
Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Reinforcement Learning
Searching for optimal policies I:

Bellman equations and optimal policies

Mario Martin
Universitat politècnica de Catalunya

Dept. LSI

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

How to find optimal policies
• Bellman equations for value functions
• Evaluation of policies
• Properties of the optimal policy
• Methods:

– Dynamic Programming
• Policy Iteration
• Value Iteration
• +[Asynchronous Versions]

– RL algorithms
• Q-learning
• Sarsa
• TD-learning

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

• The value of a state is the expected return starting
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy
is the expected return starting from that state, taking
that action, and thereafter following :

Value Functions

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Bellman Equation for a Policy
The basic idea:

So:

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Bellman Equation for a Policy

Or, without the expectation operator:

(generic)

(deterministic environment)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Bellman Equation for a Policy

• When we are using estimations of the values,
we call TD error to

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

• The value of a state is the expected return starting
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy
is the expected return starting from that state, taking
that action, and thereafter following :

Value Functions

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-value Bellman Equation

The basic idea:

So:

Action a

Follow policy

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-value Bellman Equation

Or, without the expectation operator:

(generic)

(deterministic environment)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-value Bellman Equation

• When we are using estimations of the values,
we call TD error to

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Calculation of value functions for a given policy
(policy evaluation)

Policy Evaluation: for a given policy , compute the
state-value function

Recall:

First way: Solve a set of linear equations

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Iterative Method for policy evaluation

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

Second way: iterative method (convergence proved)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Iterative Policy Evaluation

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy space: Ordering and properties
of the optimal policy

• We define a partial ordering of policies “¸” in the
following way:

’ ¸ iff V’(s) ¸ V (s) 8 s

• The optimal policy (*)
– Could be not unique [but all share same value function V=V]
– Some are deterministic

[in no deterministic policies (s,a) means prob. of taking action a in state s]
– All share the same value function
– Optimal policies are the greedy policies with rspect to V or Q

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Greedy policies

• A policy is greedy with respect to a value
function it is optimal according to that value
function for a one-step problem

10 -5 18 7

Initial state

Different actions

Possible next states with
their V(s) value

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Obtaining Greedy Policies from
Values

• Policy derived from values

• Relation between V and Q values in Greedy
policies

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Reinforcement Learning
Searching for optimal policies II:

Dynamic Programming

Mario Martin
Universitat politècnica de Catalunya

Dept. LSI

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Two Methods for Finding
Optimal Policies

• Bellman equations to organize the search
for the policies in a Markovian world

• Dynamic Programming
– Policy iteration
– Value iteration

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Improvement
Suppose we have computed for a deterministic policy .

For a given state s,
would it be better to do an action ?

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Improvement Cont.

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Iteration

policy evaluation policy improvement
“greedification”

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Iteration

Choose an arbitrary policy
repeat

For each state (compute the value function)

For each state (improve the policy at each state)

:=’
until no improvement is obtained

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Iteration

• Guaranteed to improve in less iterations than
the number of states [Hooward 1960]

• Relaxation can be done in parallel and
asynchronously (not complete sweeps at each
iteration)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Value Iteration Cont.

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Value Iteration

• Proved by Singh and Yee:

• Error is decreased by a factor of on every
iteration

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Notes About Value Iteration

• Relaxation can be done
– Asynchronously
– In parallel

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Summary
• Bellman eqs. for value functions
• Optimal policies are greedy policies
• How greedy policies can be derived form value

functions
• How a policy can be evaluated
• How to iteratively improve the policy (policy

iteration)
• How to calculate the value function for the optimal

policy without explicit representation of policy (value
iteration)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Method for Leaning Behaviors

I- Learn a world model

II- Find the optimal policy with
previous algorithms

III- Execute the policy forever

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Problems
• A world model is needed (transitions and

reinforcements)
• Large amount of recourses involved before

improving the policy
• What happen when the environment is

changing?

ARE ALL THESE CONTRAINTS
NECESSARY?

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Reinforcement Learning
Searching for optimal policies III:

RL algorithms

Mario Martin
Universitat politècnica de Catalunya

Dept. LSI

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

RL algorithms

• Active learning (learning by doing)

S S S S Sa a a
r r r r

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

RL algorithms

• Take advantage of asynchronous updates
(limit case: update only one state - the current state)

• Experiences allow a sampling of the model
(transition probabilities are indirectly estimated while
interacting with the environment)

• Advantages
– No model of the world needed
– Good policies before learning the optimal policy
– Reacts to changes in the environment

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Dynamic Programming backup

T

T T TT

TT

T

TT

T

T

T

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

T

T T TT

TT

T

TT

T

T

T

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

• Assume

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

After infinite experiments,

That is,

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3
: : :

The same that DP algorithms calculated but now without knowing transition
probabilities!

®(s) =
1

t imes visited state+ 1

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-function backup

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-function backup

Relation between V and Q values in Greedy policies:

By the way… This is called TDerror
Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-function backup

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

RL algorithms

• TD(0) algorithms
– Q-learning
– Sarsa

• TD(1) algorithms
– Monte Carlo

• General TD-learning
– n-steps TD estimators
– TD()

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-learning

• Based on Q-backups

st + 1

Q-values for st + 1 and each act ion

Q-value for st and at

max operator

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-Learning: Off-Policy TD (first version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

a:=(s)
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy (or repeat forever)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Need for Exploratory actions
• Problems:

– Asynchronous under the assumption that all
states are visited

– But following always a policy, some states may
remain never visited

– High possibility of being stuck with a non
optimal policy in stochastic environments

• one only state and bad luck in first estimate
• to maximize the action in one state we must test

periodically the values of the neighbor states

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Exploration

• It is necessary not to follow always the policy
– Exploration (taking a non policy action)

• But it is necessary to follow the policy for
estimating the values (policy iteration)
– Exploitation (taking a policy action)

• We must search for a balance between them

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Exploration

• -greedy action-selection
– Choose a greedy action with probability (1-) and

a random action with probability

• Softmax action-selection

T is a parameter called
Boltzman Temperature that
usually is decreased while the
learning life of the agent

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Initial Values

• Other ways to avoid exploration:
– Initializing Q values optimistically, we force an

exploration procedure that (for static
environments) allow us to eliminate the explicit
exploration procedure

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-Learning: Off-Policy TD (right version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

Select action a depending on the action-selection procedure,
the Q values (or the policy), and the current state s
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy (or repeat forever)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Learning rate parameter:

• is used for weighting different experiences
• In stationary environments:

In this case, the Q and V values are the exact
arithmetic average of the experiences

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Learning rate parameter:

• In non-stationary environments:
 takes a constant value (usually on the range 0,3..0,5)

• Constant values decay relative influence of past
experiences

• As higher the value, higher the learning (more
influence of recent experiences in the
estimations)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Convergence for Q-learning

•
• Conditions

– All states are infinitely visited and each action is
executed an infinite number of times

–

• Watkins & Dayan 1992
– At each “Q-interval” the maximum error is

decreased in a factor (similar to Value Iteration)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

On-line versus Off-line

• On-line learning: Values learned are for the
current policy used

• Off-line learning: Values learned for one
policy while following another one.

• Q-learning is Off-line learning: Values are
learned for the greedy policy, not for the -
greedy policy used while learning

• Sarsa is On-line learning

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Sarsa backup: on-policy learning

• Based on Q-backups

• But now we estimate Q values for the current
behavior executed:

_ _ _ _ _

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Sarsa: On-line Q-learning
Initialize Q(s,a) and (s) arbitrarily
Set initial state s
Select action a depending on the action-selection procedure, the Q values

(or the policy) and the current state s
repeat

Take action a, get reinforcement r and perceive new state s’
a’:= Select action depending on the action-selection procedure,

the Q values (or the policy) and the state s’

r:=r’; s:=s’; a:=a’
until convergence in policy

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Differences between Q-learning
and Sarsa

GS

Q-learning
(optimal path)

Sarsa
(safe path)

r= -1 (after each step)
r= -100 (if she falls in the white area)
deterministic actions but -greedy selection procedure

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Differences between Q-learning and
Sarsa

greedy= 0.1

