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Searching for optimal policies I: 

Bellman equations and optimal policies
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How to find optimal policies
• Bellman equations for value functions
• Evaluation of policies
• Properties of the optimal policy
• Methods:

– Dynamic Programming
• Policy Iteration
• Value Iteration
• +[Asynchronous Versions]

– RL algorithms
• Q-learning
• Sarsa
• TD-learning
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• The value of a state is the expected return starting 
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy 
is the expected return starting from that state, taking 
that action, and thereafter following  :

Value Functions
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Bellman Equation for a Policy 
The basic idea: 

So: 
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Bellman Equation for a Policy 

Or, without the expectation operator: 

(generic)

(deterministic environment)
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Bellman Equation for a Policy 

• When we are using estimations of the values, 
we call TD error to
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• The value of a state is the expected return starting 
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy 
is the expected return starting from that state, taking 
that action, and thereafter following  :

Value Functions
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Q-value Bellman Equation

The basic idea: 

So: 

Action a

Follow policy
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Q-value Bellman Equation

Or, without the expectation operator: 

(generic)

(deterministic environment)
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Q-value Bellman Equation

• When we are using estimations of the values, 
we call TD error to
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Calculation of value functions for a given policy 
(policy evaluation)

Policy Evaluation: for a given policy , compute the 
state-value function 

Recall:

First way: Solve a set of linear equations
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Iterative Method for policy evaluation 

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

Second way: iterative method          (convergence proved)
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Iterative Policy Evaluation
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Policy space: Ordering and properties 
of the optimal policy

• We define a partial ordering of policies “¸” in the 
following way:

’ ¸  iff   V’(s) ¸ V (s)   8 s  

• The optimal policy    ( * )
– Could be not unique     [but all share same value function V=V ]
– Some are deterministic     

[in no deterministic policies (s,a) means  prob. of taking action a in state s]
– All share the same value function
– Optimal policies are the greedy policies with rspect to V or Q
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Greedy policies

• A policy is greedy with respect to a value 
function it is optimal according to that value 
function for a one-step problem

10 -5 18 7

Initial state

Different actions

Possible next states with 
their V(s) value
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Obtaining Greedy Policies from 
Values

• Policy derived from values

• Relation between V and Q values in Greedy 
policies
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Reinforcement Learning
Searching for optimal policies II: 

Dynamic Programming
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Two Methods for Finding 
Optimal Policies

• Bellman equations to organize the search 
for the policies in a Markovian world 

• Dynamic Programming
– Policy iteration
– Value iteration
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Policy Improvement
Suppose we have computed       for a deterministic policy .

For a given state s, 
would it be better to do an action                 ? 
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Policy Improvement Cont.
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Policy Iteration

policy evaluation policy improvement
“greedification”

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Policy Iteration

Choose an arbitrary policy 
repeat

For each state (compute the value function) 

For each state (improve the policy at each state)

:=’
until no improvement is obtained
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Policy Iteration

• Guaranteed to improve in less iterations than 
the number of states [Hooward 1960]

• Relaxation can be done in parallel and 
asynchronously (not complete sweeps at each 
iteration)
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Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:
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Value Iteration Cont.
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Value Iteration

• Proved by Singh and Yee:

• Error is decreased by a factor of on every 
iteration
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Notes About Value Iteration

• Relaxation can be done
– Asynchronously
– In parallel
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Summary
• Bellman eqs. for value functions
• Optimal policies are greedy policies
• How greedy policies can be derived form value 

functions
• How a policy can be evaluated
• How to iteratively improve the policy (policy 

iteration)
• How to calculate the value function for the optimal 

policy without explicit representation of policy (value 
iteration)
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Method for Leaning Behaviors

I- Learn a world model

II- Find the optimal policy with 
previous algorithms

III- Execute the policy forever

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Problems
• A world model is needed (transitions and 

reinforcements)
• Large amount of recourses involved before 

improving the policy
• What happen when the environment is 

changing?

ARE ALL  THESE CONTRAINTS  
NECESSARY?
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Reinforcement Learning
Searching for optimal policies III: 

RL algorithms
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RL algorithms

• Active learning (learning by doing)

S S S S Sa a a
r r r r
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RL algorithms

• Take advantage of asynchronous updates 
(limit case: update only one state - the current state)

• Experiences allow a sampling of the model 
(transition probabilities are indirectly estimated while 
interacting with the environment)

• Advantages
– No model of the world needed
– Good policies before learning the optimal policy
– Reacts to changes in the environment
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Dynamic Programming backup
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Temporal Difference backup

T
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Temporal Difference backup

• Assume

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3

®(s) =
1

# t imes visited state+ 1
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Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

# t imes visited state+ 1
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Temporal Difference backup

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

# t imes visited state+ 1
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Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

After infinite experiments,

That is,

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3
: : :

The same that DP algorithms calculated but now without knowing transition 
probabilities!

®(s) =
1

# t imes visited state+ 1
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Q-function backup



Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Q-function backup

Relation between V and Q values in Greedy policies:

By the way… This is called TDerror
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Q-function backup
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RL algorithms

• TD(0) algorithms
– Q-learning
– Sarsa

• TD(1) algorithms
– Monte Carlo

• General TD-learning
– n-steps TD estimators
– TD()
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Q-learning

• Based on Q-backups

st + 1

Q-values for st + 1 and each act ion

Q-value for st and at

max operator
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Q-Learning: Off-Policy TD (first version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

a:=(s)
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy        (or repeat forever)
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Need for Exploratory actions
• Problems:

– Asynchronous under the assumption that all 
states are visited

– But following always a policy, some states may 
remain never visited

– High possibility of being stuck with a non 
optimal policy in stochastic environments

• one only state and bad luck in first estimate
• to maximize the action in one state we must test 

periodically the values of the neighbor states
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Exploration

• It is necessary not to follow always the policy
– Exploration (taking a non policy action)

• But it is necessary to follow the policy for 
estimating the values (policy iteration)
– Exploitation (taking a policy action)

• We must search for a balance between them
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Exploration

• -greedy action-selection
– Choose a greedy action with probability (1-) and 

a random action with probability 

• Softmax action-selection

T is a parameter called 
Boltzman Temperature that
usually is decreased while the 
learning life of the agent
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Initial Values

• Other ways to avoid exploration:
– Initializing Q values optimistically, we force an 

exploration procedure that (for static 
environments) allow us to eliminate the explicit 
exploration procedure
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Q-Learning: Off-Policy TD (right version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

Select action a depending on the action-selection procedure, 
the Q values (or the policy), and the current state s
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy        (or repeat forever)
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Learning rate parameter: 

• is used for weighting different experiences
• In stationary environments:

In this case, the Q and V values are the exact 
arithmetic average of the experiences
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Learning rate parameter: 

• In non-stationary environments:
 takes a constant value (usually on the range 0,3..0,5)

• Constant values decay relative influence of past 
experiences

• As higher the value, higher the learning (more 
influence of recent experiences in the 
estimations)
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Convergence for Q-learning

•
• Conditions

– All states are infinitely visited and each action is 
executed an infinite number of times

–

• Watkins & Dayan 1992 
– At each “Q-interval” the maximum error is 

decreased in a  factor (similar to Value Iteration)

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

On-line versus Off-line

• On-line learning: Values learned are for the 
current policy used

• Off-line learning: Values learned for one 
policy while following another one.

• Q-learning is Off-line learning: Values are 
learned for the greedy policy, not for the -
greedy policy used while learning 

• Sarsa is On-line learning 
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Sarsa backup: on-policy learning

• Based on Q-backups

• But now we estimate Q values for the current 
behavior executed:

_   _                                  _               _     _
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Sarsa: On-line Q-learning
Initialize Q(s,a) and (s) arbitrarily
Set initial state s
Select action a depending on the action-selection procedure, the Q values  

(or the policy) and the current state s
repeat

Take action a, get reinforcement r and perceive new state s’
a’:= Select action depending on the action-selection procedure, 

the Q values (or the policy) and the state s’

r:=r’; s:=s’; a:=a’
until convergence in policy
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Differences between Q-learning 
and Sarsa

GS

Q-learning
(optimal path)

Sarsa
(safe path)

r= -1   (after each step)
r= -100   (if she falls in the white area)
deterministic actions but -greedy selection procedure 

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Differences between Q-learning and 
Sarsa

greedy= 0.1


