CAIM: Cerca i Anàlisi d'Informació Massiva FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá Department of Computer Science, UPC

Fall 2018

http://www.cs.upc.edu/~caim

5. Web Search. Architecture of simple IR systems

Searching the Web, I

When documents are interconnected

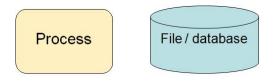
The World Wide Web is huge

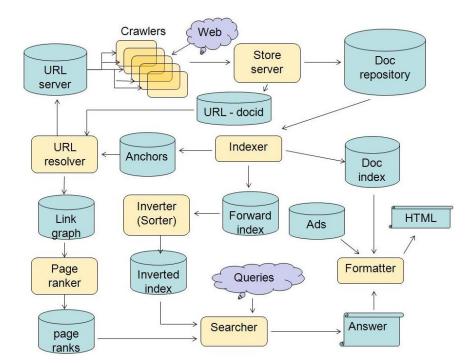
- 100,000 indexed pages in 1994
- 10,000,000,000's indexed pages in 2013
- Most queries will return *millions* of pages with high similarity.
- Content (text) alone cannot discriminate.
- ► Use the structure of the Web a graph.
- Gives indications of the prestige usefulness of each page.

How Google worked in 1998

S. Brin, L. Page: "The Anatomy of a Large-Scale Hypertextual Web Search Engine", 1998

Notation:





Some components

- URL store: URLs awaiting exploration
- Doc repository: full documents, zipped
- Indexer: Parses pages, separates text (to Forward Index), links (to Anchors) and essential text info (to Doc Index)
 - Text in an anchor very relevant for target page

anchor

- ► Font, placement in page makes some terms extra relevant
- Forward index: docid \rightarrow list of terms appearing in docid
- Inverted index: term \rightarrow list of docid's containing term

The inverter (sorter), I

Transforms forward index to inverted index First idea:

for every entry document d
 for every term t in d
 add docid(d) at end of list for t;

Lousy locality, many disk seeks, too slow

The inverter (sorter), II

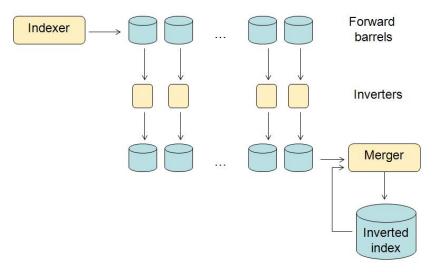
Better idea for indexing:

```
create in disk an empty inverted file, ID;
create in RAM an empty index IR;
for every document d
    for every term t in d
        add docid(d) at end of list for t in IR;
        if RAM full
            for each t, merge the list for t in IR
            into the list for t in ID;
```

Merging previously sorted lists is sequential access Much better locality. Much fewer disk seeks.

The inverter (sorter), III

The above can be done concurrently on different sets of documents:



The inverter (sorter), IV

- Indexer ships barrels, fragments of forward index
- Barrel size = what fits in main memory
- Separately, concurrently inverted in main memory
- Inverted barrels merged to inverted index
- 1 day instead of estimated months

Searching the Web, I

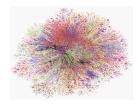
When documents are interconnected

The internet is huge

- 100,000 indexed pages in 1994
- 10,000,000,000 indexed pages at end of 2011

To find content, it is necessary to search for it

- We know how to deal with the content of the webpages
- But.. what can we do with the structure of the internet?



Searching the Web, II

Meaning of a hyperlink

When page A links to page B, this means

- ► *A*'s author thinks that *B*'s content is interesting or important
- ▶ So a link from A to B, adds to B's reputation

But not all links are equal..

- If A is very important, then $A \rightarrow B$ "counts more"
- If A is not important, then $A \rightarrow B$ "counts less"

In today's lecture we'll see two algorithms based on this idea

- Pagerank (Brin and Page, oct. 98)
- HITS (Kleinberg, apr. 98)

Pagerank, I

The idea that made Google great

Intuition:

A page is important if it is pointed to by other important pages

- Circular definition ...
- not a problem!

Pagerank, II

Definitions

The web is a graph G = (V, E)

- $V = \{1, .., n\}$ are the nodes (that is, the pages)
- $(i, j) \in E$ if page *i* points to page *j*
- we associate to each page i, a real value p_i (*i*'s pagerank)
- we impose that $\sum_{i=1}^{n} p_i = 1$

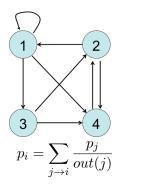
How are the p_i 's related

• p_i depends on the values p_j of pages j pointing to i

$$p_i = \sum_{j \to i} \frac{p_j}{out(j)}$$

where out(j) is j's outdegree

Pagerank, III Example



$$p_{1} = \frac{p_{1}}{3} + \frac{p_{2}}{2}$$

$$p_{2} = \frac{p_{3}}{2} + p_{4}$$

$$p_{3} = \frac{p_{1}}{3}$$

$$p_{4} = \frac{p_{1}}{3} + \frac{p_{2}}{2} + \frac{p_{3}}{2}$$

$$1 = p_{1} + p_{2} + p_{3} + p_{4}$$

Whose solutions is: $p_1 = 6/23, p_2 = 8/23, p_3 = 2/23, p_4 = 7/23$

Pagerank, IV Formally

Equations

▶
$$p_i = \sum_{j:(j,i) \in E} \frac{p_j}{out(j)}$$
 for each $i \in V$
▶ $\sum_{i=1}^n p_i = 1$

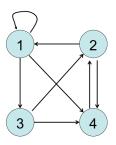
where $out(i) = |\{j : (i, j) \in E\}|$ is the *outdegree* of node i

 ${\sf lf}\; |V|=n$

- ▶ n+1 equations
- n unknowns

Could be solved, for example, using Gaussian elimination in time ${\cal O}(n^3)$

Pagerank, V Example, revisited



A set of linear equations:

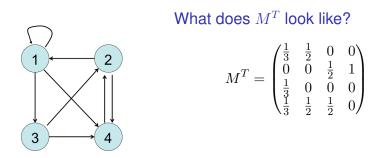
$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 1 \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \cdot \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix}$$

namely: $\vec{p} = M^T \vec{p}$ and additionally $\sum_i p_i = 1$

Whose solutions is:

 \vec{p} is the eigenvector of matrix M^T associated to eigenvalue 1

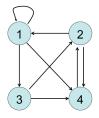
Pagerank, VI Example, revisited



 M^T is the *transpose* of the row-normalized adjacency matrix of the graph !

Pagerank, VII

Example, revisited



Adjacency matrix

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 1/3 & 0 & 1/3 & 1/3 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(rows add up to 1)

$$M^T = \begin{pmatrix} 1/3 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 1 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/2 & 0 \end{pmatrix}$$

(columns add up to 1)

Pagerank, VIII

Example, revisited

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad M = \begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad M^{T} = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 1 \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

Question:

Why do we need to row-normalize and transpose A?

Answer:

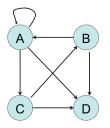
- ► Row normalization: because $p_i = \sum_{j:(j,i) \in E} \frac{p_j}{out(j)}$
- ► *Transpose*: because $p_i = \sum_{j:(j,i) \in E} \frac{p_j}{out(j)}$, that is, p_i depends on *i*'s *incoming edges*

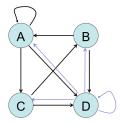
Pagerank, IX

It is just about solving a system of linear equations!

- .. but
 - How do we know a solution exists?
 - How do we know it has a single solution?
 - How can we compute it efficiently?

For example, the graph on the left has no solution.. (check it!) but the one on the right does





Pagerank, X

How do we know a solution exists?

Luckily, we have some results from *linear algebra*

Definition

A matrix M is stochastic, if

- All entries are in the range [0, 1]
- ▶ Each row adds up to 1 (i.e., M is row normalized)

Theorem (Perron-Frobenius)

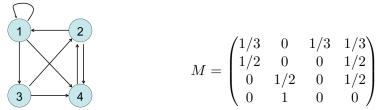
If M is stochastic, then it has at least one stationary vector, i.e., one non-zero vector p such that

$$M^T p = p.$$

Pagerank, XI

Equivalently: the random surfer view

Now assume M is the transition probability matrix between states in G



Let $\vec{p}(t)$ be the probability over states at time t

► E.g., *p*_j(0) is the probability of being at state *j* at time 0

Random surfer jumps from page i to page j with probability m_{ij}

 $\blacktriangleright\,$ E.g., probability of transitioning from state 2 to state 4 is $m_{24}=1/2$

The random surfer view

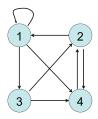
- At time t > 0, random surfer follows one of current page's links uniformly at random

$$\vec{p}(t) := M^T \vec{p}(t-1)$$

- In the limit $t \to \infty$:
 - $\vec{p}(t) = \vec{p}(t+1) = \vec{p}(t+2) = .. = \vec{p}$
 - so $\vec{p}(t) = M^T \vec{p}(t-1)$
 - ▶ $\vec{p}(t)$ converges to a solution p s.t. $p = M^T p$ (the pagerank solution)!

Pagerank, XIII

Random surfer example



$$M^{T} = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & 1\\ \frac{1}{3} & 0 & 0 & 0\\ \frac{1}{3} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

•
$$\vec{p}(0)^T = (1, 0, 0, 0)$$

•
$$\vec{p}(1)^T = (1/3, 0, 1/3, 1/3)$$

▶
$$\vec{p}(2)^T = (0.11, 0.50, 0.11, 0.28)$$

$$\vec{p}(10)^T = (0.26, 0.35, 0.09, 0.30)$$

•
$$\vec{p}(11)^T = (0.26, 0.35, 0.09, 0.30)$$

Pagerank, XIV

An algorithm to solve the eigenvector problem (find p s.t. $p = M^T p$)

The Power Method

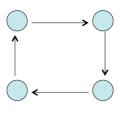
- Chose initial vector $\vec{p}(0)$ randomly
- Repeat $\vec{p}(t) \leftarrow M^T \vec{p}(t-1)$
- Until convergence (i.e. $\vec{p}(t) \approx \vec{p}(t-1)$)

We are hoping that

- The method converges
- The method converges fast
- The method converges fast to the pagerank solution
- The method converges fast to the pagerank solution regardless of the initial vector

Pagerank, XV

Convergence of the Power method: aperiodicity required



Try out the power method with $\vec{p}(0)$:

$$\begin{pmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{pmatrix}, \text{ or } \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ or } \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{pmatrix}$$

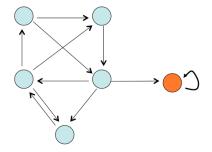
Not being able to break the cycle looks problematic!

- .. so will require graphs to be aperiodic
 - no integer k > 1 dividing the length of every cycle

Pagerank, XVI

Convergence of the Power method: strong connectedness required

What happens with the pagerank in this graph?



The sink hoards all the pagerank!

- need a way to leave sinks
- ... so we will force graphs to be strongly connected

Pagerank, XVII

A useful theorem from Markov chain theory

Theorem

If a matrix M is strongly connected and aperiodic, then:

- $M^T \vec{p} = \vec{p}$ has exactly one non-zero solution such that $\sum_i p_i = 1$
- ▶ 1 is the largest eigenvalue of M^T
- ► the Power method converges to the p satisfying M^T p = p, from any initial non-zero p(0)
- ► Furthermore, we have exponential fast convergence

To guarantee a solution, we will make sure that the matrices that we work with are strongly connected and aperiodic

Pagerank, XVIII

Guaranteeing aperiodicity and strong connectedness

Definition (The Google Matrix) Given a damping factor λ such that: $0 < \lambda < 1$:

$$G = \lambda M + (1 - \lambda)\frac{1}{n}J$$

where J is a $n \times n$ matrix containing 1 in each entry

Observe that:

- G is stochastic
 - .. because G is a weighted average of M and $\frac{1}{n}J$, which are also stochastic
- ▶ for each integer k > 0, there is a non-zero probablity path of length k from every state to any other state of G
 - \blacktriangleright .. implying that G is strongly connected and aperiodic
- ▶ and so the Power method will converge on *G*, and fast!

Pagerank, XIX

Teleportation in the random surfer view

The meaning of λ

- With probability λ, the random surfer follows a link in current page
- With probability 1 − λ, the random surfer jumps to a random page in the graph (teleportation)

Compute the pagerank value of each node of the following graph assuming a damping factor $\lambda = 2/3$:

Hint: solve the following system, using $p_2 = p_3 = p_4$

Compute the pagerank vector \vec{p} of graph with row-normalized matrix M for damping factor λ in closed matrix form.

Answer:

$$\vec{p} = (I - \lambda M^T)^{-1} \begin{pmatrix} \frac{1-\lambda}{n} \\ \vdots \\ \frac{1-\lambda}{n} \end{pmatrix}$$

Topic-sensitive Pagerank, I

Observe that pageranks are independent of user's query

- Advantages
 - Computed off-line
 - Collective reputation
- Disadvantages
 - Insensitive to particular user's needs

Topic-sensitive Pagerank, II

Assume there is a small set of K topics (sports, science, politics, ...)

- ► Each topic $k \in \{1, .., K\}$ is defined by a subset of the web pages T_k
- ► For each *k*, compute pagerank of node *i* for topic *k*:

 $p_{i,k}$ = "pagerank of node *i* with teleportation reduced to T_k "

► Finally compute ranking score of a page *i* given query *q*

$$score(i,q) = \sum_{k=1}^{K} sim(T_k,q) \cdot p_{i,k}$$

HITS, I Hypertext Induced Text Search

Interest of a web page due to two different reasons

- page content is insteresting (authority), or
- page points to interesting pages (hub)

HITS main rationale

- hubs are important if they point to important authorities
- authorities are impotant if pointed to by important hubs
- ... but .. circular definition again not a problem!

HITS, II

Definition of authority and hub value $(a_i \text{ and } h_i)$ Associate to each page i an authority value a_i and a hub value h_i

- vector of all authority values is \vec{a}
- vector of all hub values is \vec{h}

Keep these vectors normalized (notice L2 norm!)

•
$$\|\vec{a}\| = \sum_i a_i^2 = 1$$
, and $\|\vec{h}\| = \sum_i h_i^2 = 1$

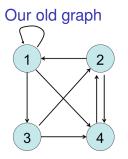
For appropriate scaling constants c and d

•
$$a_i = c \cdot \sum_{j \to i} h_j$$
, and $h_i = d \cdot \sum_{i \to j} a_j$

Notice not a linear system anymore!

... but still ok with a variant of the power method

HITS, III Example

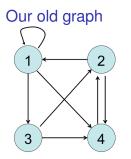


Adjacency matrix

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

 $a_{1} = c \cdot (h_{1} + h_{2}) \quad // \text{ here we use A's first column}$ $a_{1} \propto (1, 1, 0, 0) \cdot \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \\ h_{4} \end{pmatrix} = (1, 1, 0, 0) \cdot \vec{h}$

HITS, IV Example



Adjacency matrix

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

 $h_2 = d \cdot (a_1 + a_4) \quad \text{// here we use A's second row}$ $h_2 \propto (1, 0, 0, 1) \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = (1, 0, 0, 1) \cdot \vec{a}$

HITS, V Update rule for \vec{a} and \vec{h}

Written in compact matrix form

- To update authority values
 - $\blacktriangleright \ \vec{a} := A^T \cdot \vec{h}$
 - normalize afterwards $\vec{a} := \frac{\vec{a}}{\|a\|}$ so that $\|a\| = 1$
- To update hub values
 - $\blacktriangleright \ \vec{h} := A \cdot \vec{a}$
 - normalize afterwards $\vec{h} := \frac{\vec{h}}{\|h\|}$ so that $\|h\| = 1$

HITS, VI

The power method for finding \vec{a} and \vec{h}

Given adjancecy matrix A

- Initialize $\vec{a} = \vec{h} = (1, 1, .., 1)^T$
- Normalize \vec{a} and \vec{h} so that ||a|| = ||h|| = 1
- Repeat until convergence

$$\bullet \ \vec{a} := A^T \cdot \vec{h}$$

- normalize \vec{a} so that ||a|| = 1
- $\blacktriangleright \ \vec{h} := A \cdot \vec{a}$
- normalize \vec{h} so that $\|h\| = 1$

Query answering algorithm HITS

- Get query q and run content-based searcher on q
- ► Let *RootSet* be the top-*k* ranked pages
- Expand pages to BaseSet by adding all pages pointed to and by pages in RootSet
- compute hub and authority values for the subgraph of web induced by *BaseSet*
- Rank pages in BaseSet according to \vec{a} , \vec{h} , and content

HITS, VIII HITS algorithm illustrated

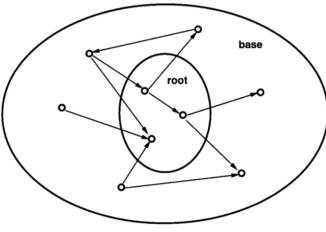


FIG. 1. Expanding the root set into a base set.

HITS vs. Pagerank

Pros of HITS vs. Pagerank

Sensitive to user queries

Cons of HITS vs. Pagerank

- Compute online, not offline!
- More vulnerable to webspamming