
Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Reinforcement Learning
Searching for optimal policies I:

Bellman equations and optimal policies

Mario Martin
Universitat politècnica de Catalunya

Dept. LSI

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

How to find optimal policies
• Bellman equations for value functions
• Evaluation of policies
• Properties of the optimal policy
• Methods:

– Dynamic Programming
• Policy Iteration
• Value Iteration
• +[Asynchronous Versions]

– RL algorithms
• Q-learning
• Sarsa
• TD-learning

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

• The value of a state is the expected return starting
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy 
is the expected return starting from that state, taking
that action, and thereafter following  :

Value Functions

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Bellman Equation for a Policy 
The basic idea:

So:

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Bellman Equation for a Policy 

Or, without the expectation operator:

(generic)

(deterministic environment)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Bellman Equation for a Policy 

• When we are using estimations of the values,
we call TD error to

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

• The value of a state is the expected return starting
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy 
is the expected return starting from that state, taking
that action, and thereafter following  :

Value Functions

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-value Bellman Equation

The basic idea:

So:

Action a

Follow policy

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-value Bellman Equation

Or, without the expectation operator:

(generic)

(deterministic environment)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-value Bellman Equation

• When we are using estimations of the values,
we call TD error to

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Calculation of value functions for a given policy
(policy evaluation)

Policy Evaluation: for a given policy , compute the
state-value function

Recall:

First way: Solve a set of linear equations

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Iterative Method for policy evaluation

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

Second way: iterative method (convergence proved)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Iterative Policy Evaluation

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy space: Ordering and properties
of the optimal policy

• We define a partial ordering of policies “¸” in the
following way:

’ ¸  iff V’(s) ¸ V (s) 8 s

• The optimal policy (*)
– Could be not unique [but all share same value function V=V]
– Some are deterministic

[in no deterministic policies (s,a) means prob. of taking action a in state s]
– All share the same value function
– Optimal policies are the greedy policies with rspect to V or Q

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Greedy policies

• A policy is greedy with respect to a value
function it is optimal according to that value
function for a one-step problem

10 -5 18 7

Initial state

Different actions

Possible next states with
their V(s) value

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Obtaining Greedy Policies from
Values

• Policy derived from values

• Relation between V and Q values in Greedy
policies

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Reinforcement Learning
Searching for optimal policies II:

Dynamic Programming

Mario Martin
Universitat politècnica de Catalunya

Dept. LSI

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Two Methods for Finding
Optimal Policies

• Bellman equations to organize the search
for the policies in a Markovian world

• Dynamic Programming
– Policy iteration
– Value iteration

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Improvement
Suppose we have computed for a deterministic policy .

For a given state s,
would it be better to do an action ?

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Improvement Cont.

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Iteration

policy evaluation policy improvement
“greedification”

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Iteration

Choose an arbitrary policy 
repeat

For each state (compute the value function)

For each state (improve the policy at each state)

:=’
until no improvement is obtained

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Iteration

• Guaranteed to improve in less iterations than
the number of states [Hooward 1960]

• Relaxation can be done in parallel and
asynchronously (not complete sweeps at each
iteration)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Value Iteration Cont.

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Value Iteration

• Proved by Singh and Yee:

• Error is decreased by a factor of on every
iteration

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Notes About Value Iteration

• Relaxation can be done
– Asynchronously
– In parallel

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Summary
• Bellman eqs. for value functions
• Optimal policies are greedy policies
• How greedy policies can be derived form value

functions
• How a policy can be evaluated
• How to iteratively improve the policy (policy

iteration)
• How to calculate the value function for the optimal

policy without explicit representation of policy (value
iteration)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Method for Leaning Behaviors

I- Learn a world model

II- Find the optimal policy with
previous algorithms

III- Execute the policy forever

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Problems
• A world model is needed (transitions and

reinforcements)
• Large amount of recourses involved before

improving the policy
• What happen when the environment is

changing?

ARE ALL THESE CONTRAINTS
NECESSARY?

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Reinforcement Learning
Searching for optimal policies III:

RL algorithms

Mario Martin
Universitat politècnica de Catalunya

Dept. LSI

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

RL algorithms

• Active learning (learning by doing)

S S S S Sa a a
r r r r

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

RL algorithms

• Take advantage of asynchronous updates
(limit case: update only one state - the current state)

• Experiences allow a sampling of the model
(transition probabilities are indirectly estimated while
interacting with the environment)

• Advantages
– No model of the world needed
– Good policies before learning the optimal policy
– Reacts to changes in the environment

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Dynamic Programming backup

T

T T TT

TT

T

TT

T

T

T

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

T

T T TT

TT

T

TT

T

T

T

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

• Assume

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

After infinite experiments,

That is,

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3
: : :

The same that DP algorithms calculated but now without knowing transition
probabilities!

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-function backup

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-function backup

Relation between V and Q values in Greedy policies:

By the way… This is called TDerror
Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-function backup

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

RL algorithms

• TD(0) algorithms
– Q-learning
– Sarsa

• TD(1) algorithms
– Monte Carlo

• General TD-learning
– n-steps TD estimators
– TD()

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-learning

• Based on Q-backups

st + 1

Q-values for st + 1 and each act ion

Q-value for st and at

max operator

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-Learning: Off-Policy TD (first version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

a:=(s)
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy (or repeat forever)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Need for Exploratory actions
• Problems:

– Asynchronous under the assumption that all
states are visited

– But following always a policy, some states may
remain never visited

– High possibility of being stuck with a non
optimal policy in stochastic environments

• one only state and bad luck in first estimate
• to maximize the action in one state we must test

periodically the values of the neighbor states

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Exploration

• It is necessary not to follow always the policy
– Exploration (taking a non policy action)

• But it is necessary to follow the policy for
estimating the values (policy iteration)
– Exploitation (taking a policy action)

• We must search for a balance between them

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Exploration

• -greedy action-selection
– Choose a greedy action with probability (1-) and

a random action with probability 

• Softmax action-selection

T is a parameter called
Boltzman Temperature that
usually is decreased while the
learning life of the agent

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Initial Values

• Other ways to avoid exploration:
– Initializing Q values optimistically, we force an

exploration procedure that (for static
environments) allow us to eliminate the explicit
exploration procedure

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-Learning: Off-Policy TD (right version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

Select action a depending on the action-selection procedure,
the Q values (or the policy), and the current state s
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy (or repeat forever)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Learning rate parameter: 

• is used for weighting different experiences
• In stationary environments:

In this case, the Q and V values are the exact
arithmetic average of the experiences

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Learning rate parameter: 

• In non-stationary environments:
 takes a constant value (usually on the range 0,3..0,5)

• Constant values decay relative influence of past
experiences

• As higher the value, higher the learning (more
influence of recent experiences in the
estimations)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Convergence for Q-learning

•
• Conditions

– All states are infinitely visited and each action is
executed an infinite number of times

–

• Watkins & Dayan 1992
– At each “Q-interval” the maximum error is

decreased in a  factor (similar to Value Iteration)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

On-line versus Off-line

• On-line learning: Values learned are for the
current policy used

• Off-line learning: Values learned for one
policy while following another one.

• Q-learning is Off-line learning: Values are
learned for the greedy policy, not for the -
greedy policy used while learning

• Sarsa is On-line learning

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Sarsa backup: on-policy learning

• Based on Q-backups

• But now we estimate Q values for the current
behavior executed:

_ _ _ _ _

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Sarsa: On-line Q-learning
Initialize Q(s,a) and (s) arbitrarily
Set initial state s
Select action a depending on the action-selection procedure, the Q values

(or the policy) and the current state s
repeat

Take action a, get reinforcement r and perceive new state s’
a’:= Select action depending on the action-selection procedure,

the Q values (or the policy) and the state s’

r:=r’; s:=s’; a:=a’
until convergence in policy

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Differences between Q-learning
and Sarsa

GS

Q-learning
(optimal path)

Sarsa
(safe path)

r= -1 (after each step)
r= -100 (if she falls in the white area)
deterministic actions but -greedy selection procedure

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Differences between Q-learning and
Sarsa

greedy= 0.1

