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Searching for optimal policies I: 

Bellman equations and optimal policies
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How to find optimal policies
• Bellman equations for value functions
• Evaluation of policies
• Properties of the optimal policy
• Methods:

– Dynamic Programming
• Policy Iteration
• Value Iteration
• +[Asynchronous Versions]

– RL algorithms
• Q-learning
• Sarsa
• TD-learning
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• The value of a state is the expected return starting 
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy 
is the expected return starting from that state, taking 
that action, and thereafter following  :

Value Functions
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Bellman Equation for a Policy 
The basic idea: 

So: 
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Bellman Equation for a Policy 

Or, without the expectation operator: 

(generic)

(deterministic environment)
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Bellman Equation for a Policy 

• When we are using estimations of the values, 
we call TD error to
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• The value of a state is the expected return starting 
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy 
is the expected return starting from that state, taking 
that action, and thereafter following  :

Value Functions
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Q-value Bellman Equation

The basic idea: 

So: 

Action a

Follow policy
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Q-value Bellman Equation

Or, without the expectation operator: 

(generic)

(deterministic environment)
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Q-value Bellman Equation

• When we are using estimations of the values, 
we call TD error to
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Calculation of value functions for a given policy 
(policy evaluation)

Policy Evaluation: for a given policy , compute the 
state-value function 

Recall:

First way: Solve a set of linear equations
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Iterative Method for policy evaluation 

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

Second way: iterative method          (convergence proved)
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Iterative Policy Evaluation
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Policy space: Ordering and properties 
of the optimal policy

• We define a partial ordering of policies “¸” in the 
following way:

’ ¸  iff   V’(s) ¸ V (s)   8 s  

• The optimal policy    ( * )
– Could be not unique     [but all share same value function V=V ]
– Some are deterministic     

[in no deterministic policies (s,a) means  prob. of taking action a in state s]
– All share the same value function
– Optimal policies are the greedy policies with rspect to V or Q
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Greedy policies

• A policy is greedy with respect to a value 
function it is optimal according to that value 
function for a one-step problem

10 -5 18 7

Initial state

Different actions

Possible next states with 
their V(s) value
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Obtaining Greedy Policies from 
Values

• Policy derived from values

• Relation between V and Q values in Greedy 
policies
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Reinforcement Learning
Searching for optimal policies II: 

Dynamic Programming
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Two Methods for Finding 
Optimal Policies

• Bellman equations to organize the search 
for the policies in a Markovian world 

• Dynamic Programming
– Policy iteration
– Value iteration
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Policy Improvement
Suppose we have computed       for a deterministic policy .

For a given state s, 
would it be better to do an action                 ? 
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Policy Improvement Cont.
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Policy Iteration

policy evaluation policy improvement
“greedification”
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Policy Iteration

Choose an arbitrary policy 
repeat

For each state (compute the value function) 

For each state (improve the policy at each state)

:=’
until no improvement is obtained
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Policy Iteration

• Guaranteed to improve in less iterations than 
the number of states [Hooward 1960]

• Relaxation can be done in parallel and 
asynchronously (not complete sweeps at each 
iteration)
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Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:
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Value Iteration Cont.
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Value Iteration

• Proved by Singh and Yee:

• Error is decreased by a factor of on every 
iteration

Mario Martin – Autumn 2011 LEARNING IN AGENTS AND MULTIAGENTS SYSTEMS

Notes About Value Iteration

• Relaxation can be done
– Asynchronously
– In parallel
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Summary
• Bellman eqs. for value functions
• Optimal policies are greedy policies
• How greedy policies can be derived form value 

functions
• How a policy can be evaluated
• How to iteratively improve the policy (policy 

iteration)
• How to calculate the value function for the optimal 

policy without explicit representation of policy (value 
iteration)
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Method for Leaning Behaviors

I- Learn a world model

II- Find the optimal policy with 
previous algorithms

III- Execute the policy forever
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Problems
• A world model is needed (transitions and 

reinforcements)
• Large amount of recourses involved before 

improving the policy
• What happen when the environment is 

changing?

ARE ALL  THESE CONTRAINTS  
NECESSARY?
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Reinforcement Learning
Searching for optimal policies III: 

RL algorithms
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RL algorithms

• Active learning (learning by doing)

S S S S Sa a a
r r r r
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RL algorithms

• Take advantage of asynchronous updates 
(limit case: update only one state - the current state)

• Experiences allow a sampling of the model 
(transition probabilities are indirectly estimated while 
interacting with the environment)

• Advantages
– No model of the world needed
– Good policies before learning the optimal policy
– Reacts to changes in the environment
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Dynamic Programming backup
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Temporal Difference backup
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Temporal Difference backup

• Assume

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3

®(s) =
1

# t imes visited state+ 1
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Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

# t imes visited state+ 1
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Temporal Difference backup

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

®(s) =
1

# t imes visited state+ 1
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Temporal Difference backup

a
S1

S2

S3

1/3

2/3

First experiment s1 ! s3
Second experiment s1 ! s2

After infinite experiments,

That is,

First experiment s1 ! s3
Second experiment s1 ! s2
Thrid experiment s1 ! s3
: : :

The same that DP algorithms calculated but now without knowing transition 
probabilities!

®(s) =
1

# t imes visited state+ 1
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Q-function backup
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Q-function backup

Relation between V and Q values in Greedy policies:

By the way… This is called TDerror
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Q-function backup
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RL algorithms

• TD(0) algorithms
– Q-learning
– Sarsa

• TD(1) algorithms
– Monte Carlo

• General TD-learning
– n-steps TD estimators
– TD()
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Q-learning

• Based on Q-backups

st + 1

Q-values for st + 1 and each act ion

Q-value for st and at

max operator
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Q-Learning: Off-Policy TD (first version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

a:=(s)
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy        (or repeat forever)
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Need for Exploratory actions
• Problems:

– Asynchronous under the assumption that all 
states are visited

– But following always a policy, some states may 
remain never visited

– High possibility of being stuck with a non 
optimal policy in stochastic environments

• one only state and bad luck in first estimate
• to maximize the action in one state we must test 

periodically the values of the neighbor states
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Exploration

• It is necessary not to follow always the policy
– Exploration (taking a non policy action)

• But it is necessary to follow the policy for 
estimating the values (policy iteration)
– Exploitation (taking a policy action)

• We must search for a balance between them
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Exploration

• -greedy action-selection
– Choose a greedy action with probability (1-) and 

a random action with probability 

• Softmax action-selection

T is a parameter called 
Boltzman Temperature that
usually is decreased while the 
learning life of the agent
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Initial Values

• Other ways to avoid exploration:
– Initializing Q values optimistically, we force an 

exploration procedure that (for static 
environments) allow us to eliminate the explicit 
exploration procedure
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Q-Learning: Off-Policy TD (right version)

Initialize Q(s,a) and (s) arbitrarily
Set agent in random initial state s
repeat

Select action a depending on the action-selection procedure, 
the Q values (or the policy), and the current state s
Take action a, get reinforcement r and perceive new state s’

s:=s’
until convergence in policy        (or repeat forever)
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Learning rate parameter: 

• is used for weighting different experiences
• In stationary environments:

In this case, the Q and V values are the exact 
arithmetic average of the experiences
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Learning rate parameter: 

• In non-stationary environments:
 takes a constant value (usually on the range 0,3..0,5)

• Constant values decay relative influence of past 
experiences

• As higher the value, higher the learning (more 
influence of recent experiences in the 
estimations)
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Convergence for Q-learning

•
• Conditions

– All states are infinitely visited and each action is 
executed an infinite number of times

–

• Watkins & Dayan 1992 
– At each “Q-interval” the maximum error is 

decreased in a  factor (similar to Value Iteration)
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On-line versus Off-line

• On-line learning: Values learned are for the 
current policy used

• Off-line learning: Values learned for one 
policy while following another one.

• Q-learning is Off-line learning: Values are 
learned for the greedy policy, not for the -
greedy policy used while learning 

• Sarsa is On-line learning 
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Sarsa backup: on-policy learning

• Based on Q-backups

• But now we estimate Q values for the current 
behavior executed:

_   _                                  _               _     _
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Sarsa: On-line Q-learning
Initialize Q(s,a) and (s) arbitrarily
Set initial state s
Select action a depending on the action-selection procedure, the Q values  

(or the policy) and the current state s
repeat

Take action a, get reinforcement r and perceive new state s’
a’:= Select action depending on the action-selection procedure, 

the Q values (or the policy) and the state s’

r:=r’; s:=s’; a:=a’
until convergence in policy
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Differences between Q-learning 
and Sarsa

GS

Q-learning
(optimal path)

Sarsa
(safe path)

r= -1   (after each step)
r= -100   (if she falls in the white area)
deterministic actions but -greedy selection procedure 
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Differences between Q-learning and 
Sarsa

greedy= 0.1


