The web has become the main source of information

I Huge: Difficult to find “best” items - can’t see all

I Recommender systems help users to find products,
services, and information, by predicting their relevance

7 / 1

Recommender Systems vs. Search Engines

8 / 1

How to recommend

The recommendation problem:
Try to predict items that will interest this user

I Top-N items (ranked)
I All interesting items (few false positives)
I A sequence of items (music playlist)

Based on what information?

9 / 1

User profiles
Ask the user to provide information about him/herself and
interests

But:
People won’t bother
People may have multiple profiles

10 / 1

Ratings

I Explicit (1..5, “like”)
I hard to obtain many

I Implicit (clicks, page views, downloads)
I unreliable
I e.g. did the user like the book he bought?
I did s/he buy it for someone else?

11 / 1

Methods

I Baseline: Recommend most popular items

I Collaborative filtering

I Content-based

I Hybrid

12 / 1

Collaborative Filtering

I Trusts wisdom of the crowd

I Input: a matrix of user-to-item ratings, an active user

I Output: top-N recommendations for active user

13 / 1

Main CF methods

I Nearest neighbors:
I user-to-user: uses the similarity between users
I item-to-item: uses the similarity between items

I Others:
I Matrix factorization: maps users and items to a joint factor

space
I Clustering
I Probabilistic (not explained)
I Association rules (not explained)
I . . .

14 / 1

User-to-user CF: Basic idea

Recommend to you what is rated high by people with ratings
similar to yours

I If you and Joe and Jane like band X,
I and if you and Joe and Jane like band Y ,
I and if Joe and Jane like band Z, which you never heard

about,
I then band Z is a good recommendation for you

15 / 1

Nearest neighbors

User-to-user:

1. Find k nearest neighbors of active user

2. Find set C of items bought by these k users, and their
frequencies

3. Recommend top-N items in C that active user has not
purchased

Step 1 needs “distance” or “similarity” among users

16 / 1

User-to-user similarity

Correlation as similarity:

I Users are more similar if their common ratings are similar
I E.g. User 2 most similar to Alice

17 / 1

User-to-user similarity

ri,s: rating of item s by user i
a, b: users
S: set of items rated both by a and b
r̄a, r̄b: average of the ratings by a and b

sim(a, b) =

∑
s∈S(ra,s − r̄a) · (rb,s − r̄b)√∑

s∈S(ra,s − r̄a)2 ·
√∑

s∈S(rb,s − r̄b)2

Cosine similarity or Pearson correlation

18 / 1

Combining the ratings

How will a like item s?

I Simple average among similar users b

I Average weighted by similarity of a to b

I Adjusted by considering differences among users

pred(a, s) = r̄a +

∑
b sim(a, b) · (rb,s − r̄b)∑

b sim(a, b)

19 / 1

Variations

I Number of co-rated items: Reduce the weight when the
number of co-rated items is low

I Case amplification: Higher weight to very similar neighbors
I Not all neighbor ratings are equally valuable

I E.g. agreement on commonly liked items is not so
informative as agreement on controversial items

I Solution: Give more weight to items that have a higher
variance

20 / 1

Evaluation

Main metrics: Mean Average Error, average value of

| pred(a, s)− ra,s|

Others:

I Diversity: Don’t recommend Star Wars 3 after 1 and 2
I Surprise: Don’t recommend “milk” in a supermarket
I Trust: For example, give explanations

21 / 1

Item-to-item CF

I Look at columns of the matrix
I Find set of items similar to the target one
I e.g., Items 1 and 4 seem most similar to Item 5

I Use Alice’s users’ rating on Items 1 and 4 to rate Item 5
I Formulas can be as for user-to-user case

22 / 1

Can we precompute the similarities?

Rating matrix: a large number of items and a small number of
ratings per user User-to-user collaborative filtering:

I Similarity between users is unstable (computed on few
commonly rated items)

I → pre-computing the similarities leads to poor
performance

Item-to-item collaborative filtering
I Similarity between items is more stable
I We can pre-compute the item-to-item similarity and the

nearest neighbours
I Prediction involves lookup for these values and computing

the weighed sum (Amazon does this)

23 / 1

Matrix Factorization Approaches

Singular Value Decomposition Theorem (SVD):

Theorem: Every n×m matrix M of rank K can be
decomposed as M = UΣV T where

I U is n×K and orthonormal
I V is m×K and normal
I Σ is K ×K and diagonal

Furthermore, if we keep the k < K highest values of Σ and
zero the rest, we obtain the best approximation of M with a
matrix of rank k

24 / 1

Matrix Factorization: Intepretation

I There are k latent factors - topics or explanations for
ratings

I U tells how much each user is affected by a factor
I V tells how much each item is related to a factor
I Σ tells the weight of each different factor

25 / 1

Matrix Factorization: Method

Offline: Factor the rating matrix M as UΣV T

I This is costly computationally, and has a problem

Online: Given user a and item s, interpolate M [a, s] from U,Σ, V

pred(a, s) = U [a] · Σ · V T [s]

=
∑
k

Σk · U [a, k] · V [k, s]

= How much a is about each factor, times how much s is,
summed over all latent factors

26 / 1

Matrix Factorization: Problem

Matrix M has (many!) unknown, unfilled entries

Standard algorithms for finding SVD assume no missing values

→ Formulate as a (costly) optimization problem: stochastic
gradient descent, to minimize error on available ratings

State of the art method for CF, accuracywise

27 / 1

Clustering

I Cluster users according to their ratings (form
homogeneous groups)

I For each cluster, form the vector of average item ratings
I For an active user U , assign to a cluster, return items with

highest rates in cluster’s vector

Simple and efficient, but not so accurate

28 / 1

CF - pros and cons

Pros:

I No domain knowledge: what “items” are, why users
(dis)like them, not used

Cons:

I Requires user community
I Requires sufficient number of co-rated items
I The cold start problem:

I user: what do we recommend to a new user (with no ratings
yet)

I item: a newly arrived item will not be recommended (until
users begin rating it)

I Does not provide explanation for the recommendation

29 / 1

Content-based methods

Use information about the items and not about the user
community

I e.g. recommend fantasy novels to people who liked fantasy
novels in the past

What we need:
I Information about the content of the items (e.g. for movies:

genre, leading actors, director, awards, etc.)
I Information about what the user likes (user preferences,

also called user profile) - explicit (e.g. movie rankings by
the user) or implicit

I Task: recommend items that match the user preferences

30 / 1

Content-based methods (2)

The rating prediction problem now:
Given an item described as a vector of (feature,value) pairs,
predict its rating (by a fixed user)

Becomes a Classification / Regression problem, that can be
addressed with Machine Learning methods (Naive Bayes,
support vector machines, nearest neighbors, . . .)

Can be used to recommend documents (= tf-idf vectors) to
users

31 / 1

Content-based: Pros and Cons

Pros:

I No user base required
I No item coldstart problem: we can predict ratings for new,

unrated, items
(the user coldstart problem still exists)

Cons:

I Domain knowledge required
I Hard work of feature engineering
I Hard to transfer among domains

32 / 1

Hybrid methods

For example:

I Compute ratings by several methods, separately, then
combine

I Add content-based knowledge to CF

I Build joint model

Shown to do better than one method alone

33 / 1

Recommendation in Social Networks

Two meanings:

I Recommend to you “interesting people you should
befriend / follow”

I Use your social network to recommend items to you

Common principle:

I We tend to like what our friends like (more than random)

34 / 1

The filter bubble

Potential problem pointed out by Eli Pariser:

As algorithms select information for us based on what
they expect us to like, we become more separated
from information that disagrees with our viewpoints,
becoming isolated in our own cultural and ideological
bubbles.

Some studies disagree: recommendation does not distort that
much results on a user-per-user basis

http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles.html

35 / 1

http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles.html

Further topics in RS

I Scalability, real-time
I Explanation
I Mobile, context-aware recommendations
I Diversity. Serendipity
I Two-way recommendations (e.g. dating sites)
I Team formation
I Group recommendations
I Privacy, robustness

36 / 1

