CAIM: Cerca i Anàlisi d’Informació Massiva

FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~caim
2. Information Retrieval Models

Information Retrieval Models, I

Setting the stage to think about IR

What is an Information Retrieval Model?
We need to clarify:

- A proposal for a logical view of documents (what info is stored/indexed about each document?),
- a query language
(what kinds of queries will be allowed?),
- and a notion of relevance (how to handle each document, given a query?).

Information Retrieval Models, II

A couple of IR models

Focus for this course:

- Boolean model,
- Boolean queries, exact answers;
- extension: phrase queries.
- Vector model,
- weights on terms and documents;
- similarity queries, approximate answers, ranking.

Boolean Model of Information Retrieval

Relevance assumed binary

Documents:

A document is completely identified by the set of terms that it contains.

- Order of occurrence considered irrelevant,
- number of occurrences considered irrelevant (but a closely related model, called bag-of-words or BoW, does consider relevant the number of occurrences).

Thus, for a set of terms $\mathcal{T}=\left\{t_{1}, \ldots, t_{T}\right\}$, a document is just a subset of \mathcal{T}.
Each document can be seen as a bit vector of length T, $d=\left(d_{1}, \ldots, d_{T}\right)$, where

- $d_{i}=1$ if and only if t_{i} appears in d, or, equivalently,
- $d_{i}=0$ if and only if t_{i} does not appear in d.

Queries in the Boolean Model, I

Boolean queries, exact answers

Atomic query:
a single term.
The answer is the set of documents that contain it.
Combining queries:

- OR, AND: operate as union or intersection of answers;
- Set difference, t_{1} BUTNOT $t_{2} \equiv t_{1}$ AND NOT t_{2};
- motivation: avoid unmanageably large answer sets.

In Lucene: +/- signs on query terms, Boolean operators.

Queries in the Boolean Model, II

A close relative to propositional logic

Analogy:

- Terms act as propositional variables;
- documents act as propositional models;
- a document is relevant for a term if it contains the term, that is, if, as a propositional model, satisfies the variable;
- queries are propositional formulas (with a syntactic condition of avoiding global negation);
- a document is relevant for a query if, as a propositional model, it satisfies the propositional formula.

Example, I

A very simple toy case

Consider 7 documents with a vocabulary of 6 terms:
$\mathrm{d} 1=$ one three
d2 = two two three
d3 $=$ one three four five five five
d4 = one two two two two three six six
d5 = three four four four six
d6 = three three three six six
d7 = four five

Example, II

Our documents in the Boolean model
five four one six three two

$d 1=$	0	0	1	0	1	0
$d 2=$	0	0	0	0	1	1
$d 3=$	1	1	1	0	1	0
$d 4=$	0	0	1	1	1	1
$d 5=$	0	1	0	1	1	0
$d 6=$	0	0	0	1	1	0
$d 7=$	1	1	0	0	0	0

(Invent some queries and compute their answers!)

Queries in the Boolean Model, III

No ranking of answers

Answers are not quantified:
A document either

- matches the query (is fully relevant),
- or does not match the query (is fully irrelevant).

Depending on user needs and application, this feature may be good or may be bad.

Phrase Queries, I

Slightly beyond the Boolean model

Phrase queries: conjunction plus adjacency
Ability to answer with the set of documents that have the terms of the query consecutively.

- A user querying "Keith Richards" may not wish a document that mentions both Keith Emerson and Emil Richards.
- Requires extending the notion of "basic query" to include adjacency.

Phrase Queries, II

Options to "hack them in"

Options:

- Run as conjunctive query, then doublecheck the whole answer set to filter out nonadjacency cases.

This option may be very slow in cases of large amounts of "false positives".

- Keep in the index dedicated information about adjacency of any two terms in a document (e.g. positions).
- Keep in the index dedicated information about a choice of "interesting pairs" of words.

Vector Space Model of Information Retrieval, I

Basis of all successful approaches

- Order of words still irrelevant.
- Frequence is relevant.
- Not all words are equally important.
- For a set of terms $\mathcal{T}=\left\{t_{1}, \ldots, t_{T}\right\}$, a document is a vector $d=\left(w_{1}, \ldots, w_{T}\right)$ of floats instead of bits.
- w_{i} is the weight of t_{i} in d.

Vector Space Model of Information Retrieval, II

Moving to vector space

- A document is now a vector in \mathbb{R}^{T}.
- The document collection conceptually becomes a matrix terms \times documents.
but we never compute the matrix explicitly.
- Queries may also be seen as vectors in \mathbb{R}^{T}.

The tf-idf scheme

A way to assign weight vector to documents
Two principles:

- The more frequent t is in d, the higher weight it should have.
- The more frequent t is in the whole collection, the less it discriminates among documents, so the lower its weight should be in all documents.

The tf-idf scheme, II

The formula

A document is a vector of weights

$$
d=\left[w_{d, 1}, \ldots, w_{d, i}, \ldots, w_{d, T}\right]
$$

Each weight is a product of two terms

$$
w_{d, i}=t f_{d, i} \cdot i d f_{i}
$$

The term frequency term $t f$ is

$$
t f_{d, i}=\frac{f_{d, i}}{\operatorname{máx}_{j} f_{d, j}}, \quad \text { where } f_{d, j} \text { is the frequency of } t_{j} \text { in } d .
$$

And the inverse document frequency $i d f$ is

$$
i d f_{i}=\log _{2} \frac{D}{d f_{i}}, \quad \text { where } D=\text { number of documents }
$$

$$
\text { and } d f_{i}=\text { number of documents that contain term } t_{i} \text {. }
$$

Example, I

five four one six three two maxf

$d 1=$	0	0	1	0	1	0	1
$d 2=$	0	0	0	0	1	2	2
$d 3=$	3	1	1	0	1	0	3
$d 4=$	0	0	1	2	1	4	4
$d 5=$	0	3	0	1	1	0	3
$d 6=$	0	0	0	2	3	0	3
$d 7=$	1	1	0	0	0	0	1
df $=$	2	3	3	3	6	2	

Example, II

Similarity of Documents in the Vector Space Model

The cosine similarity measure

- "Similar vectors" may happen to have very different sizes.
- We better compare only their directions.
- Equivalently, we normalize them before comparing them to have the same Euclidean length.

$$
\operatorname{sim}(d 1, d 2)=\frac{d 1 \cdot d 2}{|d 1||d 2|}=\frac{d 1}{|d 1|} \cdot \frac{d 2}{|d 2|}
$$

where

$$
v \cdot w=\sum_{i} v_{i} \cdot w_{i}, \text { and }|v|=\sqrt{v \cdot v}=\sqrt{\sum_{i} v_{i}^{2}}
$$

- Our weights are all nonnegative.
- Therefore, all cosines / similarities are between 0 and 1 .

Cosine similarity, Example

$$
\begin{aligned}
d 3 & =\left[\begin{array}{ccccccc}
1.81 & 0.41 & 0.41 & 0 & 0.07 & 0 &] \\
d 4 & =\left[\begin{array}{cccc}
0 & 0 & 0.61 & 1.22
\end{array}\right. & 0.11 & 3.61
\end{array}\right]
\end{aligned}
$$

Then

$$
|d 3|=1.898, \quad|d 4|=3.866, \quad d 3 \cdot d 4=0.26
$$

and $\operatorname{sim}(d 3, d 4)=0.035$ (i.e., small similarity).

Query Answering

- Queries can be transformed to vectors too.
- Sometimes, tf-idf weights; often, binary weights.
- $\operatorname{sim}($ doc, query $) \in[0,1]$.
- Answer: List of documents sorted by decreasing similarity.
- We will find uses for comparing $\operatorname{sim}(d 1, d 2)$ too.

