
On Mini-Buckets and the Min-fill Elimination Ordering

Emma Rollon and Javier Larrosa

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Spain.

Abstract. Mini-Bucket Elimination (MBE) is a well-known approximation of
Bucket Elimination (BE), deriving bounds on quantities of interest over graph-
ical models. Both algorithms are based on the sequential transformation of the
original problem by eliminating variables, one at a time. The order in which vari-
ables are eliminated is usually computed using the greedy min-fill heuristic. In
the BE case, this heuristic has a clear intuition, because it faithfully represents
the structure of the sequence of sub-problems that BE generates and orders the
variables using a greedy criteria based on such structure. However, MBE pro-
duces a sequence of sub-problems with a different structure. Therefore, using the
min-fill heuristic with MBE means that decisions are made using the structure of
the sub-problems that BE would produce, which is clearly meaningless. In this
paper we propose a modification of the min-fill ordering heuristic that takes into
account this fact. Our experiments on a number of benchmarks over two impor-
tant tasks (i.e., computing the probability of evidence and optimization) show that
MBE using the new ordering is often far more accurate than using the standard
one.

1 Introduction

The graphical model paradigm includes very important reasoning tasks such as solving
and counting solutions of CSPs, finding optimal solutions of weighted CSPs, comput-
ing probability of evidences and finding the most probable explanation in Bayesian
Networks. Mini-Bucket Elimination (MBE) [5] is a very popular algorithm deriving
bounds on reasoning tasks over graphical models. The good performance of MBE in
different contexts has been widely proved [5, 7, 11, 12].

MBE is a relaxation of Bucket Elimination (BE) [2] and both algorithms work by
eliminating the problem variables, one at a time. In BE, the order in which variables
are eliminated is important because it determines the complexity of the algorithm. In
MBE, the variable elimination order does not affect the complexity of the algorithm,
which comes determined by a control parameter. However, as we show in this paper,
such order greatly affects the accuracy of the bound.

The most common elimination order for both BE and MBE is the one given by
the min-fill greedy heuristic [3]. This heuristic was originally designed for BE and it
is there where it has a clear rationale: the greedy algorithm that computes the min-fill
ordering takes into account the structure of the sequence of sub-problems that BE will
subsequently produce. Thus, each time the algorithm decides the next variable to be
eliminated it does so by considering the structure of the problem that BE will have at
this point.

Using the same heuristic for MBE does not seem a good idea, because MBE pro-
duces a sequence of subproblems with a different structure. Thus, when MBE uses the
min-fill heuristic it takes decisions based on a misleading information.

In this paper we show that a better elimination ordering for MBE may be com-
puted by considering the real structure of its sequence of subproblems. To do that,
we represent these subproblems by induced z-bounded hyper-graphs and compute the
elimination ordering accordingly. We demonstrate that MBE using the new elimination
ordering is often far more accurate than using the standard one on a number of bench-
marks (i.e., coding networks, real-world genetic linkage analysis, real-world noisy-OR
models, and combinatorial auctions) over two tasks (i.e., computing the probability of
evidence, and finding the complete assignment with minimum cost in a WCSP).

2 Background

2.1 Graphical Models

A graphical model is a tuple (X ,F), where X = (x1, . . . , xn) is an ordered set of
variables and F = {f1, . . . , fr} is a set of functions. Variable xi takes values from
its finite domain Di. Each function fj : Dvar(fj) → A is defined over a subset of
variables var(fj) ⊆ X and returns values from a set A. For example, X = (x1, x2)
with D1 = D2 = {0, 1}, and F = {x1 + x2, x1 ∗ x2} is a graphical model. Abusing
notation, the scope of a set of functions F , noted var(F), is the union of scopes of the
functions it contains.

Given a graphical model, one can compute different reasoning tasks. A reasoning
task is defined by two operations (

⊗
and ⇓) over functions. The combination of f and

g, noted f
⊗

g, is a new function h with scope var(h) = var(f) ∪ var(g), while the
marginalization of a set of variables W ⊆ X from function f , noted f ⇓W , is a new
function h with scope var(h) = var(f) − W . Computing the reasoning task means
computing (

⊗
f∈F f) ⇓X

The graphical model framework can be used to model a variety of important com-
binatorial problems. For example, if F is a set of cost functions (i.e, returning a non-
negative value representing a cost) the graphical model is a weighted CSP. If we take the
sum as combination and the minimum as marginalization, the reasoning task becomes
minX {

∑
f∈F f)}, which is the minimum cost assignment of the weighted CSP. Alter-

natively, if F is a set of conditional probability tables we have a Bayesian Network. If
we take the product as combination and the sum as marginalization, the reasoning task
becomes

∑
X {

∏
f∈F f)}, which models the probability of the evidence. If F is a set

of hard constraints (i.e, boolean functions) the graphical model is a classical CSP and
the reasoning task

∑
X {

∏
f∈F f)} counts its solutions.

2.2 Graph concepts

The structure of a graphical model is represented by its associated hyper-graph.

Definition 1. A hyper-graph H is a pair H = (V,E) where V is a set of elements,
called nodes, and E is a set of non-empty subsets of V , called hyper-edges. The width
of hyper-graph H is the size of its largest edge.

Definition 2. Given a graphical model P = (X ,F), its associated hyper-graph H(P) =
(V,E) is defined as V = {i | xi ∈ X} and E = {var(f) | f ∈ F}.

The most fundamental structural property considered in the context of graphical
models is acyclicity. Mainly, acyclicity is measured in terms of the induced width.

Definition 3. Let H = (V,E) be a hyper-graph, and let o = {xo
1, . . . , x

o
n} be an or-

dering of the nodes in V where xo
j is the jth element in the ordering. This induces a

sequence of hyper-graphs Hn, Hn−1, . . . ,H1 where H = Hn and Hj−1 is obtained
from Hj as follows. All edges in Hj containing xo

j are merged into one edge, called the
induced hyper-edge, and then xo

j is removed. Thus, the underlying vertices of Hj−1 are
xo
1, . . . , x

o
j−1. The induced width of H under o, noted w∗(o), is the largest width among

all hyper-graphs Hn, . . . ,H1. The induced width of H , noted w∗, is the minimum in-
duced width over all orderings o.

Example 1. Consider a graphical model P = (X ,F) where X = {x1, x2, x3, x4}
and F = {f1(x1, x3), f2(x2, x3), f3(x2, x4), f4(x1, x4)}. Its hyper-graph is H(P) =
(V,E), where V = {1, 2, 3, 4} and E = {(1, 3), (2, 3), (2, 4), (1, 4)}. The lexicograph-
ical ordering o = {x1, x2, x3, x4} induces the following sequence of hyper-graphs
(where each hyper-graph is represented by its set of hyper-edges):

H4(P) = {(1, 3), (2, 3), (2, 4), (1, 4)}
H3(P) = {(1, 3), (2, 3), (1, 2)}
H2(P) = {(1, 2)}
H1(P) = {(1)}

The induced width of the problem is 2 - all edges in H4(P), H3(P) and H2(P) achieve
this size.

2.3 Bucket Elimination

Bucket Elimination (BE) [2] (non-serial dynamic programming in [1] and fusion algo-
rithm in [13]) is a general algorithm for the computation of reasoning tasks in graphical
models. BE (Algorithm 1) works as a sequential elimination of variables. Given an ar-
bitrary variable ordering o = {xo

1, . . . , x
o
n} (line 1), the algorithm eliminates variables

one by one, from last to first, according to o. The elimination of variable xo
j is done as

follows: F is the set of current functions. The algorithm computes the so called bucket
of xo

j , noted Bj , which contains all cost functions in F having xo
j in their scope (line

3). Next, BE computes a new function gj by combining all functions in Bj and subse-
quently eliminating xo

j (line 4). Then, F is updated by removing the functions in Bj
and adding gj (line 5). The new F does not contain xo

j (all functions mentioning xo
j

were removed) but preserves the value of the result. The elimination of the last variable
produces an empty-scope function (i.e., a constant) which is the result of the problem
(line 7).

The correctness of the algorithm is guaranteed whenever the combination and marginal-
ization operators satisfy the three Shenoy-Shaffer axioms [13]. The most important tasks
over graphical models satisfy these axioms.

Algorithm 1: Bucket Elimination
Input : A graphical model P = (X ,F).
Output: Evaluation of (

⊗
f∈F f) ⇓X .

{xo
1, . . . , x

o
n} ← compute-order(P);1

for j ← n to 1 do2
Bj ← {f ∈ F| xo

j ∈ var(f)};3
gj ← (

⊗
f∈Bj

f) ⇓xo
j

;4

F ← (F ∪ {gj})− Bj ;5

end6
return

⊗
f∈F f ;7

Algorithm 2: Mini-Bucket Elimination
Input : A graphical model P = (X ,F); and the value of the control parameter z.
Output: A bound of (

⊗
f∈F f) ⇓X .

{xo
1, . . . , x

o
n} ← compute-order(P);1

for j ← n to 1 do2
Bj ← {f ∈ F| xo

j ∈ var(f)};3
{Q1, . . . , Qp} ← partition(Bj , z);4
for k ← 1 to p do5

gj,k ← (
⊗

f∈Qk
f) ⇓xo

j
;6

end7
F ← (F ∪ {gj,1, . . . , gj,p})− Bj ;8

end9
return

⊗
f∈F f ;10

Example 2. Consider the graphical model in Example 1. The trace of BE along lexico-
graphical order is as follows.

Bucket
B4 f4(x1, x4) , f3(x2, x4)
B3 f1(x1, x3) , f2(x2, x3) , g4(x1, x2) = (f4

⊗
f3) ⇓x4

B2 g3(x1, x2) = (f1(x1, x3)
⊗

f2(x2, x3)
⊗

g4(x1, x2)) ⇓x3

B1 g2(x1) = g3(x1, x2) ⇓x2

Output g1() = g2(x1) ⇓x1

Since new functions have to be stored explicitly as tables, and their size is expo-
nential on their arity, the time and space complexity of BE depends on the largest arity
needed. This arity is captured by the structural parameter induced-width (see Section 3
for details).

Theorem 1. Given a variable ordering o, the time and space complexity of BE is
O(exp(w∗(o) + 1)) and O(exp(w∗(o))), respectively.

2.4 Mini-Bucket Elimination

All variable elimination algorithms are unsuitable for problems with high induced width
due to its exponential time and space complexity. Mini-bucket elimination (MBE) [5]
is an approximation of full bucket elimination that bounds the exact solution when the
induced width is too large.

Given a bucket Bj = {f1 . . . , fm}, MBE generates a partition Q = {Q1, . . . , Qp}
of Bj , where each subset Qk ∈ Q is called mini-bucket. Given an integer control pa-
rameter z, MBE restricts the arity of each of its mini-buckets to z+1. We say that Q is
a z-partition. Then, each mini-bucket is processed independently. Algorithm 2 shows
the pseudo-code of MBE.

Example 3. Consider our running example. The trace of MBE along lexicographical
order and setting the value of the control parameter z to 1 is as follows.

Bucket
B4 f4(x1, x4) , f3(x2, x4)
B3 f1(x1, x3) , f2(x2, x3)
B2 g42(x2) = f3(x2, x4) ⇓x4

, g32(x2) = f2(x2, x3) ⇓x3

B1 g41(x1) = f4(x1, x4) ⇓x4 , g31(x1) = f1(x1, x3) ⇓x3

Output g1() = (g41(x1)
⊗

g31(x1)) ⇓x1 , g2() = (g42(x2)
⊗

g32(x2)) ⇓x2

Note that since the final set of functions is {g1(), g2()}, the output valuation is g1()
⊗

g2().

The time and space complexity of MBE is O(exp(z + 1)) and O(exp(z)), respec-
tively. The parameter z allows trading time and space for accuracy. In general, higher
values of z results in more accurate bounds. In the limit (e.g., when z is the number of
variables of the problem) MBE behaves as BE and computes the exact result.

3 Variable Elimination Ordering

In this Section we show that the order in which variables are eliminated plays a very
different role in bucket and mini-bucket elimination. In particular, the sequence of sub-
problems generated by both algorithms is different. In spite of this key distinction, MBE
uses the ordering procedure as designed for BE. We propose a modification of this pro-
cedure in order to account for this fact.

3.1 Induced hyper-graphs and BE

There exists a close relation between the induced sequence of hyper-graphs and the
elimination process of BE. The trace of BE in Example 2 showed how it is possible to
compute the scopes of the functions that the algorithm will produce without actually ex-
ecuting it. Since the hyper-graph precisely contains this information, we can easily show
that the sequence of induced hyper-graphs is actually the sequence of hyper-graphs as-
sociated with the sequence of subproblems produced by BE.

Algorithm 3: compute-order
Input : A graphical model (X ,F), and

a variable selection heuristic h.
Output: A variable elimination ordering

{xo
1, . . . , x

o
n}.

for j ← n to 1 do1
xo
j ← argminxi∈X{h(H(Pj), i)};2

end3
return {xo

1, . . . , x
o
n};4

Algorithm 4: compute-z-order
Input : A graphical model (X ,F), and

a variable selection heuristic h.
Output: A variable elimination ordering

{xo
1, . . . , x

o
n}.

for j ← n to 1 do1
xo
j ← argminxi∈X{h(H(P j), i)};2

end3
return {xo

1, . . . , x
o
n};4

Given a graphical model P = (X ,F), let Pj−1 be the subproblem produced by BE
once variables xo

j , . . . , x
o
n have been eliminated, where by definition Pn = P . Pj−1

is obtained from Pj by computing a new function gj with scope var(Bj) − {xo
j}, and

removing the variable from the problem. Similarly, by definition Hn = H(P), and
induced hyper-graph Hj−1 is obtained from Hj by merging all hyper-edges containing
xo
j and then removing xo

j from the set of vertices. Note that the new hyper-edge is the
scope of gj , while the other hyper-edges are the scopes of the remaining functions in
Pj . Therefore, Hj−1 is the associated hyper-graph of Pj−1 (i.e., Hj−1 = H(Pj−1)).

Example 4. Consider our running example and its BE trace in Example 2. Subproblems
Pj are the following:

P4 = {f1(x1, x3), f2(x2, x3), f3(x2, x4), f4(x1, x4)}
P3 = {f1(x1, x3), f2(x2, x3), g4(x1, x2)}
P2 = {g4(x1, x2), g3(x1, x2)}
P1 = {g2(x1)}

Note that the set of functions’ scopes in each subproblem Pj corresponds to the edges
in hyper-graph Hj(P) in Example 1.

It is clear then that the induced width bounds the bucket’s sizes generated during the
elimination process and, as a consequence, the complexity of the algorithm. The size
of the induced width varies with various variable orderings, leading to different per-
formance guarantees. Finding the best ordering (i.e., the one with the smallest induced
width) is NP-hard. Instead, useful variable selection heuristics as fill-in edges [3], and
width of nodes [6] aim at finding good orderings.

Procedure compute-order (Algorithm 3) is a greedy search guided by the vari-
able selection heuristic h defined on a hyper-graph H = (V,E) and one node i ∈ V ,
noted h(H, i). At iteration j, the algorithm selects the jth variable in the ordering (i.e.,
xo
j) by ranking each node in subproblem Pj according to h and selecting the one min-

imizing it. Note that since the induced hyper-graph Hj(P) represents subproblem Pj ,
the algorithm selects the best variable in the problem once variables xo

j+1, . . . , x
o
n has

been eliminated.

3.2 Induced z-bounded hyper-graphs and MBE

The sequence of induced hyper-graphs differ from the sequence of hyper-graphs asso-
ciated with subproblems produced by MBE. The reason is that MBE partitions buckets
whenever they have more than z + 1 different variables.

Given a graphical model P = (X ,F), let P j−1 be the subproblem once MBE
has eliminated variables xo

j , . . . , x
o
n from P , where by definition Pn = P . Consider

that MBE does not partition buckets Bj , . . . ,Bn. Up to this point of the execution,
MBE generates the same subproblems as BE (i.e., Pj = P j , . . . , Pn = Pn) and the
induced hyper-graphs correspond to hyper-graphs associated with these subproblems
(i.e., Hj = H(P j), . . . ,Hn = H(Pn)). Now consider that bucket Bj−1 has more than
z + 1 different variables. MBE will partition this bucket into mini-buckets. Namely,
instead of computing a single function gj over the bucket’s scope, the algorithm will
compute a set of functions gjk over unions of scopes of bucket’s functions. The hyper-
graph associated with subproblem P j−1 would have one hyper-edge for each of the
new functions’ scope, while the induced hyper-graph Hj−1 has only one hyper-edge
over the scope of the bucket. Therefore, Hj−1 6= H(P j−1).

Example 5. Consider our running example and the trace of MBE in Example 3. Sub-
problems P j are as follows:

P 4 = {f1(x1, x3), f2(x2, x3), f3(x2, x4), f4(x1, x4)}
P 3 = {f1(x1, x3), f2(x2, x3), g41(x1), g42(x2)}
P 2 = {g31(x1), g32(x2), g41(x1), g42(x2)}
P 1 = {g2(), g31(x1), g41(x1)}

Note that induced hyper-graphs H3(P) and H2(P) in Example 1 are not associated with
subproblems P 3 and P 2, respectively. The reason is that bucket B4 is partitioned into
mini-buckets {f4(x1, x4)} and {f3(x2, x4)}. The new computed functions are g41(x1)
and g42(x2). None of the functions in P 3 has scope {x1, x2}. However, the induced
hyper-graph H3(P) has an hyper-edge on {x1, x2}.

Although this important difference, most previous investigations on MBE uses the
elimination ordering as designed for BE. This does not seem a good decision because, as
we have seen, the variable selection heuristic h ranks each node according to the given
hyper-graph. Therefore, when computing the ordering for MBE, the heuristic selects
the next variable to eliminate based on an erroneous structure.

We wish to compute the ordering over the hyper-graphs associated with each sub-
problem generated by MBE. Let us call z-bounded hyper-graph, the hyper-graph asso-
ciated with subproblem P j for any j = 1 . . . n, and induced z-bounded hyper-graphs,
the sequence of hyper-graphs associated with the sequence of subproblems P 1, . . . , Pn.

Example 6. Consider the trace of MBE in Example 3. The sequence of associated in-
duced z-bounded hyper-graphs (represented by their hyper-edges) is,

H(P 4) = {(1, 3), (2, 3), (2, 4), (1, 4)}
H(P 3) = {(1, 3), (2, 3), (1), (2)}
H(P 2) = {(1), (2)}

Iteration j compute-order compute-z-order
4 H(P4) = {(1, 3), (2, 3), (2, 4), (1, 4)} H(P 4) = {(1, 3), (2, 3), (2, 4), (1, 4)}

h(·, 4) = 1 h(·, 4) = 1
h(·, 3) = 1 h(·, 3) = 1
h(·, 2) = 1 h(·, 2) = 1
h(·, 1) = 1 h(·, 1) = 1
xo
j = 4 xo

j = 4

3 H(P3) = {(1, 3), (2, 3), (1, 2)} H(P 3) = {(1, 3), (2, 3), (1), (2)}
h(·, 3) = 0 h(·, 3) = 1
h(·, 2) = 0 h(·, 2) = 0
h(·, 1) = 0 h(·, 1) = 0
xo
j = 3 xo

j = 2

2 H(P2) = {(1, 2)} H(P 2) = {(1, 3), (3), (1)}
h(·, 2) = 0 h(·, 3) = 0
h(·, 1) = 0 h(·, 1) = 0
xo
j = 2 xo

j = 3

1 H(P1) = {(1)} H(P 1) = {(1)}
h(·, 1) = 0 h(·, 1) = 0
xo
j = 1 xo

j = 1

Fig. 1. Trace of compute-order and compute-z-order using number of fill-in edges as
variable selection heuristic h (ties are broken lexicographically). The value of z is 1.

H(P 1) = {(1)}

We propose to compute the elimination order according to the induced z-bounded
hyper-graphs. We call this procedure compute-z-order (Algorithm 4). The main
difference with respect to compute-order is that, at iteration j, the variable selec-
tion heuristic h will rank nodes in the z-bounded hyper-graph H(P j) instead of rank-
ing nodes in the hyper-graph H(Pj) (line 2 in both algorithms). Note that in the limit
(e.g., when z is the number of variables in the problem) both compute-order and
compute-z-order are equivalent.

Example 7. Consider our running example. Let the variable selection heuristic h be
number of fill-in edges, and let z be 1. In case of ties, the secondary variable selection
heuristic is lexicographical order. Figure 1 shows the behavior of compute-order
and compute-z-order. In summary, procedure compute-order outputs order
o = {x1, x2, x3, x4} while compute-z-order outputs order o′ = {x1, x3, x2, x4}.
Note that under o, MBE will split buckets B4 and B3 into two mini-buckets each. How-
ever, under o′, MBE will split only bucket B4 into two mini-buckets and compute ex-
actly the remaining buckets. As a consequence, the bound will provably be more accu-
rate using o′ (which is based on induced z-bounded hyper-graphs) than using o (which
is based on induced hyper-graphs).

Since compute-z-order needs subproblems P j , computing the order as a pre-
process could have the same complexity as MBE. However, it can be embedded in MBE

Algorithm 5: Mini-Bucket Elimination with embedded compute-z-order
Input : A graphical model P = (X ,F); and the value of the control parameter z.
Output: A bound of (

⊗
f∈F f) ⇓X .

for j ← n to 1 do1
xo
j ← argminxi∈X{h(H(X ,F), i)}; // At each iteration P j = (X ,F)2
Bj ← {f ∈ F| xo

j ∈ var(f)};3
{Q1, . . . , Qp} ← partition(Bj , z);4
for k ← 1 to p do5

gj,k ← (
⊗

f∈Qk
f) ⇓xo

j
;6

end7
F ← (F ∪ {gj,1, . . . , gj,p})− Bj ;8
X ← X − {xo

j};9

end10
return

⊗
f∈F f ;11

(Algorithm 5). Note that the time and space complexity of the new algorithm remains
exponential on the control parameter z.

4 Empirical Evaluation

The good performance of mini-bucket elimination over different reasoning tasks has
been already proved [5, 7, 11, 12] . The purpose of these experiments is to evaluate the
effectiveness of the new min-fill heuristic adapted to MBE over two important tasks:
(i) computing the probability of evidence over Bayesian networks, and (ii) finding the
minimum cost assignment of the weighted CSP.

We conduct our empirical evaluation on four benchmarks: coding networks, real-
world linkage analysis models, real-world noisy-OR networks, and combinatorial auc-
tions. The task on the first three benchmarks (all of them included in the UAI’08 evalu-
ation 1) is to compute the probability of evidence and MBE obtains upper bounds, while
the task on the latter benchmark is optimization and MBE obtains lower bounds.

When computing the probability of evidence, we report the results using two dif-
ferent bucket partitioning policies as described in [12]: scope-based (SCP) and LMRE
content-based heuristic. We use the number of fill-in edges as variable selection heuris-
tic h with compute-order and compute-z-order (in the following called BE
fill-in and MBE fill-in, respectively).

Unless otherwise indicated, we report the results in tables where the first column
identifies the instance. Then, for each bucket partitioning heuristic we report the bound,
relative error (RE), and cpu time in seconds using BE fill-in and MBE fill-in. For each
instance, the relative error is computed as

RE =
|bound− best bound|

best bound

1 http://graphmod.ics.uci.edu/uai08/Software

BN SCP partition heuristic LMRE partition heuristic
inst.’s BE fill-in MBE fill-in BE fill-in MBE fill-in

number ub. RE Time ub. RE Time ub. RE Time ub. RE Time
z = 20

126 1.31E-44 46.96 5.44 2.72E-46 0 6.7 2.49E-45 8.15 26.78 1.15E-45 3.23 24.87
127 1.10E-49 0 7.44 2.75E-46 2491.16 7.87 1.73E-46 1568.50 33.03 2.03E-46 1836.54 35.86
128 1.37E-41 127.18 7.17 1.28E-42 11.00 7.38 5.87E-41 547.40 34.54 1.07E-43 0 31.48
129 1.77E-46 333.65 6.2 5.46E-47 101.99 6.5 2.41E-44 45574.38 25.36 5.30E-49 0 27.84
130 8.22E-47 535.66 6.54 1.53E-49 0 6.45 1.03E-47 66.30 23.7 8.44E-48 54.11 24.59
131 5.03E-46 547.72 6.9 9.16E-49 0 5.41 2.28E-46 248.36 27.64 1.96E-47 20.36 25.94
132 1.29E-46 43.84 6.89 1.04E-47 2.61 6.44 1.05E-47 2.65 29.34 2.88E-48 0 24.66
133 5.03E-46 1.85 6.61 2.97E-45 15.82 7.28 2.70E-42 15296.10 24.93 1.76E-46 0 28.79
134 2.50E-44 8513.76 6.66 2.94E-48 0 6.69 4.06E-45 1381.71 29.69 5.49E-45 1866.70 29.45

z = 22

126 5.21E-43 3.98E+5 26.14 5.72E-46 437.12 25.15 9.70E-45 7422.72 107.16 1.31E-48 0 101.11
127 5.34E-48 0.68 28.17 3.18E-48 0 28.22 2.26E-47 6.11 108.68 2.76E-45 865.35 125.69
128 2.30E-44 1.23 25.58 1.03E-44 0 25.02 9.03E-42 872.98 130.68 1.96E-43 17.98 114.71
129 6.14E-45 5.19E+4 26.85 1.18E-49 0 26.04 3.65E-43 3.08E+6 89.18 3.35E-47 282.32 90.08
130 8.40E-47 1205.90 21.64 1.61E-49 1.31 24.1 2.49E-48 34.73 90.47 6.96E-50 0 77.76
131 9.86E-48 0.25 21.69 6.09E-47 6.72 24.59 2.71E-46 33.32 93.29 7.88E-48 0 81.37
132 1.46E-48 23.50 23.6 5.96E-50 0 20.52 1.49E-48 24.03 93.17 5.44E-49 8.13 90.88
133 8.50E-44 1327.32 23.05 8.66E-45 134.26 24.68 5.21E-45 80.37 99.4 6.40E-47 0 85.04
134 1.57E-46 5.32 26.5 1.09E-46 3.36 28.92 1.01E-46 3.07 105.31 2.49E-47 0 94.95

Table 1. Empirical results on coding networks. BN 126, . . . , BN 134 instances.

Moreover, for each row we underline the best bound, and highlight in bold face the best
bound wrt each bucket partitioning heuristic.

In all our experiments, we execute MBE in a Pentium IV running Linux with 4 Gb
of memory and 3 GHz.

Coding networks. Our first domain is coding networks from the class of linear block
codes [7]. All instances have 512 variables with domain size 2 and the induced width
varies from 49 to 55. Table 1 shows the results for two different values of the control
parameter z = {20, 22}.

The MBE fill-in computes the best upper bound on eight out of nine instances when
z = 20, and on all instances when z = 22. Among these instances, the improvement
over the best BE fill-in is usually of orders of magnitude for both values of z.

Using the SCP partitioning heuristic, the MBE fill-in outperforms the BE fill-in on
seven instances when z = 20 and on eight instances when z = 22. The improvements
are usually of orders of magnitude. The computation times of both orderings are very
close. Using the LMRE partitioning heuristic, the MBE fill-in outperforms the BE fill-
in on seven instances when z = 20, and on eight instances when z = 22. As for the
previous partitioning heuristic, the improvements are in general of orders of magnitude,
and the computation times are similar.

For space reasons, we do not report the number of mini-buckets processed in each
run of MBE. However, we observed that when using MBE fill-in the algorithm pro-
cesses less mini-buckets than when using the BE fill-in. Note that breaking a bucket
into several mini-buckets is precisely what transforms the variable elimination scheme
from exact (i.e, BE) to approximate (i.e., MBE). The less mini-buckets, the more similar
to the exact algorithm and, as a consequence, the more accurate the bound.

pedigree SCP partition heuristic LMRE partition heuristic
instance’s BE fill-in MBE fill-in BE fill-in MBE fill-in
number ub. RE Time ub. RE Time ub. RE Time ub. RE Time

z = 17

7 1.34E-49 1.22E+4 4.29 2.22E-51 202.01 4.92 1.84E-53 0.68 8.54 1.10E-53 0 18.14
9 2.58E-66 136.76 1.76 1.88E-68 0 2.51 1.94E-67 9.32 2.72 5.39E-68 1.87 2.71
13 3.24E-15 9.43E+4 1.91 1.39E-16 4059.24 2.23 3.43E-20 0 2.54 1.42E-16 4129.41 3.00
18 4.15E-71 24.54 0.86 3.47E-72 1.13 0.95 2.08E-71 11.80 0.92 1.63E-72 0 0.98
20 3.82E-25 4.73 12.83 6.66E-26 0 15.57 7.61E-26 0.14 14.15 9.75E-26 0.46 23.16
25 1.57E-109 8.83 0.56 1.99E-110 0.24 0.65 3.33E-109 19.85 0.68 1.60E-110 0 0.65
30 4.57E-75 2418.39 1.46 1.86E-77 8.86 1.43 7.14E-76 376.82 1.65 1.89E-78 0 1.75
31 9.21E-51 1.17E+5 9.82 6.67E-53 849.54 11.5 7.84E-56 0 12.08 3.94E-52 5020.51 13.45
33 1.70E-47 17.05 3.53 5.33E-45 5645.31 5.3 9.44E-49 0 10.84 2.92E-46 308.02 8.50
34 2.97E-49 3.39E+4 32.81 1.62E-51 183.85 37.25 3.31E-53 2.79 49.75 8.74E-54 0 63.39
37 4.94E-109 7052.31 110.36 3.19E-111 44.45 131.21 8.86E-110 1263.00 243.17 7.01E-113 0.00 235.84
39 2.58E-99 0.09 1.25 7.35E-99 2.12 1.04 2.35E-99 0 1.28 6.76E-99 1.87 1.42
41 1.96E-61 19.36 69.22 1.48E-62 0.54 29.16 1.06E-61 9.98 90.5 9.62E-63 0 487.54
42 1.22E-26 0.00 15.84 1.69E-26 0.38 39 1.50E-26 0.23 25.7 3.71E-26 2.03 51.06
44 5.81E-55 131.49 1.99 4.39E-57 0 3.08 4.10E-56 8.35 3.58 8.08E-56 17.43 3.69
51 1.74E-53 862.93 3.09 9.76E-52 48484.18 3.53 2.01E-56 0 5.12 6.59E-56 2.27 4.43

z = 19

7 1.35E-53 814.96 24.52 1.63E-50 981031.51 29.49 6.20E-56 2.74 29.24 1.65E-56 0 65.00
9 7.37E-67 9869.66 6.27 8.57E-70 10.47 6.43 1.34E-68 177.77 11.01 7.47E-71 0 12.15
13 2.01E-18 45.03 6.51 1.24E-15 28356.80 8.44 4.36E-20 0 9.98 3.58E-17 821.45 12.60
18 4.16E-76 0 2.72 5.43E-76 0.31 2.78 2.92E-75 6.03 2.76 1.58E-75 2.81 2.81
20 2.24E-27 1.11 51.53 1.52E-27 0.43 43.69 1.12E-27 0.06 51.02 1.05E-27 0.00 87.88
25 4.87E-111 1.76 1.38 4.50E-111 1.55 1.94 1.77E-111 0 1.49 4.21E-111 1.38 1.94
30 5.46E-80 0 5.8 9.05E-80 0.66 5.29 1.03E-79 0.89 6.12 8.02E-80 0.47 5.40
31 7.04E-56 15.60 37.3 1.79E-55 41.28 48.23 4.24E-57 0 42.78 2.48E-56 4.86 60.05
33 3.30E-46 120.34 15.81 7.89E-46 289.04 17.38 2.72E-48 0 15.9 1.03E-46 36.70 24.13
34 1.69E-51 851.77 181.91 7.32E-51 3690.45 223.95 1.98E-54 0 331.9 1.71E-53 7.61 427.58
37 3.75E-113 0.11 206.35 3.53E-113 0.04 203.48 3.39E-113 0 368.57 5.99E-113 0.77 319.95
39 2.08E-100 2.07 8.85 6.77E-101 0 6.75 1.35E-100 0.99 8.88 1.89E-100 1.79 6.84
41 3.00E-63 309.19 266.96 1.14E-61 11784.67 311.98 1.82E-63 187.18 496.47 9.68E-66 0 612.98
42 2.01E-27 1.27 156.51 1.37E-27 0.55 203.89 1.14E-27 0.29 184.97 8.84E-28 0 198.82
44 6.39E-55 62.59 7.36 5.63E-55 55.05 10.34 1.01E-56 0 12.37 7.39E-55 72.60 13.57
51 1.10E-55 269.98 12.21 4.07E-58 0 13.66 1.11E-55 271.12 14.31 2.26E-55 554.91 14.53

Table 2. Empirical results on linkage analysis. Pedigree instances.

Linkage analysis. Our second domain is real-world linkage analysis models. We used
pedigree instances. They have 300 to 1000 variables with domain sizes from 1 (i.e.,
evidence variables) to 5, and induced widths of 20 up to 50. Table 2 shows the results.

The MBE fill-in computes the best upper bound on ten out of sixteen instances when
z = 17, and on seven instances when z = 19. Among these instances, the improvement
over the best BE fill-in is of orders of magnitude on eight out of ten (i.e., on 80% of)
instances when z = 17, and on five out of seven (i.e., on 71%) when z = 19. Among
instances where the BE fill-in computes the best upper bound, the improvement over the
best MBE fill-in is of orders of magnitude on three out of six (i.e., on 50%) instances
when z = 17, and on five out of nine (i.e., on 55%) when z = 19. In other words, when
better, the MBE fill-in is usually orders of magnitude more accurate.

Using the SCP partitioning heuristic, the MBE fill-in outperforms the BE fill-in on
twelve instances when z = 17, and on eight when z = 19. Among these instances, the
improvement over the BE fill-in is always of orders of magnitude when z = 17, and
from 6% up to orders of magnitude (on 37% of these instances) when z = 19. Using

or chain Mean RE or chain Mean RE
numbers Size SCP heuristic LMRE heuristic numbers Size SCP heuristic LMRE heuristic

BE fill-in MBE fill-in BE fill-in MBE fill-in BE fill-in MBE fill-in BE fill-in MBE fill-in
1[0*] 12 916951 165.80 595.83 9.85 21* 10 97025.5 365.01 298.49 1.03
11* 10 163720 1918.51 8785.5 13.05 22* 10 4.98E+06 20.77 493.017 6.34
12* 9 343487 80.44 25293 1.94 23* 9 2.31E+09 126119 1.24E+06 188.58
13* 9 1.52E+07 303.44 10236.7 5491.76 24* 9 548805 113.44 4001.65 23.55
14* 10 54466.7 135.01 759.94 1.79 25* 4 510.92 93.02 54.37 93.62
15* 10 199.96 17.95 35.92 9.86 3* 10 1.00E+10 3.02E+07 4673.18 0.11
16* 10 8.64E+07 58875.3 468.50 4.43 4* 10 461584 33.68 2301.8 1.30
17* 9 1.25E+10 9375.63 311467 12.66 50* 9 1.64E+06 1788.8 71460.5 7.69
18* 9 5.50E+07 204569 19986.2 2.13 6* 10 1.06E+10 1.15E+07 2293.18 10.81
19* 9 1.17E+06 2983.57 208.47 111.36 7* 9 1.98E+10 56410.1 982912 8.86

2[0*] 10 3.59E+06 126.63 980.99 42.66 8* 9 207240 4411.55 90128.1 19.75

Table 3. Empirical results on noisy-OR networks. Promedas instances.

the LMRE partitioning heuristic, the MBE fill-in outperforms the BE fill-in on eight
instances when z = 17, and on seven instances when z = 19. Among these instances,
the improvement over the BE fill-in is of orders of magnitude on all of them when
z = 17, while on six out of seven (i.e., on 87.5%) instances when z = 19 .

Computation times show the same behavior as in the previous benchmark. Regard-
ing the number of mini-buckets, a smaller number of mini-buckets is in general attached
to a better accuracy. This suggests a heuristic strategy to select the ordering in a pre-
processed way by selecting the order producing the smallest number of mini-buckets
(or, equivalently, the smallest number of new induced hyper-edges).

Noisy-OR networks. Our third domain is real-world noisy-OR networks generated by
the Promedas expert system for internal medicine [14]. The benchmark contains 238
instances having 23 up to 2133 variables (mean number is 1048) with binary domain
sizes and induced width up to 60.

Table 3 summarizes the results for z = 25. We report the mean relative error among
sets of instances. The first column identifies the instances included in each set as a
regular expression. For example, the first row includes instances with names matching
or chain 1[0*] (e.g., or chain 1, or chain 10, or chain 101, etc). The second column
indicates the size of the set. As before, we underline the best relative error for each
set of instances, and highlight in bold face the best relative error wrt each partition
heuristic. We do not report cpu time because its behavior is the same as for the previous
benchmarks.

The MBE fill-in outperforms the BE fill-in on all sets, with the exception of or chain 25*
(which only has 4 instances). The improvement among the best BE fill-in is always of
orders of magnitude. Using the SCP partitioning heuristic, the MBE fill-in clearly out-
performs the BE fill-in on all sets, while when using the LMRE partitioning heuristic,
the MBE fill-in is superior to the BE fill-in on all sets but or chain 25*.

Combinatorial auctions. Our last domain is combinatorial auctions (CA). They allow
bidders to bid for indivisible subsets of goods. We have generated CA using the path
model of the CATS generator [8]. We experiment on instances with 20 and 50 goods,

nb. goods = 20 nb. goods = 50
nb. bids z BE fill-in MBE fill-in BE fill-in MBE fill-in

lb. RE lb. RE lb. RE lb. RE
80 15 493 0.010 498 0 424.9 0 423.3 0.004
85 15 371.5 0.010 375.3 0 439.4 0.010 443.8 0
90 15 463.4 0.000 458.4 0.011 400.7 0.000 398.1 0.006
95 15 524.9 0.001 525.3 0 458.6 0.016 466.1 0

100 15 577.5 0.018 588.1 0 498.8 0.004 500.9 0
105 15 549.9 0.009 555.1 0 550.1 0 539.2 0.020
110 15 631.7 0.001 632.1 0 587.9 0.008 592.7 0
115 15 604 0.023 618 0 581.2 0.006 585 0
120 15 498.4 0.018 507.7 0 555.6 0.016 564.9 0
125 15 659.8 0.003 662 0 566.2 0 558.9 0.013
130 15 623.1 0.017 633.9 0 550.6 0 534.9 0.029
135 15 734.4 0.009 740.7 0 562.2 0 560.2 0.004
140 15 765.5 0.015 776.8 0 702.9 0.015 713.9 0
145 15 746.9 0.001 748 0 502.8 0.025 515.8 0
150 15 680.7 0.012 689 0 697.5 0.000 696.5 0.001
155 15 671.4 0 666 0.008 647 0.016 657.6 0
160 15 744.4 0.002 745.8 0 777.3 0.029 800.9 0
165 15 808.9 0.013 819.2 0 667.3 0.019 680 0
170 15 707.6 0 707.6 0 586.9 0.048 616.2 0
175 15 812.7 0.012 822.6 0 673.5 0.012 682 0
180 15 786 0.011 794.4 0 773.2 0.013 783.1 0
185 15 888.7 0.016 902.9 0 835.7 0.015 848.7 0
190 15 927.3 0.002 929.1 0 648 0.011 655.3 0
195 15 823.6 0.024 844 0 854.8 0.020 872.6 0
200 15 866.8 0.020 884.9 0 781.1 0.020 797.1 0
80 20 513.2 0 512.4 0.002 439.5 0.005 441.8 0
85 20 389.5 0.004 390.9 0 471.8 0 470.6 0.003
90 20 493.1 0.005 495.6 0 424.3 0.002 425.2 0
95 20 564.2 0.008 568.8 0 488.8 0 488.3 0.001

100 20 620.3 0 618 0.004 526.7 0 525 0.003
105 20 593.5 0.003 595.3 0 576.3 0.002 577.5 0
110 20 673.7 0.009 679.5 0 612.8 0.009 618.4 0
115 20 662.2 0.020 675.5 0 622.1 0.005 625.1 0
120 20 549.5 0.015 557.9 0 594.2 0.005 597.2 0
125 20 719.9 0 719.1 0.001 615.8 0 614.3 0.002
130 20 689.6 0.010 696.8 0 587.4 0 581.5 0.010
135 20 802.1 0 792.8 0.012 607.2 0.006 610.7 0
140 20 838.7 0 838 0.001 762.8 0.014 773.7 0
145 20 825.3 0.019 841.3 0 548.2 0.018 558.2 0
150 20 758.9 0.007 764.6 0 763.3 0.016 775.7 0
155 20 749.8 0 749.2 0.001 712.8 0.021 727.9 0
160 20 841.6 0 834.9 0.008 868 0.007 873.7 0
165 20 912.1 0.019 929.8 0 742.6 0.025 761.4 0
170 20 783.6 0.010 791.9 0 669.3 0.021 684 0
175 20 911.1 0.004 914.5 0 756.9 0.020 772 0
180 20 868 0.007 873.8 0 873.2 0.015 886.4 0
185 20 994 0.004 998.2 0 930.1 0.013 942.7 0
190 20 1045.6 0.006 1051.4 0 742.8 0.023 760.3 0
195 20 954.3 0.005 958.8 0 956.4 0.024 980.2 0
200 20 994.5 0.005 999.7 0 900.5 0.002 902.4 0

Table 4. Empirical results on Combinatorial Auctions. Path distribution.

varying the number of bids from 80 to 200. For each parameter configuration, we gen-
erate samples of size 10. Table 4 shows the results for z = {15, 20}. Recall that for
optimization tasks, only the SCP heuristic is defined.

The behavior for both configurations is almost the same. For 20 goods, the MBE fill-
in outperforms the BE fill-in on 23 out of the 25 configurations of different number of
bids when z = 15, and on 18 when z = 19. For 50 goods, the MBE fill-in outperforms
the BE fill-in on 18 configurations of bids when z = 15, and on 20 when z = 19.

It is important to observe that the improvement over the BE fill-in is not as signifi-
cant as for previous benchmarks. One possible reason is the nature of the marginaliza-
tion operator: when summing, the quality of all operands impacts on the quality of the
result; while when minimizing, the quality of the minimum operand is the only one that
determines the quality of the result. Indeed, further investigation is needed.

5 Related Work

There are two early approaches based on mini-bucket elimination which use a variable
elimination ordering different to the one used by bucket elimination: greedy SIP [10]
and Approximate Decomposition (AD) [9].

Greedy SIP solves the problem by iteratively applying bucket elimination over sub-
sets of functions. At each iteration, all variables are eliminated from the current sub-
set and its elimination ordering is the one with induced width bounded by the control
parameter z. The order in which variables are eliminated can be different from one
iteration to another.

AD solves the problem by iteratively eliminating the variables of the problem and
maintaining the width of the new problems bounded by z. If the elimination of a vari-
able causes the width of the new problem to be greater than z, the new function is
approximated with a combination of simpler ones such that the width is maintained
under z.

Our scheme resembles these two approaches on that none of them uses the variable
elimination ordering as dictated by bucket elimination. However, the value of our work
is on clearly showing why a variable elimination heuristic should fit the actual structure
of problems generated after each variable elimination.

6 Conclusions

Bucket Elimination (BE) and Mini-Bucket Elimination (MBE) are based on the sequen-
tial transformation of the original problem by sequentially eliminating variables, one at
a time. The result of eliminating one variable is a new subproblem. Under the same vari-
able elimination ordering, they generate a different sequence of subproblems. Although
this important difference, MBE uses the elimination order obtained by a procedure de-
signed for BE. Since this procedure selects the next variable to eliminate according to
the structure of subproblems produced by BE, it will select erroneous variables accord-
ing to the structure of subproblems generated by MBE.

This paper investigates a modification on how to compute the elimination order-
ing for MBE. Our approach computes the ordering by considering the real structure of

the sequence of subproblems produced by MBE thanks to induced z-bounded hyper-
graphs. We demonstrate the effectiveness of this new ordering on a number of bench-
marks over two important tasks: computing the probability of the evidence and finding
the minimum cost assignment of a weighted CSP. We observed that the higher im-
provements are obtained on the first task. The nature of the marginalization operator
may explain this fact. We plan to further investigate this issue.

There are other approximation algorithms based on variable elimination orderings
(e.g., Iterative Join Graph Propagation [4]). In our future work we want to study the
impact of our approach on their accuracy.

Acknowledgement

This work was supported by project TIN2009-13591-C02-01.

References

1. U. Bertelè and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.
2. R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,

113:41–85, 1999.
3. R. Dechter. Constraint Processing. Morgan Kaufmann, San Francisco, 2003.
4. R. Dechter, K. Kask, and R. Mateescu. Iterative join-graph propagation. In Proceedings of

the 18th Conference in UAI, Edmonton, Canada, pages 128–136, 2002.
5. R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference. Journal of

the ACM, 50(2):107–153, March 2003.
6. E. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM, 29:24–32,

March 1982.
7. K. Kask and R. Dechter. A general scheme for automatic generation of search heuristics

from specification dependencies. Artificial Intelligence, 129:91–131, 2001.
8. M.Pearson K.Leyton-Brown and Y.Shoham. Towards a universal test suite for combinatorial

auction algorithms. ACM E-Commerce, pages 66–76, 2000.
9. D. Larkin. Approximate decomposition: A method for bounding and estimating probabilistic

and deterministic queries. In Proceedings UAI, Acapulco, Mexico, pages 346–353, 2003.
10. D. Larkin. Semi-independent partitioning: A method for bounding the solution to cop’s. In

9th International Conference on Principles and Practice of Constraint Programming, pages
894–898, 2003.

11. J. D. Park. Using weighted max-sat engines to solve mpe. In Proc. of the 18th AAAI, pages
682–687, Edmonton, Alberta, Canada, 2002.

12. E. Rollon and R. Dechter. New mini-bucket partitioning heuristics for bounding the proba-
bility of evidence. In Proc. of the 24th AAAI, Atlanta, Georgia, USA, 2010.

13. P. Shenoy. Axioms for dynamic programming. In Computational Learning and Probabilistic
Reasoning, pages 259–275, 1996.

14. B. Wemmenhove, J. M. Mooij, W. Wiegerinck, M. A. R. Leisink, H. J. Kappen, and J. P.
Neijt. Inference in the promedas medical expert system. In 11th Conference on Artificial
Intelligence in Medicine, Amsterdam, The Netherlands, pages 456–460, 2007.

