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How to find optimal policies

Bellman equations for value functions
Evaluation of policies
Properties of the optimal policy

Methods:

— Dynamic Programming

* Policy Iteration

 Value Iteration

» +[Asynchronous Versions]
— RL algorithms

* Q-learning

» Sarsa

» TD-learning
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Value Functions

» The value of a state is the expected return starting
from that state; depends on the agent’s policy:

State - value function for policy 7 :
VJT(S)=E,7 {Rx |Sr =S}= E;r{z- r;+£+l sz‘g}
k=0

» The value of taking an action in a state under policy &t
Is the expected return starting from that state, taking

that action, and thereafter following = :
Action - value function for policy 7:

Q" (s,a)=E, {R,| S, = —u}— {Z}/ Tvar | 5, = 5.4, }
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Bellman Equation for a Policy 7z

The basic idea:
R _’: I+/y f+7+}/2’:+3+y3“:+4'“

+;V( i+2 }/’:+3+}/2}:+4“.)

=rH+,VR

1+1

So: V*(s)= E.{R]s, = s}
E {F+]+}/V (r+i] =S}
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Bellman Equation for a Policy =

V*(s)=E,{R]s, = s}
= Eﬂ {‘Pl.r+] + }/VT (Sr+l 151 = S}

Or, without the expectation operator:
Vi(s)=Y P [R_;:f“ - ;'/V"T(S')} (generic)

V7 (s) =3 T(s,2(s).s")| r(5,72(5).5") + 7V (s)]
V7 (s)= 2T (5,7(s),8W(s,7(5),5") + 2T (5, 72(),8) 777 (5]

V7(s)=r(s,m(s),s")+yV"(s") (deterministic environment)
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Bellman Equation for a Policy 7z

» When we are using estimations of the values,
we call TD error to

I'Derror(s)=V"(s)— Z I'(s,7(s),s") [r(s, 7(s),s)+yV” (.s")]
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Value Functions

» The value of a state is the expected return starting
from that state; depends on the agent’s policy:

State - value function for policy 7 :
VJT(‘S‘)= Eﬁ {Rx | S, =S}= Eﬂ{zy*";MH 8 = S}
k=0

» The value of taking an action in a state under policy &t
Is the expected return starting from that state, taking
that action, and thereafter following r :

Action - value function for policy 7:

Q" (s,a)=E, {R,| s, =8,a, =a}= Eﬁ{i}/ﬂ;”_, | s, =5,d, =a}
k=0
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Q-value Bellman Equation

The basic idea: Follow policy

A
I )

2 3.,
Rr =Hha + Vi + Y ’:4-3 + YV ha”

2
=10+ 7 (e 71+ 7 )

=r,+7R

Action a

1+1

So:  |0%(s,a)=E,{R|s, = s.a, = al
= E;r {'}:+I +}/VE(S:+] ]SF - S,ﬂ; - ﬂ'}

Mario Martin — Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS




Q-value Bellman Equation

O (s,a)=E, {Rf|s, — Gi(7 = a}
= E;r {'};+I +}/Vﬂ(‘s':+l 15} = SBG: =da

Or, without the expectation operator:
0" (s,a)= Z P [R_::_. + yV”(s')J (generic)

s

Q7 (s,a)= Z T(S,a,s')[r(s,a, s')+ )/V"T(s’)J
07 (s,a) = ZT(S,G,S')F(S,G,S') + ZT(s,a,s')[}’V”(s')]
Q" (s,a)=r(s,a,s")+yV7"(s") (deterministic environment)
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Q-value Bellman Equation

» When we are using estimations of the values,

we call TD error to

TDerror(s,a) =07 (s,a)— Z T(s, a,s')[r(s,a,s') - ;VV’T(S’)]
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Calculation of value functions for a given policy
(policy evaluation)

Policy Evaluation: for a given policy 7, compute the
state-value function

Recall: State - value function for policy 7 :
Vo(s)=E,{R |s =s}=E, {Z?k”nm |s, = .s}
k=0

First way: Solve a set of linear equations

Bellman equation for /'™ :
Vi(s)=Y.m(s,a) Y Pa[ R + V" (s)]
— a system of ‘S‘ simultaneous linear equations
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Iterative Method for policy evaluation

Second way: iterative method (convergence proved)
Vo>V, >V, -V  —>V

a “sweep”
A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:
Vea(8) €= D 7(5,0) 3 P [ REy + 7Vi(s)
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Iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize V' (s) =0, for all s € S
Repeat
A —0
For each s € S:
v V(s)
V(c"') — Xam(s,a) Xy Poy [’R’gs’ + ,},V(S’)]
A — max(A, |[v —V(s)])
until A < 6 (a small positive number)
Output V=V~
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Policy space: Ordering and properties
of the optimal policy

» \We define a partial ordering of policies “,” in the
following way:

7, iff V7(s),V7(s) 8s

e The optimal policy (7°)
— Could be not unique  [but all share same value function V*=V#*]
— Some are deterministic
[in no deterministic policies #(s,a) means prob. of taking action a in state s]
— All share the same value function
— Optimal policies are the greedy policies with rspect to v or Q*
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Greedy policies

» A policy is greedy with respect to a value
function it is optimal according to that value
function for a one-step problem

Initial state

\\ Different actions
@ ﬂ Possible next states with

their V(s) value
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Obtaining Greedy Policies from
Values

 Policy derived from values

7 (s;) = arg max [Z I'(s;a,s;) (F(S.f )+ J"V(Sf))J

ald

7(s;)=argmax Q(s;,a)

aeA

 Relation between V and Q values in Greedy
policies
Vi (s,) = max Q' (s,,a)
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Reinforcement Learning

Searching for optimal policies II:
Dynamic Programming

Mario Martin
Universitat politécnica de Catalunya
Dept. LSI
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Two Methods for Finding
Optimal Policies

» Bellman equations to organize the search
for the policies in a Markovian world
« Dynamic Programming

— Policy iteration
— Value iteration
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Policy Improvement

Suppose we have computed V'” for a deterministic policy 7.

For a given state s,
would it be better to do an action a # 7 (s)?

The value of doing a in state s is:
QJT(S-’G) = E.T {}:H + ;VVJT(S:H)

= Y P Re 417" (5))]

s, =8,a, =a}

It is better to switch to action ¢ for state s if and only if
Q(s,a) > V7(s)
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Policy Improvement Cont.

Do this for all states to get a new policy 7' that is

greedy with respect to V'™ :
7'(s)=argmax Q" (s,a)
=argmax » P [Rf’ + }/V’T(S!)}

Then V™ >V~
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Policy Iteration

n, >V >, SV > SV o>

ST

policy evaluation policy improvement
“greedification”
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Policy Iteration

Choose an arbitrary policy &
repeat
For each state (compute the value function)

P7(s)i= X (r(s)+ 777 (5) T(s,7(s), )

s'e§

For each state (improve the policy at each state)

7'(s):=arg max [Z(r(s") + }/V"’(S')) I'(s,a,s ')}

acd s'e§

T.=n’
until no improvement is obtained
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Policy lteration

» Guaranteed to improve in less iterations than
the number of states [Hooward 1960]

» Relaxation can be done in parallel and
asynchronously (not complete sweeps at each
iteration)
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Value lteration

Recall the full policy-evaluation backup:
V.. (s) < Z;r(s,a)z P [Rfi + 7V, (S')]
Here is the full value-iteration backup:

Vo (s) € max Y PA[ RY + 7V, (s ]
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Value lteration Cont.

Initialize V arbitrarily, e.g.,V(s) =0, for all s € ST

Repeat
A—0
For each s € &:
v« V(s)
V(s) — max, Sy P2 [RE, + 1V (s)]
A — max(A, [v — V(s)|)

until A < ¢ (a small positive number)

Output a deterministic policy, 7, such that
7(s) = arg max, > o P% {R"' + '}fV(S")]

ss’ ss’
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Value lteration

* Proved by Singh and Yee:

sup sup

 Error is decreased by a factor of y on every
iteration
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Notes About Value lteration

 Relaxation can be done
— Asynchronously
— In parallel
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Summary

» Bellman egs. for value functions

» Optimal policies are greedy policies

» How greedy policies can be derived form value
functions

» How a policy can be evaluated

» How to iteratively improve the policy (policy
iteration)

» How to calculate the value function for the optimal
policy without explicit representation of policy (value
iteration)
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Method for Leaning Behaviors

I- Learn a world model

I1- Find the optimal policy with
previous algorithms

[11- Execute the policy forever
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Problems

» A world model is needed (transitions and
reinforcements)

 Large amount of recourses involved before
improving the policy

« What happen when the environment is
changing?

ARE ALL THESE CONTRAINTS
NECESSARY?
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Reinforcement Learning

Searching for optimal policies IlI:
RL algorithms

Mario Martin
Universitat politécnica de Catalunya
Dept. LSI
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RL algorithms

 Active learning (learning by doing)
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RL algorithms

» Take advantage of asynchronous updates
(limit case: update only one state - the current state)

» Experiences allow a sampling of the model
(transition probabilities are indirectly estimated while
interacting with the environment)

» Advantages

— No model of the world needed
— Good policies before learning the optimal policy
— Reacts to changes in the environment

Mario Martin — Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Dynamic Programming backup

V(s)<«E_ {,+]+yV(s)\s =5 Jr}

méé

I3
i \ l / \ 1 !
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Temporal Difference backup

V(s,) < V(s,)+ 0:[ Loty Vs, ) — V(sr)]
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Temporal Difference backup

1
®&s) = .. -

Vis)<V(s)+ a[ v, +}/V(S{+1)—V(SI)]

S, First experiment s, ! s,

1/ Q
2/3@
V(s)«<0+alr+yV(s,)-0]
V(s,) <—0+1[13 +yV(s;) —0] =r+yV(s,)
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Temporal Difference backup

1
. isited 41

V(S: ) <« V(S!) + a[f;ﬂ + y V(S:+I ) - V(Slr )] @XS) )

S S,

1
1/
a O S
3
23O

V(s)n+yV(s)+aln+yV(s,)-r+rV(s;)]

First experiment s, ! s

Second experiment s, ! s,

V(5) 7V )[RV () =+ 7V (s)
(s) e lm V) narvs)]
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Temporal Difference backup

1

®(s) = . .. N
V(s) <V (s)+alr, +rV(s,.)-V(s,)| timesvisited state + 1
S, S, First experiment s, ! s
, Y O Second experiment s, ! s,
S, Thrid experiment s, ! s,

23O
V(s) <« %[": +rV(s,)] +%[r3 +yV(s)]+a|n+ yV(ss}—{%[rz +rV(s)]+ %[; +y V(s;)]J
V) S+ VGl 2Vl 3+ 7V = (S vl 2+ 7760

V() 3 [n+ 7V D]+ S+ 7V 6]+ 3[n + 7V ) 1= <[n + 7V ()]~ < [n + 7V ()]

Vi(s)« (% - %J[! +y V(sz)] - (% - %— é][:‘i +y 15"(5'3)] = [%J[; +¥V(s, )] - [%J[g +¥ V(.s's}]
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Temporal Difference backup

1

®9) = 4 imes visited sates 1
V(s) <V (s)+alr, +yV(s,.)-V(s,)
S, S, First experiment s, ! s
. 13O Second experiment s, ! s,
S, Thrid experiment s, ! s,

23O

After infinite experiments,

V(s,) < T(s,a,5,)[rn+7V(s)]+T(s,a,s)[r+rV(s,)]
That is,

V(s) < E {r., +7V(s)|s, =s,a}

The same that DP algorithms calculated but now without knowing transition
probabilities!
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Q-function backup

V(s)<V(s)+alr, +rV(s.,)-V(s)]
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Q-function backup

Q(Svar) <~ Q(Srva;) +a [?’;H + y V(S.f+]) - Q(S.,,a',)]

Relation between V and Q values in Greedy policies:

Vi (s,) = max Q" (s,.a)

—

By the way... This is called TDerror
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Q-function backup

Q(Svar) <~ Q(Srva;) +a [?’;H + y V(S.f+]) - Q(S.,,a',)]

O(s,.,)  O(s,.a) + @ 1, + y max (s, a) | - a O(s,.a,)
0(s5,,a,)  0(s,,) = 3 Q(5,,4) + @ 1, +7 max O(s,.,.0) |
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RL algorithms

e TD(0) algorithms
— Q-learning
— Sarsa

» TD(1) algorithms
— Monte Carlo

» General TD-learning
— n-steps TD estimators
- TD())
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Q-learning

» Based on Q-backups

Q(S,faa.f) (_Q(Sr‘)ar) + a[ﬂﬂ +}/n']f)( Q(SHI’G) _Q(Sr’a!)i|

Q-value for S, and a,

P

S,

t+1
max operator - .
LA Q-values for s, , and each action
<«
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Q-Learning: Off-Policy TD (first version)

O(s,.a,) < O(s,.a,)+ a[;;_‘_, +ymax O(s,..,a)-0(s,.a )] /‘%

Initialize Q(s,a) and z(s) arbitrarily
Set agent in random initial state s
repeat
a:=n(s)
Take action a, get reinforcement r and perceive new state s’

O(s,a) « O(s,a) + af(r +ymaxQ(s',a")-0(s, a))
7(s) «—argmax Q(s,a)

S.'=S. aed

until convergence in policy (or repeat forever)

Mario Martin — Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Need for Exploratory actions

* Problems:

— Asynchronous under the assumption that all
states are visited

— But following always a policy, some states may
remain never visited

— High possibility of being stuck with a non
optimal policy in stochastic environments
« one only state and bad luck in first estimate

* to maximize the action in one state we must test
periodically the values of the neighbor states

Mario Martin — Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Exploration

o It is necessary not to follow always the policy
— Exploration (taking a non policy action)

« But it is necessary to follow the policy for
estimating the values (policy iteration)

— Exploitation (taking a policy action)

» We must search for a balance between them
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Exploration

» ¢g-greedy action-selection

— Choose a greedy action with probability (1-¢) and
a random action with probability ¢

o Softmax action-selection

O(s,a)/T T is a parameter called
P(a)= ——— Boltzman Temperature that
J(a) Z 2T usually is decreased while the

Yol learning life of the agent
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Initial VValues

 Other ways to avoid exploration:

— Initializing Q values optimistically, we force an
exploration procedure that (for static
environments) allow us to eliminate the explicit
exploration procedure
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Q-Learning: Off-Policy TD (right version)

O(s,,a,) «O(s,,a,)+ a[;;ﬂ +ymax O(s,..,a)-0(s,.a )] /‘%

Initialize Q(s,a) and 7(s) arbitrarily

Set agent in random initial state s

repeat
Select action a depending on the action-selection procedure,
the Q values (or the policy), and the current state s

Take action a, get reinforcement r and perceive new state s’
O(s,a)« O(s,a) + af(r +ymaxQ(s',a")-0(s, u))

m(s) «—argmax Q(s,a)

S::S.‘ aed

until convergence in policy (or repeat forever)
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Learning rate parameter: o

» « Iis used for weighting different experiences

 |In stationary environments:

|
number of visits to state s

a(s) =

In this case, the Q and V values are the exact
arithmetic average of the experiences
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|_earning rate parameter: o

* In non-stationary environments:
o takes a constant value (usually on the range 0,3..0,5)
» Constant values decay relative influence of past
experiences

 As higher the value, higher the learning (more
influence of recent experiences in the
estimations)
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Convergence for O-learning

o limQO(s,a)=0 (s,a)
e Conditions

— All states are infinitely visited and each action is
executed an infinite number of times

—Za = o0 but ZO: < 00

o Watkins & Dayan 1992

— At each “Q-interval” the maximum error is
decreased in a 'y factor (similar to Value Iteration)
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On-line versus Off-line

On-line learning: Values learned are for the
current policy used

Off-line learning: Values learned for one
policy while following another one.

Q-learning is Off-line learning: Values are
learned for the greedy policy, not for the ¢-
greedy policy used while learning

Sarsa is On-line learning
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Sarsa backup: on-policy learning

» Based on Q-backups
0(s,,) < O(s,a)+ @] 1, +7max0(s,,0,,)~0(5,,) |

e But now we estimate Q values for the current
behavior executed:

@ . "r+1® . ‘"r+2® — -« -
St 4y \—/ Ste1 941 St Gy0

Q(S‘,,a)(—Q(S a +al:r.:+l+j/Q( f+|’ f+l) Q(Sf’af)]
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Sarsa: On-line Q-learning

Initialize Q(s,a) and 7(s) arbitrarily

Set initial state s

Select action a depending on the action-selection procedure, the Q values

(or the policy) and the current state s

repeat
Take action a, get reinforcement r and perceive new state s’
a’:= Select action depending on the action-selection procedure,

the Q values (or the policy) and the state s’

O(s,a):= O(s,a) + a(r+ yO(s',a'")— Q(s,a))
m(s)=argmaxJ(s,a)
aeAd
r:=r’;s:=s’; a:=a’
until convergence in policy
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Differences between Q-learning
and Sarsa

Sarsa
(safe path)

Q-learning
(optimal path)

!
s G

<

r=-1 (after each step)
r=-100 (if she falls in the white area)
deterministic actions but g-greedy selection procedure
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Differences between Q-learning and
Sarsa

g—greedy, £ =0.1

Sarsa

=257

Reward _s0-

per Q-learning
epsiode
75
-100 T T T T 1
0 100 200 300 400 500
Episodes
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