
Dijkstra and Prim’s examples (AP2)

Emma Rollón

UPC



Dijkstra: Shortest Paths Algorithm

0

1 2

34

5

1

2

3

4

3

6

2
5

1

Input: a weighted undirected graph (with positive weights), a source node
Goal: to compute the shortest paths from the source node to any other
node in the graph

Idea: each node maintains its best known distance to the source node
and, at each step, it selects the node with the lowest distance.

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

∞

2

∞

3

∞

4

∞

5

∞

1

2

3

4

3

6

2
5

1

Step 1: associate each node with its best known distance to the source
node (node 0 is the source node - the distance to itself is 0)

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

∞ > 0 + 6

2

∞

3

∞

4

∞ > 0 + 3

5

∞

1

2

3

4

3

6

2
5

1

Step 2: select the node with the lowest distance; update the best known
distance of its adjacent nodes (if necessary); and mark the selected node
as visited.

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

6

2

∞

3

∞

4

3

5

∞

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2 until all nodes have been visited.

Can we assert that 3 is the definitive lowest distance from
source node (node 0) to node 4?

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

6 > 3 + 2

2

∞ > 3 + 5

3

∞ > 3 + 4

4

3

5

∞

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2 until all nodes have been visited.

If an adjacent node has already been selected, could the weight
of new discovered paths be smaller than the one it had?

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

5

2

8 > 5 + 1

3

7

4

3

5

∞

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2 until all nodes have been visited.

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

5

2

6

3

7 == 6 + 1

4

3

5

∞ > 6 + 2

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2 until all nodes have been visited.

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

5

2

6

3

7

4

3

5

8 < 7 + 3

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2 until all nodes have been visited.

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

0

0

1

5

2

6

3

7

4

3

5

8

1

2

3

4

3

6

2
5

1

We don’t need to treat the last node (we already know its best distance to
the source node).

When all edge-weights are equal, which would be the order in
which nodes are visited?

© Computer Science Department(UPC)



Dijkstra: Shortest Paths Algorithm

How to maintain the best distance to each node?

0 1 . . . n - 1

d0 d1 . . . dn−1

Vector
Access: O(1)

How to know if a node is already visited?

0 1 . . . n - 1

t/f t/f . . . t/f

Vector
Access: O(1)

How to find the node with the lowest distance to source node?

(dist, node)

top(d”, id) (d’, id’) (d, id)

ordered by smallest dist

Priority queue
Access top value: O(1)
Remove top value: O(log e)
Insert new value: O(log e)

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

Spanning tree:

0

1 2

34

5

1

2

3

4

3

6

2
5

1

A spanning tree is a subset of the
edges of a connected undirected
graph that connects all the vertices
together without any cycles and with
minimum possible number of edges.

Minimum spanning tree:

0

1 2

34

5

1

2

3

4

3

6

2
5

1

A minimum spanning tree is a subset
of the edges of a connected weighted
undirected graph that connects all
the vertices together without any
cycles and with the minimum
possible total edge weight.

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

1 2

34

5

1

2

3

4

3

6

2
5

1

Input: a weighted undirected graph (with positive weights), a source node
Goal: to compute the minimum spanning tree where source is the root
node of the tree

Idea: select the lowest weighted edge among those connecting nodes
already in the tree and nodes not yet in the tree.

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

∞

2

∞

3

∞

4

∞

5

∞

1

2

3

4

3

6

2
5

1

Step 1: associate each node with its lowest weight edge connecting the
node with one already in the tree (at this stage, none of the nodes are in
the tree but node 0 is the root node - fake edge with 0 cost).

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

∞

2

∞

3

∞

4

∞

5

∞

1

2

3

4

3

6

2
5

1

Step 2.a: pick the node with the lowest weighted edge crossing between
green nodes (nodes already in the MST) and white nodes (nodes not yet
in the MST). That minimum weighted edge is in the MST (initially, the
0-cost edge is a fake edge).

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

∞ > 6

2

∞

3

∞

4

∞ > 3

5

∞

1

2

3

4

3

6

2
5

1

Step 2.b: put the selected node in the set of nodes already in the tree
(green nodes); update the cost of its adjacent nodes not yet in the tree
with the cost of its minimum weighted edge crossing to green nodes.

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

∞ > 6

2

∞

3

∞

4

∞ > 3

5

∞

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2.a (edge from node 4 to node 0 with cost 3 is in the
MST) and ...

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

6 > 2

2

∞ > 5

3

∞ > 4

4

3

5

∞

1

2

3

4

3

6

2
5

1

Step 3: ... and also step 2.b until all nodes have been visited.

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

2

2

5 > 1

3

4

4

3

5

∞

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2.a and 2.b until all nodes have been visited.

If an adjacent node has already been included in the tree, could
we find an edge with lower weight?

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

2

2

1

3

4 > 1

4

3

5

∞ > 2

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2.a and 2.b until all nodes have been visited.

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

2

2

1

3

1

4

3

5

2 < 3

1

2

3

4

3

6

2
5

1

Step 3: repeat step 2.a and 2.b until all nodes have been visited.

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

0

1

2

2

1

3

1

4

3

5

2

1

2

3

4

3

6

2
5

1

We don’t need to treat the last node (we already know its best weighted
edge connecting it to the spanning tree).

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

0

1 2

34

5

1

2

3

2 1

The algorithm obtains this MST with cost 9.

© Computer Science Department(UPC)



Prim: Minimum Spanning Tree

How to know the lowest weighted edge to nodes alredy in the tree?

0 1 . . . n - 1

w0 w1 . . . wn−1

0 1 . . . n - 1

p0 p1 . . . pn−1

How to know if a node is already visited?

0 1 . . . n - 1

t/f t/f . . . t/f

How to find the node with the lowest weighted edge connecting it to one
of the spanning tree nodes?

(weight, node)

top(w”, id) (w’, id’) (w, id)

ordered by smallest weight

© Computer Science Department(UPC)


