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intercalation as well as concatenation while remaining free of structural rules and enjoying
Cut-elimination and its good corollaries. Jager (2005) [11] proposes a type logical treatment
of anaphora with syntactic duplication using limited contraction. Morrill and Valentin
(2010) [24] apply (modal) displacement calculus to anaphora with lexical duplication

i?:;ﬁ;d; and propose extension with a negation as failure in conjunction with additives to
Binding principles capture binding conditions. In this paper we present an account of anaphora developing
Categorial logic characteristics and employing machinery from both of these proposals.

Cut-elimination © 2013 Published by Elsevier Inc.

Displacement calculus
Negation as failure

1. Introduction

Categorial grammar develops logical syntax, semantics and processing (see Moortgat [18,19], Morrill [26,27], Carpen-
ter [3], Jager [11]). Syntactically, grammatical categories or types are formulas of a non-commutative logic which reduces
grammaticality to theoremhood. Semantically, a grammatical derivation or proof has a reading as an intuitionistic proof
and hence a typed lambda term under the Curry-Howard correspondence, and this composes a logical semantic sentence
meaning out of the lexical semantics of words represented by higher-order terms. Computationally, the logical grammar
architecture is implemented by a parser/theorem-prover under the parsing-as-deduction paradigm.

The original foundation for such logical categorial grammar was the logic of concatenation of Lambek [13] which, how-
ever, has had a varied history. The calculus was largely lost in the wake of the tidal wave of transformational grammar
until it was rediscovered in the 1980s, when it enjoyed a renaissance. At the end of the 1990s its founder pursued an
alternative direction (see Lambek [15,16]), but one which retained concatenation-centricity while no longer maintaining
the Curry-Howard categorial semantics. The former feature is what we consider the main shortcoming of Lambek calculus:
that as a logic of concatenation it can capture some discontinuities, but only when these are peripheral — a specificity
uncharacteristic of natural grammar.

* The research reported in the present paper was supported by DGICYT project SESAAME-BAR (TIN2008-06582-C03-01). We thank two anonymous JCSS
reviewers for valuable comments and suggestions.
* Corresponding author.
E-mail addresses: morrill@lsi.upc.edu (G. Morrill), oriol.valentin@upf.edu (0. Valentin).
URL: http://www-Isi.upc.edu/~morrill/ (G. Morrill).
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The displacement calculus of Morrill, Valentin and Fadda [25] aspires to amend this shortcoming of the Lambek calculus
as a foundation for logical categorial grammar by accommodating intercalation as well as concatenation while preserving
the good technical properties of the Lambek calculus such as being free of structural rules and enjoying Cut-elimination and
its corollaries: the subformula property, decidability and the finite reading property.! To support discontinuity that paper
uses a novel kind of sequent calculus; Cut-elimination is proved and the paper illustrates a range of linguistic applications
including anaphora. Morrill and Valentin [24] develop the treatment of anaphora further with modality for locality (see
Morrill [21]) and negation as failure in conjunction with additives, for the binding principles of Chomsky [4].

In anaphora a pronoun shares its interpretation with an antecedent, so that semantic duplication is required. This du-
plication could be syntactically driven, as in the account with limited contraction of Jdger [11] (see also Jacobson [10] and
Hepple [9]), or lexical, as in the account of Morrill, Valentin and Fadda [25] and Morrill and Valentin [24] (see also Mor-
rill [22]). It is difficult to do justice to the intricacies of the decades of research that have been devoted to the testing and
refining of anaphoric principles; still, in this paper we give a first approximation treatment of anaphora employing features
from both of these options, and using as machinery displacement calculus with limited contraction, modality, additives and
negation as failure. We prove Cut-elimination for the negation free fragment; it is not appropriate to admit Cut in the logic
with the negation as failure, which is non-monotonic.

In Section 2 we define the displacement calculus D and its extension DCAO with (a version of) limited contraction,
additives and S4 modality, and we show Cut-elimination. In Section 3 we extend this with negation as failure. In Section 4
we review categorial semantics for the displacement logic. In Section 5 we present the treatment of anaphora; this is
exemplified in Section 6. We conclude in Section 7.

2. Displacement calculus and extensions
2.1. The displacement calculus D

Let a vocabulary be a set including a placeholder symbol 1 called a separator or marker. We define the sort o (s) of a
string s over the vocabulary as the number of placeholders it contains. For each natural i we define the sort domain L; as
the set of all strings containing i placeholders:

Li={s|o(s)=1i} (1)

The concatenation s1 + sp of a string s; of sort i with a string s, of sort j is a string of sort i + j, thus we have the
functionality + : L;, Lj — L;;j. Note that concatenation is associative and that the empty string, which we notate 0, is a
left and right identity for concatenation. In addition to concatenation, we define on (marked) strings two operations of
intercalation or ‘wrap’. Where « and g are strings and « contains at least one placeholder, we define the leftmost wrap of
a around B, a x) B, as the result of replacing the leftmost placeholder in « by g, and we define the rightmost wrap of «
around B, o x( B, as the result of replacing the rightmost placeholder in o by B. For example:

(before 4- 1 + left + 1 4 slept) x (the + man) = before + 1 + left 4 the 4+ man +- slept (2)

Thus where k € {), (} we have the functionalities xj : Li;q,Lj — Liyj. Note that both leftmost and rightmost wraps are
associative, and that in the same way that the empty string is a left and right identity for concatenation, the marker 1 is a
left and right identity for leftmost and rightmost wrap. A vocabulary induces an w-sorted algebra as follows:

({Li}i€N7+7X)7X(7Os]) (3)

We call this a displacement algebra. A displacement algebra satisfies the following algebraic laws,” where k € {), (}:

S1+ (S2+53) = (S1+52) +53  S1Xp(S2XkS3) = (S1XS2) XkS3  associativity
O+s=s 1xps=s left identity
s+0=s sxpl=s right identity (4)

The displacement calculus D is a logic of marked strings which has continuous connectives {\, e, /} defined by resid-
uation with respect to concatenation and discontinuous connectives {{k, Ok, Tk}kepy,(; defined by residuation with respect
to leftmost and rightmost intercalation. The types of D are sorted into types J; of sort i interpreted as sets of strings of
sort i as shown in Fig. 1 where k € {), (}. Where A is a type, sA is its sort. We shall optionally omit from connectives the
subscript ) for leftmost wrap.

T As we shall see, displacement calculus has a single placeholder symbol and employs as syntactic operations one step replacements of this symbol. By
contrast, the lambda grammar of Muskens [28] and abstract categorial grammar of de Groote [8] have unboundedly many variable symbols and employ as
the syntactic operation beta-reduction, i.e. the reflexive and transitive closure of beta-conversion.

2 1t satisfies additionally some further laws of mixed association and mixed permutation, cf. [29].

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
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Fju=Fi\Fitj [A\C] = {s2 | Vs1 € [A], s1 +s2€[C]} under
Fin=Fivj/Fj [C/Bl={s1]Vs2 €[B], s1+s2€[C]} over
Fipju=FioFj [AeB]=1{s1+5s2|s1 €[A] & s, €[B]} product
Fou=1 [11= {0} product unit
Fij = Fipr Lk Fisj [A Lk Cl={s2|Vs1 €[Al, s1 xks2€[C]} infix
Fir1 = Fipj Tk Fj [C 1k Bl={s1|Vs2 €[B], s1 xxs2€[C]} circumfix
Fitj = Fiy1 Ok Fj [AOk Bl ={s1 xks21s1 €[A] & sy €[B]} wrap
Firu=] [J1={1} wrap unit

Fig. 1. Types of the displacement calculus D and their interpretation.

The set O of configurations is defined as follows, where A denotes the empty configuration and 1 is the metalinguistic
marker:

Ou=A|1|Fo|Fiq{O:---: 0} 0,0 (5)
i+1 O’s
A{I7 :---: I} interpreted syntactically is formed by str_i)ngs so+t1+S1+---+Sp—1+th+s, where so+1+8s1+---+5sp-1+
1+s,€Aandt; elt,..., ty € Iy,. The figure or vector A of a type A is defined by:
A if the sort of A is 0
A={A{1:..-:1}) ifthesortof A is greater than 0 (6)
———
SA1's

The sort of a configuration is the number of metalinguistic markers it contains. Where A is a configuration of sort
i>0 and I7,..., I} are configurations, the fold A ® (I, ..., I3) is the result of simultaneously replacing the successive
placeholders in A by I7, ..., I; respectively.

Where A and I” are configurations and A is of sort i > 0, A|,I" abbreviates

A®(I,1,...,1) (7)
————
i—11’s

ie. A\I' is the configuration which is the result of replacing the leftmost metalinguistic marker in A by I'; and A|I"
abbreviates

A®(L,...,1,T) (8)
——
i-11's
i.e. A|(I' is the configuration which is the result of replacing the rightmost metalinguistic marker in A by rs

The standard distinguished occurrence notation A(/") indicates a distinguished occurrence of I" with external context A.
Here, to deal with discontinuity, the distinguished hyperoccurrence notation A(I') abbreviates Ao(I" ® (A1,...,A})), ie.
a potentially discontinuous distinguished occurrence of I with external context Ag and internal contexts Aq, ..., A;.

A sequent I' = A for the calculus of displacement D comprises an antecedent configuration I of sort i and a succedent
type A of sort i. The sequent calculus for D is as shown in Fig. 2, where k € {), (}.* It is the vectorial and distinguished hype-
roccurrence notational devices which enable sequent calculus for displacement to be presented on the model of multimodal
type logical grammar [19], but without any structural rules, and with |, and |; as defined operations, not structural connec-
tors: the only structural connector is the comma for concatenation, so that D has multimodal types but retains unimodal
sequents.

2.2. Extension with limited contraction, additives and modality

The Lambek calculus is free of structural rules but anaphora involves duplication of antecedent semantics. Jdger [11]
extends the Lambek calculus with limited contraction to provide an account of anaphora with syntactic duplication. Here
we employ a very slight variant of this in the context of the displacement calculus. Limited contraction is for a binary
type-constructor | such that B|A signifies an expression of type B containing a free anaphor of type A (cf. Jacobson [10],
who writes BA). We extend the types of the displacement calculus as follows:

Figj = FigjlFj (9)
3 Thanks to Philippe de Groote for pointing out that leftmost and rightmost replacements are special cases of fold.

4 Note that by IL I can be inserted anywhere (7 could have been written [ since it is of sort 0); likewise by JL J can be wrapped any number of times
around a separator.

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
http://dx.doi.org/10.1016/j.jcss.2013.05.006
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= A AfA) = B
= d _ cut
A= A A(I') = B

—

r=A AC) > D AT =C
\L \R
A AC) = D I = A\C

I = B A{C) = D I'B=C
/L /R
A(C/B,T) = D I = C/B

AAB) = D Nn=AT1 =8
ol oR
A(AeB) = D .1y = AeB

IR

Ay = a4 A=

I = A A{C) = D Al = C
il kR
ATAJcC) = D I = ALC
I = B AC) = D I'kB = C
Tl Tk R
A(CTBKI) = D I' = C1B
AAIKB) = D I =A T =B
OL OkR
A(AGLB) = D Iyl = AGkB
Al) = A
JL IR

Aljy=>a 1=

Fig. 2. Hypersequent calculus for D.

We assume rules as follows, where the semicolon separates disjoint hyperoccurrences which may be consistently in any
order left-to-right’:

I = A A{AB) =D I'(Bo;...;By) = D
— L — =— IR (10)
A(I'; BJA) = D I'(BolA;...: Bo]A) = DIA

We call DC the extension of D with this version of limited contraction.
The displacement calculus is a multiplicative system in the terminology of linear logic [7]. We call DA the extension of
this with additives [14,20,12]. In the sorting and sequent regime of the displacement calculus these are as follows:

Fin=Fi&Fi| Fi®Fi (11)
rA) = ¢ r'B) = C
&L] &LZ
FA&B) = C F(A&B) = C
Ir=A T =8B
&R
I = A&B
rA)=Cc r@ =c
®L
FA®B) = C
I = A r = B
&Ly &Ly (12)
I' = A®B I' = A®B

5 Jager [11] has only |L (limited contraction) with the antecedent preceding the anaphor, giving rise to backward anaphora only; our variant allows also
forward anaphora (cataphora).

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
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We call DO the extension of D with S4 modality. In the sorting and sequent regime of the displacement calculus this is
as follows, where OI" signifies a configuration all the types of which have O as the main connective.

Fin=0F; (13)
r{A) = B or = A
?DL —— [0R (14)
r(oA) = B ol = OA

We call DCAD the extension of D with the limited contraction, additives and S4 modality.
2.3. Remarks on Cut-elimination for DCAO

A few words on technical details and notation. The notation already used A(I7;...; I,) represents a hypercontext A
with n (hyper)holes (n > 0) each one substituted by a configuration or a hypercontext. We define the weight of a type as
its number of connective occurrences. The weight of an atomic type (of arbitrary sort) is 0. The strategy of the proof of
Cut-elimination follows Lambek [13] with the notion of Cut degree which is based on the weight of types. We transform
variations in such a way that Cuts are removed or substituted by other Cuts which are, crucially, of lesser degree, while pre-
serving the endsequent. In this way, since no Cut degree is negative the transformation procedure always yields a Cut-free
proof in a finite number of steps. Cut-elimination for D is proved in the appendix of Morrill, Valentin and Fadda [25].

2.4. Cut-elimination for DC
Permutation conversions are standard and behave in the same way as for the other connectives. We consider the princi-
pal Cut cases which are not so standard. The reader should notice that our metanotation of sequents simplifies the way that

Jager [11] presents the principal Cut cases; as he remarks there are two possible cases of principal Cut for the connective |:

e The case where the minor premise of Cut is the right | rule and the rule of the major premise of Cut is the left | rule:

A(Dy;...;:Dp) = A I =B O(B;A) = C
. IR = L
A(D1|B;...; Dn|B) = A|B O(I'; AB) = C
Cut

O(I'; A(D1]B; ...; DylB)) = C

A(Dy;...;Dy) = A OB;A) = C

— — Cut
B =B O({B;A(Dy;...;Dp)) = C
= p— [L

B =B O(B; A(D1]B;...;Dp)) = C

IL
' — IL
I = B ©(B; A(D1|B;...; Dn_1|B; Dp)) = CC

ut

O(I'; A(D1[B;...; D4|B)) = C

e The case where the rule of the minor premise of the Cut rule is a | right rule and the rule of the major premise of the
Cut rule is a | right rule®:

A(AT;...; Ay) = B . r(Bi;...;Bm) = D .
A(A1]C;...; Ap|C) = B;|C F(B1|E;...;Bm|C) = D|CC
ut

F(B1C;...s A(A1[C; .5 An|C); Biga]C; ... Bm|C) = DIC

A(A1:...;Ay) = Bi I'(Bi:...;Bm) = D c
e — ut
I(By;...;A(A1;...; A); Bizts...; Bm) = D

— — IR
r(B1[C;...: A(AT[C: ... AglC): Bia[C: ... BnIC) = DIC

6 It must be remarked that this case of principal Cut is somewhat non-standard in the tradition of proof theory because, as observed by a referee, the
so-called right rule for Jdger's connective ‘|’ is not a proper dual of the left rule, since it introduces the | on both sides of the sequent symbol.

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
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2.4.1. Cut-elimination for DA
See, for example, [5]. No special new issues arise in the context of sequent calculus for displacement.

2.4.2. Cut-elimination for DO
Where I' denotes a configuration or hypercontext, OI" represents a configuration or hypercontext in which all the
occurrences of types are modalized outermost. We sketch the proof for some cases:

e Principal Cut:
_

or = A A(A) = B
OR — oL
o' = 0OA A(DA) = B
Cut
A{Ool') = B

Or = A A{A) = B
A(OT) = B

e Permutation conversion:
We permute the application of the logical rule and the Cut rule. We consider only a case which is a little bit more
problematic than usual. Let us suppose that the last rule of the major premise of the Cut rule is an instance of the O
right rule:

Cut

.
Oolr'(oA) = B

_>—\:|R
A = 0OA 0Ol(oA) = OB
Cut

orI'(A) = OB
In this case the standard permutation of the logical rule with Cut does not necessarily work; consider:

A = OA OI(0A) = B
Cut

Or(A) = B

Now the right O rule may not be applicable because A is not guaranteed to be fully modalized. The way to fix this
consists of permuting the left rule of the minor premise of the Cut rule with the Cut rule as follows:

A* = DA Or(0A) = B
7ru]e _)—DR
A = OA or(oA) = B
ol'(A) = OB
~

A* = 0OA OI'(0OA) = OB
Cut

al'(A*) = OB
—rule
aol'{A) = OB

3. Negation as failure

Binding theory has negative constraints. We would like then to incorporate negative information into our grammars.
Given our type-logical approach, this forces us to account for negative information in the lexicon, namely in the types.

Since DCAD is a type logic, we are naturally driven to look for a new connective, namely a kind of negation. This is the
kind of operator we need. But as we know, in the landscape of substructural logics there are a huge variety of negations.
A negation which immediately comes to mind is the negation of linear logic. Given our intuitionistic regime, we could add
to DCAD the constant L and define negation in terms of one implication or several implications which are at our disposal
in our type logic DCAC, namely the continuous implications {\,/} and the discontinuous implications {|k, 1x: k € {{,)}}.
L would have the rules®:

7 We suppose without loss of generality that the left rule which applies at the minor premise of the Cut is a unary rule; here ‘rule’ denotes any left
unary rule. A binary rule would be quite similar.

8 Here we leave aside the problem of the sort of L. The rule we present in (15) would entail of course that L. would have sort 0. But it would be natural
in our setting to formulate constants L; (i > 0) of arbitrary sort i. This is a possibility we do not explore here.

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
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A =
— 1L 1R (15)
1= A= 1
Let us consider the case of the negation defined in terms of the continuous implication under \:
d
—AY a1

Suppose that one wants to type a word as a functor X/ng which requires as argument a typed raised noun phrase, i.e.
X /ng can combine with s/(n\s), but cannot combine with a simple noun phrase n. Using the additive conjunction & and
the defined —, ny would be defined as follows:

N :=5/(M\s) & —n (16)
We would expect then that:

Fs/(n\s) = ng

¥n = ng
However, let us see the case of:

Fs/(n\s) = ng
Clearly, the last rule of the above sequent should be &R:

s/(n\s) = s/(n\s) s/(n\s) = —-n&R

s/(M\s) = ngr

(17)

The first premise of the above derivation is obvious. Let us see the second one:
n,s/(n\s) = L
s/(n\s) = —n

By Cut elimination (which we can assume, since we are using a standard constant from intuitionistic logic which we add to
DCAQO), a simple inspection at the sequent shows that:

¥n,s/(n\s) => L

It is clear then that a constructive negation does not play the role we want.

A reasonable alternative for the constructive linear negation is the one which Buszkowski [2] proposed in his paper
Categorial grammars with negative information. Here the negation, which we denote —, is a primitive connective which has a
boolean behaviour. More concretely, Buszkowski extends the Lambek calculus L with two axioms and a rule of transposition.
The presentation of the calculus, which we denote L, is categorical:

e Standard rules of residuation, the axiom rule, and the transitive rule of the arrow —.
e Two axioms:

A— —p—pA and ——pA— A forany type A
e The rule of transposition:

A— B
trans
—'bB — —'bA

The calculus L, suffers some problems. A Gentzen sequent presentation is not known, and more importantly, the decid-
ability of L-, is an open problem. Again, this is not the connective we want.

Morrill and Valentin [24] introduce into type logical categorial grammar a negation interpreted in the succedent as
non-provability which is in fact a negation as failure. Negation as failure has been studied in the framework of autoepistemic
logic (see for example [17]):

¥Fr = A
I = —-A

Thus for example, to express that walk is a non-third person present tense form we might assign to it a type such as
(JaN(a) & =N(3(sg))\S.

—R (18)
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& :=Cq
b =V,
DT =0
Dr =P yq, > Vi Pr; Vi, . @ case statement
D =011 P; first injection
Dy =109 second injection
Dr =1 Py g ¢ first projection
Dr =T Prr g ¢ second projection
Dy g = (P, D) ordered pair formation
Dr = (Ppr Ppr) functional application
Dy = AV Dy functional abstraction
Dy =V D extensionalization
Py i="D; intensionalization

Fig. 3. Syntax of terms for semantic representation.

As regards the Cut rule and negation as failure, note that by using them both together we would get undesirable deriva-
tions such as the following:
¥ S/(N\S) = N

-

N = S/(N\S) S/(N\S) = =N c (19)

ut
N = =N

Adding the negation as failure (right) rule brings our categorial logic into the realms of non-monotonic reasoning where
the transitivity of the consequence relation must be dropped. As we have seen the other connectives used in this paper,
the displacement connectives, limited contraction, additives and S4 modality, enjoy Cut-elimination. But in the presence
of negation as failure, the Cut rule must be considered not only no longer eliminable, but inadmissible. However, the
subformula property holds of all the connectives used here: the sequent presentation is such that for every rule, the formula
occurrences in the premises are always subformulas of those in the conclusion. Given this state of affairs, the Cut-free
backward chaining sequent proof search space is finite and hence the categorial logic DCAD plus negation as failure used in
this paper is decidable.

Here we will use the negation only in the context of succedent A & —B, which we represent by a synthetic difference
operator. Synthetic connectives are defined connectives for which rules can be derived as if they were primitives. They serve
to abbreviate. As we shall see in the next section, dropping the negation and maintaining the synthetic difference connective
will, crucially, assign a Curry-Howard term to all the derivations of sequents in DCAO plus the difference operator. Our
account of anaphora will make essential use of the mentioned synthetic connective difference ‘—’.

4. Semantics

The set 7 of semantic types is defined on the basis of a set § of basic semantic types as follows:

Tu=8|T|T+T|T&T|T—TILT (20)

A semantic frame comprises a non-empty set W of worlds and a family {D;};c7 of non-empty semantic type domains such
that:

DTt = {0} singleton set

Dejyr, =D, WDq, ({1} x D) U ({2} X Dyy) disjoint union

D¢ &ty =Dr x Dy, {(mq1,mp)|my €Dy &my € Dy, } Cartesian product

Dy, = D?z” the set of all functions from D¢, to D, functional exponentiation

Dy = D?’ the set of all functions from W to D;  functional exponentiation (21)

The sets @, of terms of type 7 for each type t are defined on the basis of sets C; of constants of type T and enumerably
infinite sets V; of variables of type t for each type t as shown in Fig. 3.

Given a semantic frame, a valuation f is a function mapping each constant of type t into an element of D,, and an
assignment g is a function mapping each variable of type t into an element of D;. Where g is such, the update g[x:=m]
is (g — {(x, g(x))}) U {(x, m)}. Relative to a valuation, an assignment g and a world i € W, each term ¢ of type t receives an
interpretation [d)]g*i € D; as shown in Fig. 4.

An occurrence of a variable x in a term is called free if and only if it does not fall within any part of the term of the form
X.- or Ax-; otherwise it is bound (by the closest x. or Ax within the scope of which it falls). The result ¢[yq/x, ..., ¥n/Xq] of
substituting terms V1, ..., ¥ (of types t1,..., t,) for variables xq, ..., x, (of types tq,..., ;) in a term ¢ is the result of
simultaneously replacing by v, ..., ¥, every free occurrence of x1, ..., X, respectively in ¢. We say that ¢ is free for x in ¢

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
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[a]&! = f(a) for constant a € C;
[x]$! = g(x) for variable x € V
[01&i =0
[y1e=mhi if [¢]81 = (1,m)
[x18V=miif [¢]81 = (2, m)
[1gl& = (1, [¢])
[t2¢]®" = (2, [¢]5)
118 =fst([p181)
[m2¢]" = snd([¢]¢)
(@, ¥)IET = (9187, [w]&T)
[(¢ ¥)I& = [1& ([¥]&)
[Axp]& =m > [plelx=mli
Vo1& = [¢181 (i)
[p18! = jr> [¢]8)

[p— x5 .18 =

Fig. 4. Semantics of terms for semantic representation.

¢ Xy X =¢—>z.(4lz/x]): y.x
if z is not free in v and is free for x in v
= XYy x =¢ = x9:z.(x[z/yD
if z is not free in x and is free for y in x
Axp =21y (Ply/x])
if y is not free in ¢ and is free for x in ¢

o-conversion

ug—>yviz.x=vlg/yl
if ¢ is free for y in v and modally free for y in ¥
Lo —yyiz.x =xl¢/zl
if ¢ is free for z in x and modally free for z in x
TP, ) =
(P )=y
(Ax¢ V) =pl/x]
if ¥ is free for x in ¢, and modally free for x in ¢
VAp=¢

B-conversion

(19, T20) = ¢
AX(p x) =¢
if x is not free in ¢
/\\/¢ — ¢
if ¢ is modally closed
n-conversion

Fig. 5. Semantic conversion laws.

if and only if no variable occurrence in {» becomes bound in ¢[y/x] (i.e. if and only if there is no “accidental capture”). We
say that a term is modally closed if and only if every occurrence of ¥ occurs within the scope of an ”*. A modally closed term
is denotationally invariant across worlds. We say that a term v is modally free for x in ¢ if and only if either v is modally
closed, or no free occurrence of x in ¢ is within the scope of an ”. The laws of conversion in Fig. 5 obtain; for the sake of
brevity we omit the so-called commuting conversions for the case statement.

The definition of syntactic types and the semantic type map T sending syntactic types to semantic types is as shown in
Fig. 6 for DCAO with succedent difference. The definition distinguishes types with antecedent polarity (superscript ®) and
succedent polarity (superscript °); where p is a polarity, p is the opposite polarity. Some semantically labelled sequent rules
(which are sufficient for our account of anaphora) of DCAQ are given in Fig. 7.° As we said in the previous section, all the
derivations of sequents in DCAO receive a Curry-Howard term:

Fact: Every derivation D of a provable sequent A = A in DCADO receives a Curry-Howard term &p (22)

9 The underscore in the negative subgoal of the difference right rule is an anonymous metavariable.
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FPu=FI\F T(A\C)=T(A) — T(C)
FPu=Fh 7! T(C/B)=T(B)— T(C)
fiij::=ﬁp.ff T(AeB)=T(A) & T(B)
Fyu=1 TH=T
FPu=Fh b Fly  TALO=TMA)—>TO
Fhoe= f,."ﬂ. I f]’.’ T(C1x B)=T(B) - T(C)
Fhiu=Fl o FT T(AGLB)=T(A) & T(B)
Flu=] T(H=T

Fh o= FE T T(B|A) = T(A) — T(B)
FPu=rF & FF T(A & B)=T(A) & T(B)
FPu=FoF} T(A®B)=T(A)+T(B)
FPu=oF! T(OA) =LT(A)

Fio u=F° — F° T(A—B)=T(A)

Fig. 6. Connectives and type map.

A:x = A:x

id

I' = A:¢ A(f:z)=>D:w ﬁ:x,FaC:x

—_—

ALAC:y) = D:ol(y ¢)/z1 T = A\C:ixx

\L

I = B:y AlC:z2) = D:w I'B:y = C:x

/L

A(C/B:x,T) = D:w[x¥)/z2l T = C/B:iyx

AA:xB:y) = D:w

I = A:¢ In = By

ol
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—

A(AeB:z) = D:wlmiz/x,m22/y]

I = A:¢ AC:2) = D:ow

I, I = AeB:(p,V)

K:x\kl“ = C:x

AMA T Cry) = D:oly ¢)/2]

I' = B:y A(C:z) = D:w

—

kL

I“\;E:y = C:x

I = AlrC:ixx

ACTB: Xk T) = D:olk ¥)/z]

i L

I' = A:¢ A(A:X;B:y) = D:w

IL

A(I';B|A:z) = D:wlp/x,(z $)/y]

I'(Bo:yo;---;Bniyn) = D:w

I = C1xB:Ayx

I'(BglA:zp; ..

3 BulA:zy) = DIA:Xx(w[(z0 X)/Yo0, .-

—

I'A:x) = B:y

oI = A:¢

oL OR

I'(OA:z) = B:y[Vz/x]

Fig. 7. Semantically labelled sequent calculus for categorial logic, where k € {), (}.

Proof. By induction on the length of derivations of DCAO plus the difference operator. All the rules except for the difference
rule assign trivially a Curry-Howard term. The (right) rule of ‘-’ is non-standard for one of the premises has a not provable

sequent:

A= A: P FA= B:_
—R

A= A—-—B:®

Here, by induction hypothesis the left premise sequent has a Curry-Howard term &. The other non-provable sequent does
not matter because in the conclusion the succedent is assigned @. Therefore the ‘—’ assigns a Curry-Howard term. This

ends the proof. O

or = 0A:"¢

I' == A:¢ ¥I = B:_

—R

I = A-B:¢

-+ (Zn X)/ynl)

http://dx.doi.org/10.1016/j.jcss.2013.05.006
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5. Anaphora

We assume basic types N for name or (referring) nominal, S for statement or (declarative) sentence, and CN for common
(or count) noun. We assume the account of modality for intensionality of Morrill (see [21], [26, Chapter 5], [27, Chapter 8])
so that all lexical types are modalized outermost (i.e. the meanings of words are senses/intensions) and subordinate sen-
tences are modalized (i.e. denote propositions). Thus for example the transitive verb likes will be of type TO((N\S)/N) and
the propositional attitude verb believes will be of type TO((N\S)/OS). A verb phrase such as likes Mary will have type N\S.
An expression such as believes John likes will have type (N\S)/ON but not type (N\S)/N since the propositional attitude
verb requires its dependent clause to be modal.

5.1. Possessive pronouns

A possessive pronoun his/her/its cannot take its antecedent from within its common noun complement:

*His; friend of John; left (23)

However, it can take its antecedent intrasententially from anywhere outside its noun phrase, or intersententially, or extralin-
guistically:

a. John/everyone; saw his;,; neighbour
b. His;,j neighbour saw John; (24)

We assign!?:
his/her/its : O((ON|N)/OCN) : poss (25)
(Agreement features will be a straightforward final addition.)

5.2. Reflexive pronouns

Reflexive pronouns such as himself/herself/itself can take subject antecedents or object antecedents.
Subject-oriented reflexivization like

John; buys himself; coffee (26)

is generated by assignment as follows, where here and throughout VP abbreviates N\S, and as remarked earlier we allow
ourselves to omit the subscript ) for leftmost (indeed, here unique) discontinuity:

himself/herself/itself : (VP + N) | VP) : “AxAy(x y y) (27)

The hypothetical subtype is not modalized, ensuring that the antecedent is clause-local (cf. Principle A of [4]):

«John; believes Mary likes himself; (28)

Consider the following contrast:

a. John; likes the picture of himself;
b. xJohn; likes the neighbour of himself; (29)

This is captured if we assume that in (29a) the prepositional phrase is a subcategorized complement but that in (29b) it is
an adjunct with a modalized object as follows:

neighbour: OCN

of: O(PP/N)

of: O((CN\CN)/aN)

picture: 0O(CN/PP) (30)

For object-oriented reflexivization such as

John talked to Mary; about herself; (31)

10 This fails to block a weak crossover violation such as «xHis; neighbour saw everyone;.
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we assume assignment:

himself/herself/itself : O(((VP 1+ N) +(N) {( (VP 1+ N)): MXLY(X YY) (32)

This embodies a precedence condition on object-oriented reflexivization:

«Mary revealed himself; to John; (33)

The fact that the antecedent hypothetical subtype is not modalized prevents a clause non-local antecedent:

x«Mary notified the fact that John; won to himself; (34)
With the assignments of (30) example (35a) is successfully blocked; however (35b) is overgenerated:

a. *«Mary introduced the neighbour of John; to himself;
b. «Mary showed the picture of John; to himself; (35)

5.3. Personal pronouns

We distinguish “external anaphora” in which the antecedent is intrasentential but outside the clause of the pronoun, or
intersentential or extralinguistic, and “internal anaphora” in which the antecedent is within the clause of the pronoun or
within a clause subordinate to that clause.

We assign to the nominative personal pronouns he/she as follows:

he/she : O((OS|N)/OVP) : “xry"(Vx y) (36)
This captures that nominative pronouns only appear in subject positions, and that they permit no internal anaphora (cf.
Principle C of [4]):

a. xHe; likes John;
b. xHe; believes John; flies
c. xHe; believes Mary likes John; (37)

To the both nominative and accusative personal pronoun it we assign for external anaphora thus:

it: 0(@(S 1t N) | (@SIN)) : “rxay™(Vx y) (38)

This allows it to appear in both nominative and accusative positions.
To the accusative pronouns him/her we assign for external anaphora:

him/her : O(D((S 1 N) — (J e VP)) | (@S|N)) : “axry” (Vx y) (39)

This represents that the case in English is configurational and that the default case is accusative: the use of the difference
operator (i.e. negation as failure) allows the accusative pronouns to appear anywhere except in subject position. For example,
«John; thinks him; runs blocks because 1 + runs, although it is of type (0O)(S 1 N), is also of type | e VP.

Finally, for internal anaphora we assign thus to the accusative personal pronouns him/her/it'!:

him/her/it: O((((S t N) 2 ON) = (J o (VP A N))) L ( (St ON)) : “Axry(x y *'y) (40)

A similar device as before limits the accusative pronouns to only non-subject positions. That the antecedent hypothetical
subtype is modalized allows a non-clause-local internal antecedent (by contrast with the reflexivization (34)):

The fact that Mary employed John; surprised him; (41)

The type embodies a precedence constraint on internal anaphora:

*Mary revealed him; to John; (42)

And the negation ensures that the pronoun cannot take as antecedent the subject of its own clause (cf. Principle B of [4]):

xJohn; likes him; (43)

As noted by a reviewer the use of negation in (39) could be avoided by treating case as a syntactic feature, while its use
in (40) is essential to capture a Principle B effect.

11" As noted by a reviewer this allows what Biiring [1] calls Binding out of DP: Everyone;'s mother loves him;. Dowty [6] proposes an accusative pronoun
type assignment which in our formalism is ((N\S) 1 N) | (N\S): AxAy(x y y) for subject antecedents. That approach requires additional types such as
(((N\S)/N) 1+ N) | ((N\S)/N) for other kinds of antecedents, as observed by Dowty, and does not capture Binding out of DP or Principle B effects.
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about : (J(PPabout/NA) : "ABB

believes : J((Nt(s(A))\Sf)/ISf) : believe

buys : CI(((Nt(s(A)\Sf)/NB)/NC) : buy

coffee : (INt(s(n)) : coffee

everyone : [I((SATNt(s(B)))|SA) : "ACYDI[(“person D) — (C D)]

he : O((OSA|Nt(s(m)))/D(Nt(s(m))\SA)) : "ABAC ("B C)

her : LI((((SAPNE(s(HNMUINE(S(f))) — (Je((NE(S(FH\NSA)INE(S(F)H)N L ((SATTINE(s(f)))) : "ABAC((B €) "C)
herself : CJ((((NA\SB)Nt(s(f)) P Nt(s(f))) | (NA\SB)tNt(s(f)))) : "»CAD((C D) D)
him : (O((SATNt(s(m))) — (Jo(Nt(s(m))\SA))) | (OSA|Nt(s(m)))) : "ABAC ("B C)
himself : J(((Nt(s(m))\SA) 1T Nt(s(m)))J (Nt(s(m))\SA)) : "ABAC((B C) C)

his : O((ONt(A)|Nt(s(m)))/CICNA) : “2BAC(("of C) “B)

informs : (J(((Nt(s(A))\Sf)/PPabout)/NB) : inform

john : CINt(s(m)) : °j

likes : CI((Nt(s(A))\Sf)/NB) : like

mary : CONt(s(f)) : "'m

neighbour : CICNA : neighbour

of : J((CNA\CNA)/CINB) : "AC(“of "C)

swims : [J(Nt(s(A)\Sf) : swim

the : C(Nt(A)/CNA) : ¢

Fig. 8. Lexicon for anaphora.

Nt(A) = Nt(A) Nt(s(m)) = Nt(s(m)) Sf = Sf
= Nt(A) o Ne(s(m)), [ Ne(sam)\Sf | = Sf !
CNA = CNA Nt(s(m)) = Nt(s(m)) Nt(s(m)), , ONt(A) = Sf "
= CNA DZ = Nt(s(m)) " Ne(s(m)),[ O((Nt(sm))\Sf)/Nt(A) | ONE(A) = sf EL
]

OCNA = [CICNA ONt(s(m)), O((Ne(s(m)\Sf)/Nt(A)).| ONt(A)INe(s(m)) | = Sf
/L

ONt(s(m)), D(NEsm)\Sf)/NE(A)). [ (ONt(A)INt(s(m))/OCNA | CICNA = Sf

oL

ONt(s(m)), D(NE(sm)\Sf)/Nt(A), [ O(ENE(A)INE(s(m)) /OCNA) | CICNA = Sf

Fig. 9. Derivation for John likes his neighbour.

6. Exemplification

To exemplify the displacement logic and account of anaphora we assume the lexicon given in Fig. 8. Atomic types
are structured with feature terms; free variables are interpreted as universally quantified at the outermost level and thus
undergo unification.!?

For the derivation of the possessive pronominalization john + likes + his + neighbour : S lexical lookup yields the se-
mantically annotated sequent:

ONt(s(m)) : "j, O((Nt(s(A)\Sf)/NB) : like, D((CONt(C)|Nt(s(m)))/OCNC) : "ADLE"(("of E) D),

CCNF : neighbour = Sf (44)
This has the proof given in Fig. 9, which delivers semantics:

(("like (("of j) “neighbour)) j) (45)
For the quantificational counterpart everyone + likes + his + neighbour : S there is the semantically annotated sequent:

O((SATNt(s(B)))|SA) : "ACVD[("person D) — (C D)], ((Nt(s(E))\Sf)/NF) : like,

O((ONt(G)|Nt(s(m)))/LOCNG) : "AHAI"((of I) "H),OCN ] : neighbour = Sf (46)
which has the derivational proof of Fig. 10.This delivers semantics:

VB[ (“person B) — (('like (("of B) “neighbour)) B)] (47)

12 The sources for this section are computer generated by a Prolog parser/theorem-prover CatLog based on the principles described in [23].
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Nt(A) = Nt(A) Nt(s(m)) = Nt(s(m)) Sf = Sf
= Nt(A) . Nt(s(m)).[Nesm)\Sf | = sf v
CNA = CNA Nt(s(m)),, ONt(A) = Sf "
S aNA Netstm = Netstm Ne(sm), [DANEGmNSH/NEA) | ONe() = Sf >
OCNA = [CICNA o Ne(s(m)), O((NEGsm)\SF)/NE(A)), [ONE(A)INEsm)) | = Sf "
Nt(s(m)),D((Nt(s(m))\Sf)/Nt(A)),| (DINt(A)|Nt(s(m)))/LICNA | LCNA = sf "
Nt(s(m)),D((Nt(s(m))\Sf)/Nt(A)),|D((DNt(A)|Nt(s(m)))/DCNA) | LCNA = sf \
1, O(Nt(s(m)\Sf)/Nt(A)), O(DINt(A) Nt (s(m))) /LCNA), OCNA = SfANt(s(m)) J Sf = Sf

L

(SFANE(sm))) LSS | DUNE(s(m)\SF)/Nt(A)), O(ENL(A)INt(s(m)))/OCNA), ICNA = Sf

|D((5fTNf(S(m)))¢5f) | D((Ne(sm)\SF)/Nt(A)), O(ONE(A)INE(s(m))) /OCNA), ICNA = Sf

oL

Fig. 10. Derivation for Everyone likes his neighbour.

Nt(s(m)) = Nt(s(m)) Sf = Sf

Ni(s(m)) = Ne(sm)) — Ne(s(m)), [Nesm)\Sf | = Sf >
NE(s(m)), [ (NEGm)\SP)/Ne(sm)) |, Ne(s(m) = f &
Ne(sm)), [ DN m)\S)/Ne(s(m) | Ne(sam)) = Sf " N o M)
CI(NE(s@m)\SF)/NE(sm))), Ne(sam) = Nt(sam)\Sf d = Ni(s(m) o Sf = sf
CI(NEm\SF)/NE(sm))). 1 = (Ne(s(m)\SF)TNe(s(m)) h ONe(sm). [Nesm)\SF | = sf y E

ONt(s(m)), I:|((Nf(S(m))\Sf)/Nt(S(m))),| ((Nt(sm)\SF)TNE(s(m))) | (NE(s(m)\Sf) | = Sf

oL

ONt(s(m)), D((Nf(S(m))\Sf)/IW(S(m))),| O((NEsmN\SHTNE(s(m))) | (NE(s(m)\SS)) | = Sf

Fig. 11. Derivation of John likes himself.

For the derivation of the subject-oriented reflexivization john + likes + himself : S lexical lookup yields the semantically
annotated sequent:

ONt(s(m)) : "j, O((Nt(s(A)\Sf)/NB) : like,

O(((Nt(s(m)\SC)tNt(s(m))) L (Nt(s(m)\SC)) : "ADAE((D E) E) = Sf (48)
This has the proof given in Fig. 11, which delivers semantics:

(Clike J) ) (49)

For the quantificational counterpart everyone + likes + himself : S there is the semantically annotated sequent:

O((SATNt(s(B)))|SA) : ACVD[("person D) — (C D)], ((Nt(s(E))\Sf)/NF) : like,

O(((Nt(s(m))\SG) PNt (s(m))) | (Nt(s(m))\SG)) : AHAI((H ) I) = Sf (50)
This has the proof of Fig. 12 which delivers semantics:

VB[(“person B) — ((‘like B) B)] (51)

For the derivation of the verb phrase medial subject-oriented reflexivization john + buys + himself + coffee : S lexical
lookup yields the semantically annotated sequent:

ONe(s(m)) = *j, O(((NE(s(A)\Sf)/NB)/NC) : buy,
C(((Nt(s(m))\SD)A Nt (s(m))) L (NE(s(m)\SD)) : "AELF((E F) F), ONt(s(n)) : coffee = Sf (52)

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
http://dx.doi.org/10.1016/j.jcss.2013.05.006
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Nt(s(m)) = Nt(s(m)) Sf = Sf

\L
Nt(s(m)) = Nt(s(m))  Nt(s(m)),| Nt(s(m)\Sf | = Sf

/L

NE(s(m)), | (NEsm)\SF)/Ne(s(m)) | Ne(sm)) = Sf

oL

Nt(S(m)),| CI((Nt(s(m))\Sf)/Nt(s(m))) | Nt(s(m)) = Sf
\R
O((Nt(s(m)\Sf)/Nt(s(m))), Nt(s(m)) = Nt(s(m))\Sf Nt(s(m)) = Nt(s(m)) Sf = Sf
IR \L
O((Nt(s(m))\Sf)/Nt(s(m))), 1 = (Nt(s(m))\Sf)tNt(s(m)) Nt(s(m)),| Nt(s(m)\Sf | = Sf

L

Nt(s(m)), D((Nt(S(m))\Sf)/Nt(S(m))),| ((Nt(sm)\Sf)TNt(s(m))) | (Nt (s(m)\Sf) | = Sf

oL

Nt(s(m)), D((Nf(S(m))\Sf)/Nt(S(m))),| D((NE(sm)\SHTNE(s(m))) | (NE(s(m)\SS)) | = Sf

R —
1, O(Ne(sm))\S)/Ne(s(m))), D((NEGsm)\SHANE(s(m)) | (NE(s(m)\SS)) = SfANt(s(m)) Sf = 5f

(SFANE(sm))) LSS | DUNE(smN\SF)/Nt(sm))), D(NE(sm)\SF)TNE(s(m) LNESmI\SS)) = Sf

|D((5fTNt(S(m)))¢5f) | D(Ne(s(m)\SH)/Ne(sm))), O(NE(sm)\SFHTNE(sm) LNESmI\SS)) = Sf

L

oL

Fig. 12. Derivation of Everyone likes himself.

Nt(s(n)) = Nt(s(n)) Nt(s(m)) = Nt(s(m)) Sf = Sf
L \L

O
ONt(s(n)) | = Nt(s(n)) Nt(s(m)),| Nt(sm)\Sf | = Sf

NeGsm) = Nesm) — Ne(sam)), [(NeGm)\SF)/Ne(sm) | ONe(sm) = Sf

/L

/L

Nt(S(m)),| ((NE(s(m)\SF)/Nt(s(m)))/Nt(s(m)) | Nt(s(m)),UNt(s(n)) = Sf

oL _

Nt(sm)), [ D(NEsm)\SF)/NE(s(m)/Ne(sm))) | Ne(s(m)), ONe(sm) = Sf Nt(s(m)) = Nt(s(m))

\R oL

B(((Nt(sm)\SF)/Nt(s(m)))/Ne(s(m))), Ne(s(m)), ONt(s(n) = Ne(s(m)\Sf ONt(s(m)) | = Nt(s(m)) Sf = Sf

TR \L

D(((Nt(sm)\Sf)/Nt(s(m))/Nt(s(m))), 1. OINt(s(n)) = (Nt(s(m))\Sf)PNt(s(m)) ONt(s(m)),| Ntsm)\Sf | = Sf
v

L

UNt(s(m)), |:|(((Nt(S(m))\5f)/Nt(S(n)))/Nf(S(m)))y| ((Nt(sm)\SHTNE(s(m))) L (Nt(s(m)\Sf) | ONt(s(n) = Sf

oL

OINt(s(m)), O((NE(s(m)\SF)/Nt(s(m)))/Nt(s(m))), FD(((Nt(S(m))\Sf)TNf(S(m)))i(Nt(S(m))\Sf)) | ONt(s(n) = Sf

Fig. 13. Derivation for John buys himself coffee.

This has the derivation given in Fig. 13, which delivers semantics:

((Cbuy j) “coffee) j) (53)

Principle A violations such as john+ believes + mary + likes + himself : S and mary + believes + john + likes + herself : S
have no derivation because the propositional attitude verb projects a modalized domain.

For the derivation of the object-oriented reflexivization john + informs + mary + about + herself : S lexical lookup yields
the semantically annotated sequent:

CONt(s(m)) : "j, O(((Nt(s(A))\Sf)/PPabout)/NB) : inform, CINt(s(f)) : ‘'m,

O(PPabout/NC) : "ADD, O(((NE\SF)tNt(s(f)) I Nt(s(f)) L (NE\SF)TNt(s(f)))) :

"AGLH((G H) H) = Sf (54)

This has the proof given in Fig. 14, which delivers semantics:

((Cinform m) m) j) (55)
For the derivation of the external nominative pronominalization john + believes + he + swims : S lexical lookup yields:

CINt(s(m)) : “j, O((Nt(s(A))\Sf)/CISS) : believe,

O((@SB|Nt(s(m)))/O(Nt(s(m))\SB)) : 'ACAD"('C D), d(Nt(s(E))\Sf) : swim = Sf (56)

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
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Sf = Sf
oL
Nt(s(m)) = Nt(s(m)) Sf = Sf = Sf Nt(s(m)) = Nt(s(m)) Sf = Sf
\L aR \L
Nt(s(m)),| Nt(s(m)\Sf | = Sf 0sf = Odsf Nt(s(m)),| Nt(s(m)\Sf | = Sf
ol /L
Nt(s(m)),| O(Nt(s(m)\Sf) | = Sf Nt(s(m)) = Nt(s(m)) Nt(s(m)), | (Nt(s(m)\Sf)/OISf | ISf = Sf
\R ol ol
O(Nt(s(m)\Sf) = Nt(s(m)\Sf CINt(s(m)) | = Nt(s(m)) Nf(S(m)),|D((Nt(S(m))\Sf)/DSf) | usf = sf
oR IL
O(Nt(sm)\Sf) = O(Nt(s(m)\Sf) UINt(sm)), D((Ne(sm)\SF)/LISf), | TSFINt(s(m)) | = Sf
/L

ONt(s(m)), D((NT(S(m))\Sf)/DSf).,| (OSFINt(s(m))/BO(Nt(s(m)\SF) | H(Ne(s(m)\Sf) = Sf

oL

ONt(s(m)), |:|((NT(S(m))\Sf)/DSf).,| H(ESfINt(s(m)))/O(Nt(sm)\SF)) | O(Nesm)\Sf) = Sf

Fig. 15. Derivation of John believes he swims.

This has the proof given in Fig. 15, which delivers semantics:

(Cbelieve “("swim j)) j) (57)

For the external accusative pronominalization john + believes + mary -+ likes + him : S lexical lookup yields:

ONt(s(m)) : “j, O((Nt(s(A)\Sf)/0Sf) : believe, Nt (s(f)) : 'm,
O((Nt(s(B)\Sf)/NC) : like,
O@(SDNt(s(m))) — (Jo(Nt(s(m))\SD)))| (USD|Nt(s(m)))) : "AEAF"(’E F) = Sf (58)

This has the proof given in Fig. 16. (For the difference operator it is impracticable to portray the search testifying to the
non-existence of a proof for the negative subgoal, so only the positive subproof is represented in derivations.) This delivers
semantics:

(Cbelieve “((like j) m)) j) (59)

For the derivation of the internal anaphora the + neighbour + of + john + likes + him : S lexical lookup yields the
sequent:

CI(Nt(A)/CNA) : ¢, CICNB : neighbour, J((CNC\CNC)/CIND) : "AE(of “E),

ONt(s(f)) : ‘m, O((Nt(s(F)\Sf)/NG) : like,

O((((SHANt(S(HNTENL(s(f))) = (Jo(NES(FND\SH)TNES(HINNL (SHATNL(s(f)))) :

ALJW D) ] = Sf (60)

This has the proof given in Fig. 17, which yields semantics:
(("like m) ("t (("of m) “neighbour))) (61)
7. Conclusion

Anaphora occurs widely in natural language and its analysis raises methodological challenges. Anaphora can be intersen-
tential or deictic, and some of the generalizations governing it seem to require negative conditions which are not easy to
express naturally in grammar which is a formal generative system.

In this paper we have given a categorial treatment of anaphora which distinguishes what we call external anaphora
and internal anaphora. The minimal governing category (MGC) of a pronoun is the smallest clause or noun phrase within
which the pronoun falls. In external anaphora the pronoun takes its antecedent from outside its MGC, with no precedence
constraint, and we characterize this in terms of (a version of) the limited contraction of Jager [11], which drives the se-
mantic duplication of pronominalization syntactically. In internal anaphora the pronoun takes its antecedent from within its
MGC, with a precedence constraint, and we characterize this in terms of the displacement calculus of Morrill, Valentin and
Fadda [25], which drives the semantic duplication of pronominalization lexically.

Here, binding principle A (locality) effects on reflexive internal anaphora are approached by means of the modalization
of Morrill [21]. Binding principle B (antilocality) on personal pronoun internal anaphora is modelled by employing the
negation as failure of Morrill and Valentin [24]. Binding principle C effects follow from the fact that in our analysis only
external anaphora can be cataphoric.

Please cite this article in press as: G. Morrill, O. Valentin, Displacement logic for anaphora, J. Comput. System Sci. (2013),
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Our characterization of the case distinction between the nominative pronouns he/she and the accusative pronouns
him/her also uses the negation as failure and reflects the received wisdom that in English case is configurational and that
the default case is accusative. The account dispenses with case features.
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