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6. Architecture of large-scale systems. Mapreduce. Big Data



Architecture of Web Search & Towards Big Data

Outline:

1. Scaling the architecture: Google cluster, BigFile,
Mapreduce/Hadoop

2. Big Data and NoSQL databases
3. The Apache ecosystem for Big Data



Google 1998. Some figures

» 24 million pages

» 259 million anchors

» 147 Gb of text

» 256 Mb main memory per machine

» 14 million terms in lexicon

» 3 crawlers, 300 connection per crawler

» 100 webpages crawled / second, 600 Kb/second

» 41 Gb inverted index

» 55 Gb info to answer queries; 7Gb if doc index compressed
» Anticipate hitting O.S. limits at about 100 million pages



Google today?

v

Current figures = x 1,000 to x 10,000

v

100s petabytes transferred per day?

100s exabytes of storage?

Several 10s of copies of the accessible web
many million machines

v

v

v
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Google in 2003

v

More applications, not just web search

Many machines, many data centers, many programmers
Huge & complex data

Need for abstraction layers

v

v

v

Three influential proposals:
» Hardware abstraction: The Google Cluster
» Data abstraction: The Google File System
BigFile (2003), BigTable (2006)
» Programming model: MapReduce
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Google cluster, 2003: Design criteria

Use more cheap machines, not expensive servers

>

High task parallelism; Little instruction parallelism
(e.g., process posting lists, summarize docs)

Peak processor performance less important than
price/performance

price is superlinear in performance!

Commodity-class PCs. Cheap, easy to make redundant
Redundancy for high throughput

Reliability for free given redundancy. Managed by soft
Short-lived anyway (< 3 years)

L.A. Barroso, J. Dean, U. Holzle: “Web Search for a Planet: The Google Cluster Architecture”, 2003



Google cluster for web search

www.google.com

b

Load balancer

)

Google
Web server

Index
Servers

i

Document
servers

Load balancer chooses freest
/ closest GWS

GWS asks several index
servers

They compute hit lists for
query terms, intersect them,
and rank them

Answer (docid list) returned
to GWS

GWS then asks several
document servers

They compute query-specific
summary, url, etc.

GWS formats an html page &
returns to user



Index “shards”

v

Documents randomly distributed into “index shards”
Several replicas (index servers) for each indexshard

v

v

Queries routed through local load balancer
For speed & fault tolerance

v

v

Updates are infrequent, unlike traditional DB’s
Server can be temporally disconnected while updated

v
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The Google File System, 2003

» System made of cheap PC’s that fail often

» Must constantly monitor itself and recover from failures
transparently and routinely

» Modest number of large files (GB’s and more)
» Supports small files but not optimized for it

» Mix of large streaming reads + small random reads
» Occasionally large continuous writes
» Extremely high concurrency (on same files)

S. Ghemawat, H. Gobioff, Sh.-T. Leung: “The Google File System”, 2003

10/65



The Google File System, 2003

» One GFS cluster = 1 master process + several
chunkservers

» BigFile broken up in chunks

» Each chunk replicated (in different racks, for safety)

» Master knows mapping chunks — chunkservers

» Each chunk unique 64-bit identifier

» Master does not serve data: points clients to right
chunkserver

» Chunkservers are stateless; master state replicated

» Heartbeat algorithm: detect & put aside failed
chunkservers
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MapReduce and Hadoop

» Mapreduce: Large-scale programming model developed at
Google (2004)
» Proprietary implementation
» Implements old ideas from functional programming,
distributed systems, DB’s ...

» Hadoop: Open source (Apache)
implementation at Yahoo! (2006 and on)

» HDFS: Open Source Hadoop Distributed File
System; analog of BigFile e
» Pig: Yahoo! Script-like language for data @hadaap

analysis tasks on Hadoop

» Hive: Facebook SQL-like language /
datawarehouse on Hadoop

> ..
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MapReduce and Hadoop

Design goals:

» Scalability to large data volumes and number of machines
» 1000’s of machines, 10,000’s disks
» Abstract hardware & distribution (compare MPI: explicit
flow)
» Easy to use: good learning curve for programmers
» Cost-efficiency:
» Commodity machines: cheap, but unreliable
» Commodity network
» Automatic fault-tolerance and tuning. Fewer administrators
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HDFS

v

Optimized for large files, large sequential reads
Optimized for “write once, read many”

Large blocks (64MB). Few seeks, long transfers
Takes care of replication & failures

Rack aware (for locality, for fault-tolerant replication)

Own types (IntWritable, LongWritable, Text,...)

» Serialized for network transfer and system & language
interoperability

v

v

v

v

v
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The MapReduce Programming Model

v

Data type: (key, value) records
Three (key, value) spaces
Map function:

v

v

(Kim'a V:mz) — IiSt<(Kinter7 ‘/inter)>

Reduce function:

v

(Kintera IiSt<‘/inter>) — IiSt<(Kouta v;)ut»
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Semantics

Key step, handled by the platform: group by or shuffle by key

IXXIXX)

Input |

KivKiv Kiv K2vK4vKiv K3v K2v Kiv Kiv
K2:vK3v K2v K3vK5v K6v K2v K6v Kiv K2v
group by key
| Kivvvvvyy ‘ K2vvvyv ‘ K3vvvvy [ KLwvvvy | KSvvvvv
Output | \ \ \
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Example 1: Word Count

Input: A big file with many lines of text
Output: For each word, times that it appears in the file

map (line) :
foreach word in line.split () do

output (word,1l)

reduce (word, L) :
output (word,sum(L))
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Example 1: Word Count

Input | The sound and the fury ‘ The grapes of wrath ‘ Fury and wrath

o e e

the:1 sound:1 and:1 the:1 grapes:1of:-1 wrath:1 | fury:1 and:1 wrath:1
the:1 fury:1 ,
group by key
[the:1,1,1 | sound:t  [and:t,1 | funy:1,1] grapes:t | of1 | wrath:1,1]
Output | the:3 sound:1 and: 2 fury:2  grapes:1 of:1 wrath:2
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Example 2: Temperature statistics

Input: Set of files with records (time, place, temperature)
Output: For each place, report maximum, minimum, and
average temperature

map (file) :
foreach record (time,place,temp) in file do

output (place, temp)

reduce (p, L) :
output (p, (max (L), min (L), sum(L)/length(L)))
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Example 3: Numerical integration

Input: A function f : R — R, an interval [a, b]
Output: An approximation of the integral of f in [a, 8]

map (start,end) :
sum = 0;
for (x = start; x < end; x += step)
sum += f (x)*step;
output (0, sum)

reduce (key, L) :
output (0, sum (L))
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Implementation

» Some mapper machines, some reducer machines

» Instances of map distributed to mappers

» Instances of reduce distributed to reduce

» Platform takes care of shuffling through network

» Dynamic load balancing

» Mappers write their output to local disk (not HDFS)

» If a map or reduce instance fails, automatically reexecuted
» Incidentally, information may be sent compressed
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Implementation

Input ‘

[
\l/ \l/

Mappers '{3 ‘@
l | l

!

Output | \ | \
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An Optimization: Combiner

» map outputs pairs (key, value)
» reduce receives pair (key, list-of-values)

» combiner (key, list-of-values) is applied to mapper
output, before shuffling

» may help sending much less information

» must be associative and commutative

23/65



Example 1: Word Count, revisited

map (1line) :
foreach word in line.split () do
output (word,1)

combine (word, L) :
output (word,sum(L))

reduce (word, L) :
output (word,sum(L))
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Example 1: Word Count,revisited

linel
the good,
the bad,
and the

ugly

line2

the bad,
bad ugly
times

map

(the 1) (the,3)
Eg;ud,)l) (good 1)
the,1 bad
(o) Eugaly'?} (the,(3,1))—> (the 4)
(and 1) § \
(the 1) good (1)) —» (good,1)

I
b (bad,(1,2))— (bad,3)
(the,1) (the,1) Hugly,(1,1))—> (ugly,2)
Eﬁﬂj'ﬁ — Esss,zlg (times (1))— (fimes,1)
(Ug|y’,1) (times,1)
(times 1)

combine reduce
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Example 4: Inverted Index

Input: A set of text files
Output: For each word, the list of files that contain it

map (filename) :
foreach word in the file text do
output (word, filename)

combine (word, L) :
remove duplicates in L;
output (word,L)

reduce (word, L) :
//want sorted posting lists
output (word,sort (L))

This replaces all the barrel stuff we saw in the last session
Can also keep pairs (filename,frequency)

26/65



Implementation, more

v

A mapper writes to local
disk

In fact, makes as many
partitions as reducers

Keys are distributed to
partitions by Partition
function

By default, hash
Can be user defined too

Mapper ‘

Reducers

‘
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Example 5. Sorting

Input: A set S of elements of a type T with a < relation
Output: The set .S, sorted

1. map(x) : output x

2. Partition: any suchthatk < kx’ — Partition (k) <
Partition (k')

3. Now each reducer gets an interval of 7" according to <
(e.g.,’AF,’G UM ,NLST . Z)
4. Each reducer sorts its list

Note: In fact Hadoop guarantees that the list sent to each reducer is
sorted by key, so step 4 may not be needed
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Implementation, even more

>

>

A user submits a job or a sequence of jobs

User submits a class implementing map, reduce, combiner,
partitioner, ...

... plus several configuration files (machines & roles,
clusters, file system, permissions...)

Input partitioned into equal size splits, one per mapper

A running jobs consists of a jobtracker process and
taskiracker processes

Jobtracker orchestrates everything

Tasktrackers execute either map or reduce instances
map executed on each record of each split

Number of reducers specified by users
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Implementation, even more

public class C {

static class CMapper
extends Mapper<KeyType,ValueType> {

public void map (KeyType k, ValueType v, Context context)
code of map function
context.write(k’,v’");

static class CReducer
extends Reducer<KeyType,ValueType> {

public void reduce (KeyType k, Iterable<ValueType> values,
Context context) {
code of reduce function
context.write(k’,v’");
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Example 6: Entropy of a distribution

Input: A multiset S
Output: The entropy of S:

H(S) = —p;ilog(pi), where p; = #(S,i)/#S

i

Job 1: For each i, compute p;:
» map (i) : output (i,1)
» combiner (i, L) = reduce(i,L):

output (i,sum(L))

Job 2: Given a vector p, compute H(p):
» map (p(i)): output (0,p(i))
» combiner (k,L) = reduce (k,L)

output sum( -p(i)*log(p(i)) )
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Mapreduce/Hadoop: Conclusion

v

one of the basis for the Big Data / NoSQL revolution

Was for 1 decade standard for open-source big data
distributed processing

Abstracts from cluster details

Missing features can be externally added

» Data storage and retrieval components (e.g. HDFS in
Hadoop), scripting languages, workflow management,
SQL-like languages. . .

v

v

v

Cons:

v

Complex to setup, lengthy to program

Input and output of each job goes to disk (e.g. HDFS); slow
No support for online, streaming processing; superseeded
Often, performance bottlenecks; not always best solution

v

v

v
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Big Data and NoSQL: Outline

o o kDD~

Big Data

NoSQL: Generalities

NoSQL: Some Systems

Key-value DB’s: Dynamo and Cassandra
A document-oriented DB: MongoDB
The Apache ecosystem for Big Data
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Big Data

v

5 billion cellphones

Internet of things, sensor networks

Open Data initiatives (science, government)
The Web

Planet-scale applications do exist today

v

v

v

v
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Big Data

v

Sets of data whose size surpasses what data storage tools
can typically handle

The 3 V’s: Volume, Velocity, Variety, etc.

v

v

Figure that grows concurrently with technology

v

The problem has always existed

v

In fact, it has always driven innovation

35/65



Big Data

» Technological problem: how to store, use & analyze?

» Or business problem?

what to look for in the data?
what questions to ask?
how to model the data?
where to start?

vV vy vVvyYy
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The problem with Relational DBs

v

The relational DB has ruled for 2-3 decades
Superb capabilities, superb implementations

One of the ingredients of the web revolution
» LAMP = Linux + Apache HTTP server + MySQL + PHP

Main problem: scalability

v

v

v
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Scaling UP

» Price superlinear in
performance & power

» Performance ceiling

Scaling OUT

» No performance
ceiling, but

» More complex
management

» More complex
programming

» Problems keeping
ACID properties
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The problem with Relational DBs

» RDBMS scale up well (single node). Don’t scale out well
» Vertical partitioning: Different tables in different servers
» Horizontal partitioning: Rows of same table in different
servers
Apparent solution: Replication and caches

» Good for fault-tolerance, for sure
» OK for many concurrent reads
» Not much help with writes, if we want to keep ACID
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There’s a reason: The CAP theorem

Three desirable properties:
» Consistency: After an update to the object, every access to
the object will return the updated value

» Availability: At all times, all DB clients are able to access
some version of the data. Equivalently, every request
receives an answer

» Partition tolerance: The DB is split over multiple servers
communicating over a network. Messages among nodes
may be lost arbitrarily

The CAP theorem [Brewer 00, Gilbert-Lynch 02] says:

No distributed system can have these three properties

In other words: In a system made up of nonreliable nodes and network, it is impossible to implement atomic reads &
writes and ensure that every request has an answer.
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CAP theorem: Proof

v

Two nodes, A, B
A gets request “read(x)”

To be consistent, A must check whether some
“write(x,value)” performed on B

...S0 sends a message to B
If A doesn’t hear from B, either A answers (inconsistently)

v

v

v

v

v

or else A does not answer (not available)
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The problem with RDBMS

v

A truly distributed, truly relational DBMS should have
Consistency, Availability, and Partition Tolerance

...which is impossible

v

v

Relational is full C+A, at the cost of P

v

NoSQL obtains scalability by going for A+P or for C+P
...and as much of the third one as possible

v
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NoSQL: Generalities

Properties of most NoSQL DB'’s:

© N O~ ~

BASE instead of ACID

Simple queries. No joins

No schema

Decentralized, partitioned (even multi data center)
Linearly scalable using commodity hardware
Fault tolerance

Not for online (complex) transaction processing
Not for datawarehousing
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BASE, eventual consistency

» Basically Available, Soft state, Eventual consistency

» Eventual consistency: If no new updates are made to an
object, eventually all accesses will return the last updated
value.

» ACID is pessimistic. BASE is optimistic. Accepts that DB
consistency will be in a state of flux

» Surprisingly, OK with many applications
» And allows far more scalability than ACID
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Some names, by Data Model

Table: BigTable, Hbase, Hypertable

Key-Value: Dynamo, Riak, Voldemort, Cassandra, CouchBase,
Redis

Column-Oriented: Cassandra, Hbase
Document: MongoDB, CouchDB, CouchBase

Graph Oriented: Neo4j, Sparksee (formerly DEX), Pregel,
FlockDB
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Some names, by CAP properties

» Consistency + Partitioning
BigTable, Hypertable, Hbase, Redis

» Availability + Partionining

Dynamo, Voldemort, Cassandra, Riak, MongoDB,
CouchDB
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Some names, by data size

RAM-based: CouchBase, Qlikview
Big Data: MongoDB, Neo4j, Hypergraph, Redis, CouchDB

BIG DATA: BigTable, Hbase, Riak, Voldemort, Cassandra,
Hypertable
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Dynamo

v

Amazon’s propietary system

v

Very influential: Riak, Cassandra, Voldemort

v

Goal: system where ALL customers have a good
experience, not just the majority

v

l.e., very high availability
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Dynamo

v

Queries: simple objects reads and writes

v

Objects: unique key + binary object (blob)

v

Key implementation idea: Distributed Hash Tables (DHT)

v

Client tunable tradeoff latency vs. consistency vs. durability
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Dynamo

Interesting feature:
» In most rdbms, conflicts resolved at write time, so read
remains simple.
» That’s why lock before write. “Syntactic” resolution

» In Dynamo, conflict resolution at reads — “semantic” —
solved by client with business logic

Example:
» Client gets several versions of end-user’s shopping cart

» Knowing their business, decides to merge; no item ever
added to cart is lost, but deleted items may reappear

» Final purchase we want to do in full consistency
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Cassandra

» Key-value pairs, like Dynamo, Riak, Voldemort

» But also richer data model: Columns and Supercolumns
» Write-optimized
Choice if you write more than you read, such as logging

-

Cassandra
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A document-oriented DB: MongoDB

» Richer data model than most NoSQL DB’s

» More flexible queries than most NoSQL DB’s

» No schemas, allowing for dynamically changing data
» Indexing

» MapReduce & other aggregations

» Stored JavaScript functions on server side

» Automatic sharding and load balancing

» Javascript shell

‘ mongoDB
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MongoDB Data model

» Document: Set of key-value pairs and embedded
documents

» Collection: Group of documents

» Database: A set of collections + permissions + ...

Relational analogy:
Collection = table; Document = row
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Example Document

"name" : "Anna Rose",

"profession" : "lawyer",

"address" : {
"street" : "Champs Elisees 652",
"city" : "Paris",
"country" : "France"

}

Always an extra field _id with unique value
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Managing documents: Examples

VvV Vv

vV V. V V

\%

anna = db.people.findOne ({ "name" : "Anna Rose" });
anna.age = 25
anna.address = { "Corrientes 348", "city"

"Buenos Aires", "country" : "Argentina" }
db.people.insert ({ "name" : "Gilles Oiseau", "age" : 30 })
db.people.update ({ "name" : "Gilles Oiseau"},

Sset : { "age" : 31 })
db.people.update ({ "name" : "Gabor Kun" },
Sset : { "age" : 18 }, true)

Last parameter t rue indicates upsert:

update if it alredy exists, insert if it doesn’t
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find

» db.find (condition) returns a collection

» condition may contain boolean combinations of
key-value pairs,

» also =, <, >, Swhere, $Sgroup, Ssort, ...

Common queries can be sped-up by creating indices
Geospatial indices built-in
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Consistency

v

By default, all operations are “fire-and-forget”: client does
not wait until finished

Allows for very fast reads and writes
» Price: possible inconsistencies

v

v

Operations can be made safe: wait until completed
Price: client slowdown

v
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Sharding

» With a shard key, a user tells how to split DB into shards

» E.g. "name™" as a shard key may split db.people into 3
shards A-G, H-R, S-Z, sent to 3 machines

» Random shard keys good idea
» Shards themselves may vary over time to balance load

» E.g., if many A’s arrive the above may turn into A-D, E-P,
Q-Z
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Beyond Hadoop: Online, real-time

mStreaming, distributed processing

Kafka: Massive scale message distributing systems

Storm: Distributed stream processing computation framework

<<

Spr K Spark: In-memory, interactive, real-time
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Hadoop vs. Spark. Disk vs. Memory

[source: https://www.tutorialspoint.com/apache_spark/apache_spark_pdf_version.htm

Iteration - 1 Iteration - 2

HDFS HDFS R1
P read \read
~ /‘ | —
Dataon | Tuples R2 e
Disk ‘

18
Input from
stable i
storage T N

Figure: Iterative operations on MapReduce
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Hadoop vs. Spark. Disk vs. Memory

[source: https://www.tutorialspoint.com/apache_spark/apache_spark_pdf_version.htm]

Iteration - 1 Iteration - 2 Iteration - n
MR1 | HDFS
Detributed ( Tuples
Shaiory ‘ MR2 (on Disk)
output to
M3 stable
storage

Figure: Iterative operations on Spark RDD
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Hadoop vs. Spark. Disk vs. Memory

[source: https://www.tutorialspoint.com/apache_spark/apache_spark_pdf_version.htm]

HDFS
read

Input from
stable storage

Figure: Interactive operations on MapReduce
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Hadoop vs. Spark. Disk vs. Memory

[source: https://www.tutorialspoint.com/apache_spark/apache_spark_pdf_version.htm]

Result1

Distributed Result2
One Time Memory
Processing

Result3

Figure: Interactive operations on Spark RDD
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Hadoop vs. Spark. Disk vs. Memory

[source: https://spark.apache.org/docs/latest/cluster-overview.html]

Driver Program

SparkContext

—

A

v

\

Cluster Manager

Worker Node

q Executor | Cache

Worker Node

Executor | Cache
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Two Key Concepts in Spark

v

Resilient Distributed Datasets (RDD)

» Dataset partitioned among worker nodes
» Can be created from HDFS files

v

Directed Acyclic Graph (DAG)

» Specifies data transformations
» Data moves from one state to another

v

Avoid one of Hadoop’s bottlenecks: disk writes
Allow for efficient stream processing

v
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