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Statistical NLP

Broad multidisciplinary area
m Linguistics to provide models of language
m Psychology to provide models of cognitive processes
m Information theory to provide models of communication

m Mathematics & Statistics to provide tools to analyze and
acquire such models

m Computer Science to implement computable models



Problems of the traditional approach (1)

m Language Acquisition:
Children try and discard syntax rules progressively

m Language Change:
Language changes along time (ale vs. eel, while as Adv vs.
Noun, near as Prep vs. Adj)

m Language Variation:
Dialect continuum (e.g. Inuit)
m Language is a collection of statistical distributions:

Weights for rules (phonetic, syntactic, etc) change when
learning, along time, between communities...



Problems of the traditional approach (2)

m Structural ambiguity
Our company is training workers Parker saw Mary
Our problem is training workers The a are of |

Our product is training wheels

Scalability: scaling up from small and domain specific
applications

Practicallity: Time costly to build systems with good coverage

Brittleness: understanding metaphors

Reasoning: Requires world knowledge and common sense
knowledge = learning



How Statistics helps

Disambiguation: Stochastic grammars. John walks
Degrees of grammaticality
Naturalness: strong tea, powerful car

Structural preferences:
The emergency crews hate most is domestic violence

Error tolerance:
We sleeps Thanks for all you help

Learning on the fly:
One hectare is a hundred ares

The are a of |

Lexical Acquisition.



Zipf’s Laws (1929)

Word frequency is inversely proportional to its rank
(speaker/hearer minimum effort) f ~ 1/r

m Number of senses is proportional to frequency root
m ~ \/?

Frequency of intervals between repetitions is inversely
proportional to the length of the interval F ~ 1//

Random generated languages satisfy Zipf's laws

Frequency based approaches are hard, since most words
are rare
m Most common 5% words account for about 50% of a text
m 90% least common words account for less than 10% of the
text
m Almost half of the words in a text occurr only once



Usual Objections

Stochastic models are for engineers, not for scientists

m Approximation to handle information impractical to collect
in cases where initial conditions cannot be exactly
determined (e.g. as queue theory models dynamical
systems).

m If the system is not deterministic (i.e. has emergent
properties), an stochastic account is more insightful than a
reductionistic approach (e.g. statistical mechanics)

Chomsky'’s heritage: Statistics can not capture NL structure
m Techniques to estimate probabilities of unseen events.

m Chomsky'’s criticisms can be applied to Finite State,
N-gram or Markov models, but not to all stochastic
models.



Conclusions

m Statistical methods are relevant to language acquisition,
change, variation, generation and comprehension.

m Pure algebraic methods are inadequate for understanding
many important properties of language, such as the
measure of goodness that allows to identify the correct
parse among a large candidate set.

m The focus of computational linguistics has been up to now
on technology, but the same techniques promise progress
at unanswered questions about the nature of language.






Basics

m Random variable: Function on a stochastic process.
X:Q—R

m Continuous and discrete random variables.

m Probability mass (or density) function, Frequency function:
p(x) = P(X = x).
Discrete R.V.: > p(x ) 1
Continuous R.V: [% p(x)dx =1

m Distribution function: F(x) = P(X <x)

m Expectation and variance, standard deviation
E(X)=p= Z xp(x)
VAR(X) = 0% = E((X — E(X))?) = X (x — 1)*p(x)



Joint and Conditional Distributions

m Joint probability mass function: p(x,y)

m Marginal distribution:
px(x) =>_, p(x,y) p(x,y)
Py (y) =2 P(x,) py(y)

Simplified Polynesian. Sequences of C-V syllabes: Two random
variables C,V

px|y(x | y) =

P(CV)| p t k ) =
a 1/16  3/8 1/16 | 1/2 ggg |’ ;)\/ k?) =7
i 1/16 3/16 0 | 1/4 SN o
u o 316 1/16|1/4 Plavil|p)=
1/8  3/4 1/8




Samples and Estimators

m Random samples

m Sample variables:

I R
Sample mean: ji, = - z;x;
1=

n

. 1 -
Sample variance: s2 = —3 g (x; — [in)>.
i=1
m Law of Large Numbers: as n increases, ji, and s> converge

to 1 and o2

m Estimators: Sample variables used to estimate real
parameters.



Finding good estimators: MLE

Maximum Likelihood Estimation (MLE)

m Choose the alternative that maximizes the probability of
the observed outcome.

B [, is a MLE for E(X)

m s2 is a MLE for o2

m Data sparseness problem. Smoothing tecnhiques.

P(a,b)| dans en &  sur au-cours-de pendant selon

in 0.04 0.10 015 O 0.08 0.03 0 ]0.40
on 0.06 0.25 0.10 0.15 0 0 0.04 |0.60

total | 0.10 0.35 0.25 0.15 0.08 0.03 0.04 | 1.0



Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

m Choose the alternative that maximizes the entropy of the

obtained distribution, maintaning the observed

probabilities.

Observations:
p(enV a) = 0.6

P(a,b)| dans en &  sur au-cours-de pendant selon

in 0.04 0.15 0.15 0.04 0.04 0.04 0.04

on 0.04 0.15 0.15 0.04 0.04 0.04 0.04
total 1.0

———
0.6




Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

m Choose the alternative that maximizes the entropy of the

obtained distribution, maintaning the observed
probabilities.

Observations:
p(enV a) = 0.6; p((enVv a)Ain) =0.4

P(a,b)| dans en 2 sur au-cours-de pendant selon
in 0.04 0.20 0.20 0.04 0.04 0.04 0.04
on 0.04 0.10 0.10 0.04 0.04 0.04 0.04
total 1.0
———
0.6




Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

m Choose the alternative that maximizes the entropy of the
obtained distribution, maintaning the observed

probabilities.

Observations:
p(enV 3) = 0.6; p((enV a) Ain) = 0.4; p(in) = 0.5

P(a,b)| dans en 2 sur au-cours-de pendant selon
in 0.02 0.20 0.20 0.02 0.02 0.02 0.02 |0.5
on 0.06 0.10 0.10 0.06 0.06 0.06 0.06
total 1.0
———
0.6










Statistical models for NLP
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Prediction Models & Similarity Models

m Prediction Models: Able to predict probabilities of future
events, knowing past and present.

m Similarity Models: Able to compute similarities between
objects (may be used to predict, EBL).



Similarity Models

m Objects represented as feature-vectors, feature-sets,
distribution-vectors.
m Used to group objects (clustering, data analysis, pattern
discovery, ...)
m If existig objects are classified, similarity may be used as a
prediction (example-based ML techniques).
m Example: Document representation
m Documents are represented as vectors in a high
dimensional R" space.
m Dimensions are word forms, lemmas, NEs, n-grams, ...
m Values may be either binary or real-valued (count,
frequency, ...)
m Vector space algebra and metrics can be used
X1 N

=1 - 2T =[x ...xn] EENDIE

XN



Prediction Models

Example: Noisy Channel Model (Shannon 48)

"},%‘)" Channel P(oli) Output

NLP Applications

[ Appl. | Input | Output | p(i) | plo]i) ]
MT L word M word p(L) Translation
sequence sequence model
OCR Actual text | Text with prob. of model of
mistakes | language text | OCR errors
PoS PoS tags word prob. of PoS p(w | t)
tagging | sequence sequence sequence
Speech word speech prob. of word acoustic
recog. sequence signal sequence model

Given o, we want to find the most likely i

argmax Pr(i | o) = argmax Pr(o,i) = argmaxPr(i) Pr(o | i)






Inference & Modeling

m Using data to infer information about distributions
m Parametric / non-parametric estimation
m Finding good estimators: MLE, MEE, ...
m Example: Language Modeling (Shannon game), N-gram
models.
m Predictions based on past behaviour

m Target / classification features — Independence
assumptions

m Equivalence classes (bins).
Granularity: discrimination vs. statistical reliability



N-gram models

m Predicting the next word in a sequence, given the history
or context. P(wp | wi ... ws_1)

m Markov assumption: Only local context (of size n — 1) is
taken into account. P(w; | wi_py1...w_1)

m bigrams, trigrams, four-grams (n = 2,3, 4).
Sue swallowed the large green < 7>
m Parameter estimation (number of equivalence classes)

m Parameter reduction: stemming, semantic classes, PoS, ...

Model Parameters

bigram 20,0007 = 4 x 10°

trigram 20,000° = 8 x 102
four-gram | 20,000* = 1.6 x 10"

Language model sizes for a 20,000 words vocabulary










MLE Overview

Estimate the probability of the target feature based on
observed data. The prediction task can be reduced to having
good estimations of the n-gram distribution:

P(wi ...wy)
P W) = ——————
(Wn | M Wn 1) P(Wl...Wn_l)
® MLE (Maximum Likelihood Estimation)
_ C(wy...wp)
PMLE(Wl e Wn) = N

C(wy...wp
Puvre(wn | wi ... wp_1) = %

m No probability mass for unseen events
m Unsuitable for NLP
m Data sparseness, Zipf's Law






Notation

m C(w1...wy,): Observed occurrence count for n-gram
Wi ... Wp.

m Ca(wy...wp): Observed occurrence count for n-gram
Wi ...w, on data subset A.

m N: Number of observed n-gram occurrences
N = Z C(wi...wp)
Wi...Wp

m Ny: Number of classes (n-grams) observed k times.

m N2 Number of classes (n-grams) observed k times on
data subset A.

m B: Number of equivalence classes or bins (number of
potentially observable n-grams).



Smoothing 1 - Adding Counts

m Laplace’s Law (adding one)
C(wy...wy)+1
N+ B
m For large values of B too much probability mass is
assigned to unseen events

Piap(wi ... wy) =

m Lidstone’s Law c )4
Wi...Wp
Pup(wy ...wp) = N BA
m Usually A = 0.5, Expected Likelihood Estimation.
m Equivalent to linear interpolation between MLE and
uniform prior, with u = N/(N + B)),
C(W1 .

Wi, 1
PLID(Wl e W,,) = /JT) + (1 — ﬂ)E




Smoothing 2 - Discounting Counts

m Absolute Discounting

r—9
N
Pags(wi ... wp) =

(B—Np)d/No
N

m Linear Discounting

Pun(wy . ..wp) =

ifr>0

otherwise

ifr>0

otherwise



Smoothing 3 - Held Out Data

Notation: ~ stands for wy ... w,.

Divide the train corpus in two subsets, A and B.
Define: TAP = Z Cs(7)

¥:Ca(v)=r

m Held Out Estimator
TAB 1
Pro(wi ... wp) = NZA(W) X 5
Ca(v)

m Cross Validation (deleted estimation)

TAB 4 TBA 1

Ca(v) Cg(v)
p wy) =
pecwr - i) Neyy +NEyy N

m Cross Validation (Leave-one-out)



Combining Estimators

m Simple Linear Interpolation
Pui(wy | Wn—2, wp—1) =
- )\1P1(Wn) + )\2P2(Wn | Wn—l) + A3P3(Wn | Wp—2, Wn—l)

m General Linear Interpolation

k

PLi(wa | h) = Xi(h)Pi(w | h)

i=1

m Katz’s Backing-off

C(Wi—n41..-w)
(1 dWi—n+1-~Wr'—1) C(Wi—n+1 . Wifl)

PBo(W,' | W,'f,,+1...W,'71) = if C(Wi_n+1...W,') > k
Owi_ 1wy PBO(Wi | Wiini2. . wi1)

otherwise










MEM Overview

m Maximum Entropy: alternative estimation technique.
m Able to deal with different kinds of evidence
m ME principle:

m Do not assume anything about non-observed events.

m Find the most uniform (maximum entropy, less informed)
probability distribution that matches the observations.

m Example:
p(a,b)| 0 1 p(a,b)| 0 1 p(a,b)| 0 1
X 77 X 05 0.1 X 0.3 0.2
y 7?7 y 0.1 03 y 0.3 02
total [0.6 1.0 total |0.6 1.0 total [0.6 1.0

Observations One possible p(a, b) Max.Entropy p(a, b)



ME Modeling

m Observed facts are constraints for the desired model p.

m Constraints take the form of feature functions:
fie—{0,1}
m The desired model must satisfy the constraints:
Ep(fi) = Ep(fi) Vi

where:

Ex(fi) = Zp(x)f;(x) expectation of model p.
xe€e

E5(fi) = Zf)(x)f,(x) observed expectation.

xee



Example

m Example:
p(a,b)| 0 1
X 77
e ={x,y} x{0,1} 2 2
total |0.6 |1.0

m Observed fact: p(x,0)+ p(y,0) = 0.6
m Encoded as a constraint: E,(f;) = 0.6

where:
1 ifb=0
m fi(a b) = { 0 otherwise

m E, ()= Z p(a, b)fi(a, b)

(a:b)e{x,y}x{0,1}







Probability Model

m There is an infinite set P of probability models consistent
with observations:

P={p|Ey)f)=E5(f), Vi=1...k}
m Maximum entropy model

p* = argmax H(p)
peP

H(p) = — Z p(x) log p(x)

xee



Conditional Probability Model

m For NLP applications, we are usually interested in
conditional distributions P(A|B), thus:

= Zﬁ(av b)fl(a b
a,b
Zp p(a | b)fj(a, b)

m Maximum entropy model

p* = argmax H(p)
peP

H(p) = H(A| B) = — ZP p(a | b)logp(a| b)



Parameter Estimation

Example: Maximum entropy model for translating in to French
m No constraints

P(x)|dans en a au-cours-de pendant
0.2 02 0.2 0.2 0.2
total 1.0

m With constraint p(dans) + p(en) = 0.3

P(x)|dans en | a au-cours-de pendant
0.15 0.15]0.233 0.233 0.233
total 0.3 1.0

m With constraints p(dans) + p(en) = 0.3; p(en) + p(3) = 0.5
...Not so easy !



Parameter estimation

m Exponential models. (Lagrange multipliers optimization)

fi(a,b
p(al| b) = Z(b)nfla/() aj >0
Z(b) = 3, 1y of ®P

m also formuled as
p(a| b) = 7l exp(TL, Aifi(a. b))
Ai = Inq;
m Each model parameter weights the influence of a feature.
m Optimal parameters (ME model) can be computed with:

m GIS. Generalized lterative Scaling(Darroch & Ratcliff 72)
m |IS. Improved lterative Scaling (Della Pietra et al. 96)
m LM-BFGS. Limited Memory BFGS (Malouf 03)



Improved Iterative Scaling (11S)

Input: Feature functions f; ... f,, empirical distribution p(a, b)
Output: \fparameters for optimal model p*

Start with \; =0 for all i € {1...n}
Repeat
For each j € {1...n} do
let A)\; be the solution to

n

Zp p(a| b)f; ab)epr)\,Zﬁab = p(f;)
Jj=1

)\, — A+ AN
end for
Until all \; have converged






Application to NLP Tasks

Speech processing (Rosenfeld 94)

Machine Translation (Brown et al 90)

Morphology (Della Pietra et al. 95)

Clause boundary detection (Reynar & Ratnaparkhi 97)
PP-attachment (Ratnaparkhi et al 94)

PoS Tagging (Ratnaparkhi 96, Black et al 99)

Partial Parsing (Skut & Brants 98)

Full Parsing (Ratnaparkhi 97, Ratnaparkhi 99)

Text Categorization (Nigam et al 99)



PoS Tagging (Ratnaparkhi 96)

m Probabilistic model over H x T

hi = (Wi, Wit1, Wit2, Wi—1, Wi—2, ti_1, ti_2)

1 if suffix(w;) = ing A t = VBG
0 otherwise

fi(hi, t) = {

m Compute p*(h, t) using GIS

m Disambiguation algorithm: beam search

__ p(ht)
p(t | h) - Zt/eTp(h7 t/)

pltr. . tn| wa...wp) =[] p(ti | )
i=1



Text Categorization (Nigam et al 99)

m Probabilistic model over W x C

d:(Wl,WQ...WN)

N(d,w)

fw,c’(da C) = { N(d)

ifc=c
0 otherwise
m Compute p*(c | d) using IS
m Disambiguation algorithm: Select class with highest

P(c|d) = Z(ld) exp(Z Aifi(d, c))



MEM Summary

m Advantages
m Teoretically well founded
m Enables combination of random context features
m Better probabilistic models than MLE (no smoothing
needed)
m General approach (features, events and classes)

m Disadvantages

m Implicit probabilistic model (joint or conditional probability
distribution obtained from model parameters).

m High computational cost of GIS and IIS.

m Overfitting in some cases.






Graphical Models

m Generative models:
m Bayes rule = independence assumptions.
m Able to generate data.

m Conditional models:

m No independence assumptions.
m Unable to generate data.

Most algorithms of both kinds make assumptions about the
nature of the data-generating process, predefining a fixed
model structure and only acquiring from data the distributional
information.



Usual Statistical Models in NLP

m Generative models:

m Graphical: HMM (Rabiner 1990), IOHMM (Bengio 1996).
Automata-learning algorithms: No assumptions about
model structure. VLMM (Rissanen 1983), Suffix Trees
(Galil & Giancarlo 1988), CSSR (Shalizi & Shalizi 2004).

m Non-graphical: Stochastic Grammars (Lary & Young 1990)

m Conditional models:

m Graphical: discriminative MM (Bottou 1991), MEMM

(McCallum et al. 2000), CRF (Lafferty et al. 2001).

m Non-graphical: Maximum Entropy Models (Berger et al
1996).






[Visible] Markov Models

m X =(Xy,...,X7) sequence of random variables taking
values in S = {s1,...,sn}

m Markov Properties
m Limited Horizon:
P(Xt+1 = Sk | Xl, e ,Xt) = P(Xt+1 = Sk | Xt)
m Time Invariant (Stationary):
P(Xes1 = s | Xe) = P(Xo = sic | X1)

m Transition matrix:
aj = P(Xey1 =5 | Xe = s5i); 2, >0, Vi,j; YL a5 =1,Vi

m Initial probabilities (or extra state sp):
Ti=PXi=s); YN m=1



MM Example

Sequence probability:

P(X1, .., X7) =
= P(X)P(Xe | X0)P(Xs | XiXa) ... P(XT | X1..X7_1)
= P(X)P(Xz | X))P(Xs | X2) ... P(X1 | X7_1)

T-1
= 7TX1 Ht:l aXtXt+1



Hidden Markov Models (HMM)

m States and Observations
m Emission Probability:
b,‘k = P(Ot =k ‘ Xt = S,')
m Used when underlying events probabilistically generate

surface events:
m PoS tagging (hidden states: PoS tags, observations:
words)
m ASR (hidden states: phonemes, observations: sound)
.
m Trainable with unannotated data. Expectation
Maximization (EM) algorithm.

B arc-emission vs state-emission



Example: PoS Tagging

Emission
probabilities| . the this cat kid eats runs fish fresh little big
<FF>|1.0
Dt 0.6 0.4
N 0.6 0.1 0.3
\% 0.7 0.3
Adj 03 03 04







HMM Fundamental Questions

Q1. Observation probability (decoding): Given a model
u= (A, B,7), how we do efficiently compute how likely is
a certain observation ? That is, P,(O)

Q2. Classification: Given an observed sequence O and a
model p, how do we choose the state sequence
(X1,...,X7) that best explains the observations?

Q3. Parameter estimation: Given an observed sequence O
and a space of possible models, each with different
parameters (A, B, ), how do we find the model that best
explains the observed data?



Question 1. Observation probability

Let O = (o1, ..., 07) observation sequence.

For any state sequence X = (Xi,...,X7), we have:

T
Pu(O[X) =]]Pulor| X:)
t=1
= bxlo]_ bX202 e bXTOT

= PM(X) = TX19X1 X29X X3+ » X7 _1 X7

m Pu(0) =) Pu(0,X) =) Pu(O|X)Pu(X)
X X

= § : 7TX1bX101HaXt—1thXtOt

Xi.. Xt t=2
Complexity: O(TNT)
Dynammic Programming: Trellis/lattice. O(TN?)



Trellis

State

Fully  connected
HMM where one
can move from
any state to any
other at each step.
A node {s;,t} of
the trellis stores
information about
state sequences
which include
Xt == I



Forward & Backward computation

Forward procedure O(TN?)

We store «j(t) at each trellis node {s;, t}.

} _ _ - Probability of emmiting o;...
a;(t) = P“(ol N )] and reach state s; at time t.

Inicialization: «;(1) = mibjo;; Vi=1...N

Induction: Vt : 1 <t<T

i(t+1) Za, )aiibjogi  Vi=1...N

H Total: Za,

Ot



Forward computation

t t+1

Closeup of the computation
of forward probabilities at one
node. The forward probability
aj(t+1) is calculated by sum-
ming the product of the pro-
babilities on each incoming arc
with the forward probability of
the originating node.



Forward & Backward computation

Backward procedure O(TN?)
We store f3;(t) at each trellis node {s;, t}.

Probability = of  emmiting
,Bi(t) = Pu(ot—H ...0T ‘ Xi = i) Oty1...0T given we are in
state s; at time t.

Inicialization: B;{(T)=1 Vi=1...N
Induction: Vt:1<t< T

N
Bi(t) = ajbjo,. Bi(t + 1) Vi=1...N

j=1

N
Total: P,(0) = Zﬂibiolﬁi(l)
i=1



Forward & Backward computation

Combination

PM(O,Xt = I) = Pu(ol .. -Ot—laxt = i,Ot. .. OT)
= a;i(t)5i(t)

N
Pu(0) =) ai(t)Bi(t) Wri1<t<T
i=1
Forward and Backward procedures are particular
cases of this equation when t = 1l and t = T
respectively.



Question 2. Best state sequence

m Most likely path for a given observation O:
PH(Xv O)
P.(0)
= argmax P, (X, O) (since O is fixed)
X

argmax P,(X | O) = argmax
X X

m Compute the best sequence with the same recursive
approach than in FB: Viterbi algorithm, O(TN?).

m0j(t) = _max P,(Xi...X¢—155,01...0¢)
X1.. Xp—1
Highest probability of any sequence reaching state s;
at time t after emmitting o1 ... o;

m ¢)j(t) = last(argmax P, (X1 ... X¢—15j,01...0¢))
X1 Xe1
Last state (X:—1) in highest probability sequence re-
aching state s; at time t after emmitting o1 ... 0:



Viterbi algorithm

Initialization: Vj =1... N
6j(1) = 7TJ jo1
wj( ) =

Induction: Vt:1<t< T

5](1’ + 1) = lrSY]iaSXNé,'(t)a,'jbjoHl Vj=1...N
Yj(t + 1) = argmaxd;(t)a; Vj=1...N

1<i<N

Termination: backwards path readout.
m X7 = argmax 6;(T)
1<i<N
m X = %H(t +1)

m P(X)= 12’3ng 5i(T)



Question 3. Parameter Estimation

Obtain model parameters (A, B, ) for the model yx that
maximizes the probability of given observation O:

(A, B,m) = argmax P,(O)
I



Baum-Welch algorithm

Baum-Welch algorithm (aka Forward-Backward):

Start with an initial model ug (uniform, random, MLE...)

Compute observation probability (F&B computation) using
current model p.

Use obtained probabilities as data to reestimate the model,
computing [

A Let u = [ and repeat until no significant improvement.

Iterative hill-climbing: Local maxima.

Particular application of Expectation Maximization (EM)
algorithm.

EM Property: P;(0) > P,(O)



Definitions

Pu(Xe=1,0) _  ai(t)Bi(t)
P.(0) > k()8 (2)

m i(t) = Pu(Xe =17]0) =

Probability of being at state s;
at time t given observation O.

B (i) =Pu(Xe =0, Xe31=j]0) = (X . (g)l J,0)
“w

_ai(t)ajbjo,.,, Bi(t + 1)

N probability of moving from state s;
> k=1 ok (£)Bi(t) at time t to state s; at time t+1, gi-
ven observation sequence O. Note
that 7i(t) = 337, (i)

T-1 Expected number T-1 Expected number

Z ~i(t) of transitions from Z @¢(i,j) of transitions from
t=1 state s; in O. t=1 state s; to s; in O.




Arc probability

Given an observation O, the model u Probability ¢:(/, ) of moving from

state s; at time t to state s; at time t + 1 given observation O.



Reestimation

Iterative reestimation

~  __ Expected frequency in __ _
Ti = state s; at time (t=1) — ’7,(1)

T-1
Expected number of Z QOt(l,j)

s, __ transitions from sitos; _ t=1
j = Expected number of T T_1
transitions from s;
7i(t)
t=1
E Ve (/)
Expected number of {t: 1<t<T,
Ot:k}

) __ emissions of k from s;
k = Expected number

T
of visits to s; .
’ Z 7e(J)
t=1

\@>









The Concept of Similarity

m Similarity, proximity, affinity, distance, difference,
divergence

m We use distance when metric properties hold:
m d(x,x)=0
m d(x,y) >0 when x £y
m d(x,y) =d(y,x) (simmetry)
m d(x,z) <d(x,y)+ d(y,z) (triangular inequation)
m We use similarity in the general case
m Function: sim: A x B — S (where S is often [0, 1])
m Homogeneous: sim: Ax A — S (e.g. word-to-word)
m Heterogeneous: sim: A x B — S (e.g. word-to-document)
m Not necessarily symmetric, or holding triangular inequation.



The Concept of Similarity

m If A is a metric space, the distance in A may be used.

u Deuc/idean()_é )7) = |§_ }7| = Z(Xi - )4)2
i
m Similarity vs distance
| SI'mD(A, B) = ﬁ
m monotonic: min{sim(x,y),sim(x,z)} > sim(x,y U z)



Applications

Clustering, case-based reasoning, IR, ...

Discovering related words - Distributional similarity

[
[
m Resolving syntactic ambiguity - Taxonomic similarity
m Resolving semantic ambiguity - Ontological similarity
[

Acquiring selectional restrictions/preferences



Relevant Information

m Content (information about compared units)

m Words: form, morphology, PoS, ...

m Senses: synset, topic, domain, ...

u Syntax: parse trees, syntactic roles, ...

m Documents: words, collocations, NEs, ...

m Context (information about the situation in which
simmilarity is computed)
m Window-based vs. Syntactic—based
m External Knowledge
m Monolingual/bilingual dictionaries, ontologies, corpora



Vectorial methods (1)

m [; norm, Manhattan distance, taxi-cab distance, city-block
distance

Ll X y Z|XI y,

m L norm, Euclldean distance

L(x,y) =X =yl =

m Cosine distance

—»—»

cos(%,y) =




Vectorial methods (2)

m L7 and Ly norms are particular cases of Minkowsky
measure

N r
Dminkowsky (X, ¥) = Lr(X,¥) = <Z(Xi - }/i)r>
m Camberra distancNe -
Deambars(%,7) = 3 L2 21
m Chebychev distar,1:cle

Dchebychev()a )7) = I’T‘I’_E)X |Xi - y:'|




Set-oriented methods (3): Binary—valued
vectors seen as sets

: 2-1XNY|
m Dice. Syie(X,Y) ="
sl = IR Ty
XNy
m Jaccard. Sjiccard(X,Y) = :XD Y:
XNyl
Overlap. Soverap(X, Y __IxXnv]
m Overlap oer/ap( s ) m|n(|XHY|)
: XNy
m Cosine. cos(X,Y) = xXnyl
IXI-1Y1]

Above similarities are in [0, 1] and can be used as distances
simply substracting: D=1-§



Set-oriented methods (4): Agreement

contingency table

Object i
1 0
1 a b _|a+b
Object j 0 c d c+d
a+c b+d P
m Dice. Sgice(X Y)_L
- dice ) - 2a+ b+ c
a
m Jaccard. Sjiccara(X, Y) = aibhtc
a

Overlap. Soverlap(Xa Y) =

m Cosine. Soveriap(X,Y) =

Matching coefficient. Spc(7,J

) =

a

a+d

min(a+ b,a+ c)



Distributional Similarity

m Particular case of vectorial representation where attributes

are probability distributions
N

X" = [x1...xn] such that ¥i,0 < x; < 1 and Zx,- =1
i=1
m Kullback-Leibler Divergence (Relative Entropy)

D(ql|r) = Z q(y)log i’g; (non symmetrical)

yvey
m Mutual Information
I(A,B) = D(h||f-g)=>_ > h(a,b) |ogM
, SAvE f(a) - &(b)
(KL-divergence between joint and product distribution)



Semantic Similarity

space:
Da(x1, x2) = Dp(f(x1), f(x2))

m Semantic spaces: ontology (WordNet, CYC, SUMO, ...)
or graph-like knowledge base (e.g. Wikipedia).
m Not easy to project words, since semantic space is

composed of concepts, and a word may map to more than
one concept.

m Not obvious how to compute distance in the semantic
space.



WordNet

‘\
\
\
l motor vehicle l
(motorcar) ( go-kart ) ( truck )
[hatch-back] ( compact ) (gas guzzlea




WordNet

hyponymy Enfoﬁyﬁ meronymy



Distances in WordNet

WordNet::Similarity

http://maraca.d.umn.edu/cgi-bin/similarity/similarity.cgi

Some definitions:

m SLP(s1,s2) = Shortest Path Length from concept s; to s,
(Which subset of arcs are used? antonymy, gloss, .. .)

m depth(s) = Depth of concept s in the ontology
MaxDepth = depth
m MaxDep [max dep (s)

m LCS(s1,52) = Lowest Common Subsumer of s; and s

m /C(s) = —log

1
= Inf tion Content of [
0) nformation Content of s (given a

corpus)



Distances in WordNet

m Shortest Path Length: D(s1,s2) = SLP(s1,52)
SLP(Sl,Sz)
2 - MaxDepth

2 - depth(LCS(s1, s
® Wu & Palmer: D(s1,s) = depth(sl)(—i— chpth(sB
m Resnik: D(s1,s2) = IC(LCS(s1,52))
m Jiang & Conrath:
D(Sl, 52) = IC(S]_) + /C(SQ) -2 IC(LCS(Sl, 52))
2- /C(LCS(S;[, 52))
IC(s1) + IC(s2)
m Gloss overlap: Sum of squares of lengths of word overlaps
between glosses

m Leacock & Chodorow: D(s1,s) = —log

m Lin: D(s1,5) =

m Gloss vector: Cosine of second-order co-occurrence vectors
of glosses



Distances in Wikipedia

m Measures using links, including measures used on
WordNet, but applied to Wikipedia graph

http://www.h-its.org/english/research/nlp/download/wikipediasimilarity.php
m Measures using content of articles (vector spaces)

m Measures using Wikipedia Categories






Clustering

m Partition a set of objects into clusters.
m Objects: features and values

m Similarity measure
m Utilities:
m Exploratory Data Analysis (EDA).
m Generalization (learning). Ex: on Monday, on Sunday, ?
Friday
m Supervised vs unsupervised classification
m Object assignment to clusters

m Hard. one cluster per object.
m Soft. distribution P(c; | x;). Degree of membership.



Clustering

m Produced structures
m Hierarchical (set of clusters + relationships)
m Good for detailed data analysis
m Provides more information
B Less efficient
m No single best algorithm
m Flat / Non-hierarchical (set of clusters)
m Preferable if efficiency is required or large data sets
m K-means: Simple method, sufficient starting point.
m K-means assumes euclidean space, if is not the case, EM
may be used.

m Cluster representative
m Centroid 7/ = 5 Y5 X



Dendogram

be not he I

it this the his a and but in on with for at from of to as is was

Single-link clustering
of 22 frequent En-
glish words represen-
ted as a dendogram.



Hierarchical Clustering

m Bottom-up (Agglomerative Clustering)
Start with individual objects, iteratively group the most
similar.

m Top-down (Divisive Clustering)
Start with all the objects, iteratively divide them
maximizing within-group similarity.



Agglomerative Clustering (Bottom-up)

Input: A set X = {xi,...,x,} of objects
A function sim: P(X) x P(X) — R
Output: A cluster hierarchy

for i:=1 to n do ¢;;:={x;} end
C={ci,...,an}; ji=n+1
while C > 1 do
(cnys Cny):=arg MaX(¢y,c)eCxC sim(cy, ¢v)
Cj = Cpy U Cpy
C:=C \ {Cm? an} U {CJ}
Jj=i+1
end—while



Cluster Similarity

m Single link: Similarity of two most similar members
m Local coherence (close objects are in the same cluster)
m Elongated clusters (chaining effect)

m Complete link: Similarity of two least similar members
m Global coherence, avoids elongated clusters
m Better (?) clusters

m UPGMA: Unweighted Pair Group Method with Arithmetic
Mean

1
L] D(x,y)
XT-V1 25 2
m Average pairwise similarity between members

m Trade-off between global coherence and efficiency



Examples

A cloud of points in a plane

DR QD
D &>

Intermediate clustering

Complete-link clustering



Divisive Clustering (Top-down)

Input: Aset X = {xy,...,x,} of objects

A function coh: P(X) — R

A function split: P(X) — P(X) x P(X)
Output: A cluster hierarchy

C:={X}; a=x,; j:i=1

while 3¢; € Cs.t. |¢i| > 1 do
cy:=argming,ec coh(c,)
(G+1 Git2) = split(cu)
C:=C\{cu} U{c1, Gjo}
ji=j 42

end-while



Top-down clustering

m Cluster splitting: Finding two sub-clusters
m Split clusters with lower coherence:
m Single-link, Complete-link, Group-average
m Splitting is a sub-clustering task:
m Non-hierarchical clustering
m Bottom-up clustering
m Example: Distributional noun clustering (Pereira et al., 93)

m Clustering nouns with similar verb probability distributions
m KL divergence as distance between distributions

D(pllq) =Y p(x)log Z(X)

xeX (X)

m Bottom-up clustering not applicable due to some g(x) =0



Non-hierarchical clustering

m Start with a partition based on random seeds

m lteratively refine partition by means of reallocating objects
m Stop when cluster quality doesn’t improve further

B group-average similarity

® mutual information between adjacent clusters

m likelihood of data given cluster model

m Number of desired clusters ?

m Testing different values
® Minimum Description Length: the goodness function
includes information about the number of clusters



K-means

Clusters are represented by centers of mass (centroids) or
a prototypical member (medoid)

Euclidean distance
Sensitive to outliers

Hard clustering
O(n)



K-means algorithm

Input: Aset X ={xy,...,x,} CR™

A distance measure d : R™ x R™ — R

A function for computing the mean p: P(R) — R™
Output: A partition of X in clusters

Select k initial centers f,..., f
while stopping criterion is not true do
for all clusters ¢; do
Cj :{X,' |Vf/ d(X,‘,fj) < d(X,’,f/)}
for all means f; do
fi=n(q)
end—while



K-means example

o o T eQe

- e—— 1 e
1 O
o/ e

Assignment Recomputation of means



EM algorithm

m Estimate the (hidden) parameters of a model given the
data
m Estimation—Maximization deadlock
m Estimation: If we knew the parameters, we could compute
the expected values of the hidden structure of the model.
m Maximization: If we knew the expected values of the
hidden structure of the model, we could compute the MLE
of the parameters.
m NLP applications
m Forward-Backward algorithm (Baum-Welch reestimation).

m Inside-Outside algorithm.
m Unsupervised WSD



EM example

m Can be seen as a soft version of K-means
m Random initial centroids

m Soft assignments
[

Recompute (averaged) centroids

° ct ° @C‘
8 c1 / A
o O /
O o
° ° ° e = [ °
t t t t t t
Initial state After iteration 1 After iteration 2

An example of using the EM algorithm for soft clustering



Clustering evaluation

m Related to a reference clustering: Purity and Inverse

Purity.
P= iz max |c N x| Where:
[D] x _
c ¢ = obtained clusters
_ 1 B
IP = \D\Z mfx lc N x| x = expected clusters
x |D| = number of docu-
ments

m Without reference clustering: Cluster quality measures:
Coherence, average internal distance, average external
distance, etc.
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