

Max-Flow and Min-Cut

Two important algorithmic problems, which yield a beautiful
duality

Myriad of non-trivial applications, it plays an important role in the
optimization of many problems:

Network connectivity, airline schedule (extended to all means of
transportation), image segmentation, bipartite matching,
distributed computing, data mining, ------

Vvl e

PCL RGB-Only Segmentation

R &',Im

Flow Networks

Network diagraph G = (V, E) s.t. it has

> source vertex s € V

> sink vertex t € V

» edge capacities ¢ : E — Rt U {0}
Flow f: V x V — RT U {0} s.t.
Kirchoff's laws:

» Y(u,v) € E, 0 < f(u,v) < c(u,v),

» (Flow conservation) Vv € V — {s, t},

> ouev Fluv) =32 cy fv, 2)

» The value of a flow

fl=> f(s,v) =f(s,V) = F(V,1).

veVv

Value IfI=3

The Maximum flow problem

INPUT: Given a flow network (G = (V,E),s, t,c)
QUESTION: Find a flow of maximum value on G.

The value of the max-flowis 7 =4+1+2 =54 2.

Notice: Although the flow exiting s is not maximum, the flow
going into t is maximum (= max. capacity).
Therefore the total flow is maximum.

The s — t cut

Given (G = (V,E),s,t,c) as—t cutis a partitionof V=SUT
(SNT=0),withscSandteT.

The flow across the cut:

F(S) = 2ues 2ver Flu,v) = Xves 2uer Fv, u).
The capacity of the cut: ¢(S) = > ,cs > et (U, v)
capacity of cut (S, T) = sum of weights leaving S.

Notice because of the capacity constrain: 7(S) < ¢(S)

S = {s,c,d}

T={a,b,e,t}

oS, T)=(4+5+5)+(3+2)=19
£(S,T)=(2+1+5)+(0+2—1-2)=7

The s —t cut
Given (G = (V,E),s,t,c) as—t cutis a partition of S, T of V
(ie. V=SUTand SNT =0), withse SandteT.

The flow across the cut:

f(S) = ZUES ZVET f(u7 V) - ZVGT ZUES f(V, U).
The capacity of the cut: ¢(S) = ,c5> e (U, v)
Notice because of the capacity constrain: f(S) < ¢(S5)

o(S.T)=2+5+5=12
£(S,T)=2+1+5-1=7

Notation

Givenve Gandcut (S, T)andaveS, let S =5—{v}. Then

» Denote 7(S’, T) flow between S" and T (without going by v).

ie. F(S'\T)=>cs 2ower Flu,w) =3 c7 D ,cs F(w, u) with
(u,w) € E and (u,w) € E,

denote (v, T) flow v — T ie. f(v, T))
denote f(T,v) flow T = vie f(T,v)=>,7f(u,v),

)
)

v

v

v

(
denote f(S',v) flow S’ — vie. f
(

denote f(v,S’) flow v — S ie. f

v

Any s — t cut has the same flow

Theorem
Given (G,s, t,c) the flow through any s — t cut (S, T) is
f($) = If].
Proof (Induction on |S|)

» If S = {s} then f(S) =|f|.

» Assume it is true for S’ =S — {v}, i.e. f(S

Notice f(S') = f(S', T)+ f(S',v) — f(v, 5
S)

) = |fl.
). Moreover from
the flow conservation, f(S’,v) + (T, v) f(v,S)+f(v,T)

= f(v, T)—f(T,v)=f(S,v)—f(v,

» Then f(S) = (S, T)*+ f(v,T)—f(T,v), using (x)
f($) = f(S) = If] =

Residual network
Given a network (G = (V, E), s, t, c) together with a flow f on it,
the residual network, (Gr = (V/, Ef), cf) is the network with the
same vertex set and edge set:
» if c(u,v) — f(u,v) >0 then (u,v) € Ef and
cr(u,v) = c(u,v) — f(u, v) > 0 (forward edges), and
» if f(u,v) > 0 then (v,u) € Ef and ¢r(v,u) = f(u,v)
(backward edges). i.e. there are f(u, v) units of flow we can
undo, by pushing flow backward. Notice, if c(u, v) = f(u,v)
then there is only a backward edge.

> the c¢r are denoted residual capacity.

Residual network: Augmenting paths

Given G = (V,E) and a flow f on G, an augmenting path P is
any simple path in G¢ (using forward and backward edges, but
P:s~t).

Given f : s~ tin G and P in Gf define the bottleneck (P, f) to be
the minimum residual capacity of any edge in P, with respect to f.

P: dotted line

Residual network: Augmenting paths

Given G = (V,E) and a flow f on G, an augmenting path P is
any simple path in Gf.

Given f s — tin G and P in Gr define the bottleneck (P, f) to be
the minimum residual capacity of any edge in P.
Augment(P, f)
b=bottleneck (P, f)
for each (u,v) € P do
if (u,v) is forward edge in G then
Increase f(u,v) in G by b
else
Decrease f(u,v) in G by b
end if
end for
return f

Residual network: Augmenting paths

Lemma
Consider f'" =Augment(P,), then f' is a flow in G.
Proof: We have to prove that (1) Ve € E, 0 < f(e) < c(e) and
that Vv flow to v = flow out of v.
» Capacity law Forward edges (u, v) € P we increase f(u, v) by
b, as b < c¢(u,v) — f(u,v) then
f'(u,v) = f(u,v) + b < c(u,v).
Backward edges (u, v) € P we decrease f(v, u) by b, as
b < f(v,u),f'(v,u) = f(u,v) —b>0.
» Conservation law, Yv € P given edges e1, &> in P and incident
to v, it is easy to check the 4 cases based whether e, &> are
forward or backward edges. O

Max-Flow Min-Cut theorem

Theorem
For any (G, s, t, c) the value of the max flow f* is equal to the
capacity of the min (S, T)-cut (over all s — t cuts in G)

= max{|f[} = min {c(S. T)}.

Proof:

» Forany s—tcut (S, T)in G = f*(S) <¢(S, 7).

» If f*in G is a max flow then Gs« has no augmenting path
s~ t so it is disconnected.
Let Ss = {v € V|3s~ v in Gg«}, then (S5, V — {Ss}) is a
s—tcutin G+ = Vv e Ss,ue V—{5}, (v,u) is not a
residual edges, so in G *(v,u) = c(v,u), i.e.
c(Ss, V —{Ss}) = f*(Ss, V — {Ss}) in G. In particular
(Ss, V —{5s}) is a min-cut in G and = max-flow *.

Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G, s, t, c)

for all (u,v) € E let f(u,v) =0

Gr=G

while there is an s — t path in Gr do
find a simple path P in G (use DFS)
f' = Augment(f, P)
Update f to f’

Update Gr to G¢ 10 e 30
end while G P
return f f 9 0

Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G, s, t, c)

for all (u,v) € E let f(u,v) =0

Gr=G

while there is an s — t path in Gr do
find a simple path P in G (use DFS)
f' = Augment(f, P)
Update f to f’
Update Gr to Gy

end while

return f

Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G, s, t, c)

for all (u,v) € E let f(u,v) =0

Gr=G

while there is an s — t path in Gr do
find a simple path P in G (use DFS)
f' = Augment(f, P)
Update f to f’
Update Gr to Gy

end while

return f

Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G, s, t, c)

for all (u,v) € E let f(u,v) =0

Gr=G

while there is an s — t path in Gr do
find a simple path P in G (use DFS)
f' = Augment(f, P)

Update f to f’
Update Gr to Gy 10 e 15
end while G, No P
T
return f e e

Analysis of Ford Fulkerson

We are considering networks that initial flow and capacities are
integers,
Lemma (Integrality invariant)
At every iteration of the Ford-Fulkerson algorithm, the flow values
f(e) and the residual capacities in Gf are integers.
Proof: (induction)
» The statement is true before the while loop.
» Inductive Hypothesis: The statement is true after j iterations.
> iteration j + 1: As all residual capacities in Gf are integers,
then bottleneck (P, f) € Z, for the augmenting path found in

iteration j + 1. Thus the flow f’ will have integer values = so
will the capacities in the new residual graph. O

Corollary: Integrality theorem

Theorem (Integrality theorem)

There exists a max-flow f* for which every flow value f* is an
Integer.

Proof:

Since the algorithm terminates, the theorem follows from the
integrality invariant lemma.

Analysis of Ford Fulkerson

Lemma

If fis a flow in G and f' is the flow after an augmentation, then
] < |F].

Proof: Let P be the augmenting path in Gy. The first edge e € P
leaves s, and as G has no incoming edges to s, e is a forward edge.
Moreover P is simple = never returns to s. Therefore, the value of
the flow increases in edge e. O

Correctness of Ford-Fulkerson

Consequence of the Max-flow min-cut theorem.
Theorem
The flow returned by Ford-Fulkerson f* is the max-flow.
Proof:
» For any flow f and s — t cut (S, T) we have |f| < ¢(S, T).
» The flow f* is such that |f*| = ¢(S*, T*), for some s — t cut
(5%, T*) = f* is the max-flow. O

Therefore, for any (G, s, t, c) the value of the max s — t flow is
equal to the capacity of the minimum s — t cut.

Analysis of Ford Fulkerson: Running time

Lemma
Let C be the min cut capacity (=max. flow value), Ford-Fulkerson
terminates after finding at most C augmenting paths.

Proof: The value of the flow increases by > 1 after each
augmentation. O

» The number of iterations is < C. At each iteration:

We have to modify Gf, with E(Gf) < 2m, to time O(m).
Using DFS, the time to find an augmenting path P is
O(n+ m)

Total running time is O(C(n+ m)) = O(Cm)

Is that polynomic?

v

v

v

v

Running time of Ford-Fulkerson

The number of iterations of
Ford-Fulkerson could be Q(C)

As it is described Ford-Fulkerson can
alternate C times between the blue
and red paths if the figure.

C=1000000000

2000 million iteractions
in a G with 4 vertices!!

Recall a pseudopolynomial algorithm is an algorithm that is
polynomial in the unary encoding of the input.

Is there a polynomial time algorithm for the max-flow problem?

Edmonds-Karp, Dinic algorithm

J.Edmonds, R. Karp: Theoretical improvements in algorithmic
efficiency for network flow problems. Journal ACM 1972.

Y. Dinic: Algorithm for solution of a problem of maximum flow in
a network with power estimation. Doklady Ak.N. 1970

Choosing a good
augmenting path can lead
to a faster algorithm.

Use BFS to find shorter
augmenting paths in Gr.

Using BFS on Gf we can find the shortest augmenting path P in
O(m), independently of max capacity C.

Edmonds-Karp algorithm

Uses BFS to find the augmenting path at each Gf with fewer
number of edges.

Edmonds-Karp(G, s, t, ¢)
For all e = (u,v) € E let f(u,v) =0

Go=G
while there is an s ~~» t path in Gf
do

P = BFS(Gr, s, t)

" = Augment(f, P)

Update G = Gg and f = f/
end while
return f

The BFS in EK will
choose:— or —

Level graph
Given G = (V,E),s, define Lg = (V, Eg) to be its the level graph
by:
» /(v) = number of edges in shortest path s ~~ v in G,
» Lg = (V, Eg) is the subgraph of G that contains only edges
(v,w) € Est. l(w)=1{(v)+1.
Notice:
» Using BFS we can compute Lg in O(n+ m)

» Important property: P is a shortest s ~ t in G iff P is an
s~ t path in L¢.

The working of the EK algorithm

G.t”

The working of the EK algorithm

EK algorithm: Properties

Lemma
Throughout the algorithm, the length of the shortest path never
decreases.
Proof:
» Let f and f’ be the flow before and after a shortest path
augmentation
» let L and L’ be the levels graphs of Gf and Gy/.
» Only back edges added to G¢.

Lemma
After at most m shortest path augmentations, the length of P is
monotonically increasing.
Proof:
» The bottleneck edge is deleted from L after each
augmentation.
» No new edge is added to L until length of shortest path
strictly increases

Complexity of Edmonds-Karp algorithm

Using the the previous lemmas, we prove

Theorem
The EK algorithms runs in O(m?n) steps. Therefore it is a
polynomial time algorithm.

Proof:
» Need time O(m + n) to find the augmenting path using BFS.
» Need O(m) augmentations for paths of length k.

» Every augmentation path is simple = 1 < k < n = O(nm)
augmentations O

Finding a min-cut

Given (G, s, t,c) to find a min-cut:

1.

Compute the max-flow * in G.

2. Obtain Gg-.
3.
4. QOutput the cut

Find the set S = {v € V|s~> v} in Gf«.

(S,V—{S}) ={(v,u)|ve Sanduec V- {S}}in G.

The running time is the same than the algorithm to find the
max-flow.

The max-flow problems: History

v

Ford-Fulkerson (1956) O(mC), where C is max capacity.
Dinic (1970) (blocking flow) O(n?m)
Edmond-Karp (1972) (shortest augmenting path) O(nm?)

Karzanov (1974), O(n?m) Goldberg-Tarjant (1986) (push
re-label preflow + dynamic trees) O(nmlg(n?/m)) (for this
time uit uses parallel implementation)

King-Rao-Tarjan (1998) O(nmlogy,/qigp)-
J. Orlin (2013) O(nm) (clever follow up to KRT-98)

Maximum matching problem

Given an undirected graph G = (V/, E) a subset of edges M C E is
a matching if each node appears at most in one edge (a node may
not appear at all).

A perfect matching in G is a matching M such that |[M| = |V|/2

The maximum matching problem given a graph G a matching with
maximum cardinality.

7

/

Maximum matching in graphs bipartite

A graph G = (V,E) is said to be bipartite if V can be partite in L
and R, LUR =V, LN R =0, such that every e € E connects L

with R.
o
Q/g

The max matching bipartite graph problem: given a bipartite
G = (LU R, E) with 2n vertices find a maximum matching.

Max matchings = 4

Maximum matching: flow formulation

Given a bipartite graph G = (LU R, E) construct G = (V, E):
» Add vertices s and t: V = LURU {s, t}.

» Add directed edges s — L with capacity 1. Add directed
edges R — t with capacity 1.

» Direct the edges E from L to R, and give them capacity oo.
» E={s—> LJUEU{R = t}.

Maximum matching: flow formulation

Given a bipartite graph G = (LU R, E) construct G = (V, E):
» Add vertices s and t: V = LURU {s, t}.

» Add directed edges s — L with capacity 1. Add directed
edges R — t with capacity 1.

» Direct the edges E from L to R, and give them capacity oo.
» E={s—> LJUEU{R = t}.

Maximum matching: Analysis

Theorem
Max flow in G=Max bipartite matching in G.

Proof <

Given a matching M in G with k-edges,

consider the flow F that sends 1 unit along each one of the k
paths.

f is a flow and has value k.

Maximum matching: Analysis

Max flow <Max bipartite matching

>

If there is a flow f in G, |f| = k, as capacities are Z* = an
integral flow existsis.

Consider the cut C = ({s} UL, RU{t}) in G.
Let F be the set of edges in C with flow=1, then |F| = k.

Each node in L is in at most one e € F and every node in R is
in at most one head of an e € F

Therefore, exists a bipartite matching F in G with |F| < |f| O

Disjoint path problem

Given a digraph (G = (V, E),s, t), a set of paths is edge-disjoint if
their edges are disjoint (although them may go through some of
the same vertices)

The disjoint path problem given G, s, t find the max number of
edge disjoint paths s ~» t

S

Disjoint path problem

Given a digraph (G = (V, E),s, t), a set of paths is edge-disjoint if
their edges are disjoint (although them may go through some of
the same vertices)

The disjoint path problem given G, s, t find the max number of
edge disjoint paths s ~» t

i

Disjoint path problem: Max flow formulation

Assign unit capacity to every edge

Theorem

The max number of edge disjoint paths s ~» t is equal to the max
flow value

1 1 1 1
/§T<1@¢. @K%
1 1
1

—

S

Disjoint path problem: Proof of the Theorem

Number of disjoints paths < max flow
If we have k edge-disjoints paths s ~ t in G then making f(e) =1
for each e in a path, we get a flow = k

Number of disjoints paths > max flow

If max flow |f*| = k = 3 0-1 flow f* with value k

= Jk edges (s,v) s.t. f(s,v) =1, by flow conservation we can
extend to k paths s ~» t, where each edge is a path carries flow
=1 0

If we have an undirected graph, with two distinguised nodes u, v,
how would you apply the max flow formulation to solve the problem
of finding the max number of disjoint paths between u and t7?

Circulation with demands

Given a graph G = (V/, E) with capacities c in the edges, such
that each v € V is associate with a demand d(v), where

» If d(v) >0 = v isasink, v can
receive d(v) units of flow more
than it sends.

» If d(v) <0 = v is a source, v can
send d(v) units of flow more than
it receives.

> If d(v) = 0 then v is neither a
source or a sink.

» Define S to be the set of sources
and T the set of sinks.

Circulation with demands problem

Given G = (V, E) with ¢ > 0 and {d(v)},cv, define a circulation
as a function f : E = RT s.t.

1. capacity: For each
ec E£,0<f(e) <c(e),
2. conservation: For each v € V,

quv vaz d(v).

(u,v)€E (v,z)eE

Circulation with demands feasibility problem: Given G = (V, E)
with ¢ > 0 and {d(v)},cv, does it exists a feasible circulation?
Feasible circulation: a function f on G with ¢ > 0 and {d(v)},cv,
such that it satisfies (1) and (2)?

Circulation with demands problem

Notice that if f is a feasible circulation, then

dDdW)=> | D fluv)— D f(v,2)

veVv veV | (u,v)eE (v,2)€EE

edges to v edges out of v

Notice } .\ d(v) = 0, so we have,

So If there is a feasible circulation with demands {d(v)},cv, then
ZVEV d(V) =0.

Therefore as S = {v € V|d(v) > 0} and 1/3 23
T = {v € V|d(v) < 0}, we can define ot 25
D= - ZVES d(V) - ZVET d(V) 2 2

Circulation with demands: Max-flow formulation

Extend G = (V,E) to G’ = (V',E’) by
» Add new source s and sink t.
» Foreach v e S (d(v) <0) add (s, v) with capacity —d(v).
» Foreach ve T (d(v) > 0) add (v,s) with capacity d(v).

Analysis

1.- Every flow f : s~ t in G’ must be |f| < D
The capacity c({s}, V) = D = by max-flow min-cut Thm. any
max-flow f in G', |f| < D.

2.- If there is a feasible circulation f with {d(v)},cv in G, then we
have a max-flow f : s~ t in G with |f| =D
V(s,v) € E', f'(s,v) = —d(v) and Y(u, t) € E', f'(u, t) = d(v).

Analysis

3.- If there is a flow ' : s~ t in G" with |[f| =

1. V(s,v) € E" and VY(u, t) € E' must be saturated = if we
delete these edges in G’ we obtain a circulation f in G.

2. f satisfies d(v quv vaz

(u,v)EE (v,2)€E

edges to v edges out of v

Main results

Theorem (Circulation integrality theorem)

If all capacities and demands are integers, and there exists a
circulation, then there exists an integer valued circulation.

Sketch Proof Max-flow formulation + integrality theorem for
max-flow

From the previous discussion, we can conclude:

Theorem (Necessary and sufficient condition)

There is a feasible circulation with {d(v)},cv in G iff the
max-flow in G’ has value D.

Circulations with demands and lower bounds: Max-flow
formulation

Generalization of the previous problem: besides satisfy demands at
nodes, we want to force the flow to use certain edges.

Introduce a new constrain /(e) on each e € E, indicating the
min-value the flow must be on e.

Given G = (V, E) with c(e), c(e) > £(e) > 0, for each e € E and
{d(v)} ev, define a circulation as a function f : E — R™ s.t.

1. capacity: Foreach e € E,
(e) < f(e) < c(e),
2. conservation: For each v € V,
Z f(u,v) Z f(v,z) =d(v).
(u,v)€E (v,z)eE

Circulation problems with lower bounds: Given (G, c,¢,{d(v)}),
does there exists a feasible circulation?

Circulations with demands and lower bounds:
Max-flow formulation

Let (G = (V,E),c,¢,d(-)) be a graph, construct
G' = (V,E),c’,d"), where for each e = (u, v) € E, with {(e) > 0:
» c/(e) = c(e) — £(e) (sent ¢(e) units along e).
» Update the demands on both ends of e (d'(u) = d(u) + ¢(e)
and d’'(v) = d(v) — {(e))

Main result

Theorem

There exists a circulation in G iff there exists a circulation in G'.
Moreover, if all demands, capacities and lower bounds in G are
integers, then there is a circulation in G that is integer-valued.
Sketch Proof Need to prove f(e) is a circulation in G iff

f'(e) = f(e) — ¢(e) is a circulation in G'.

The integer-valued circulation part is a consequence of the
integer-value circulation Theorem for ' in G’.

Survey design problem
Problem:Design a survey among customers of products
» Each customer will receive questions about some products.
» Each customer i can only be asked about a number of
products between ¢; and ¢! ([c;, ¢/]) which he has purchased.
» For each product j we want to collect date for a minimum of
pj distinct customers and a maximum of p; ([p;, p;])

© Origina | Artist

Reproduction rights abtainable fram

www CartoonStock.com = | ST A
= =

= = o [0 we know

uﬁmw_zr!
seems e 1= 2/ (STOMER
areasanable con we

ol [defie | |SATI5FACTION
| 'Ul v : This culd

Survey design problem

Measuring customer satisfaction.
Consider n customers and m products.
Formally we want to model the problem as:

» A bipartite graph G = (CU P, E), where C = {i} is the set of
customers and P = {i} is the set of products.

» Thereis an (i,j) € E is i has purchased product j.

» For each i € {1,..., n}, we we have bounds [c;, ¢/] on the
number of products / can be asked about.

» For each j € {1,...,n}, we we have bounds ([p;, p]) on the
number of customers that can be asked about it.

Survey design problem: Bipartite graph G

Customers C={a,b,c,d} a[1.2] 1:[12]
b:[1,3] 2:[1,2]

G Pl"OdllCtS P:{ 1,2,3,4,5,6} C:[l,z] 3: [1’2]
Customer | Buys d:[24] 4:[1.2]

a 1,2 5:10,1]

1’2’4 6: [1,2]

b
C 3,6
d 3,4,5,6

Survey design problem: Max flow formulation

We construct G’ from G, by adding:
Edges: s — {C}, {P} —t, and

(t,s).

Capacities: ¢(t,s) = o
c(i,j)=1,

c(s,i) = [ci,],

c(, t) = [p;, Pj]-
Notice if f is the flow:
» f(i,j) = 1= customer i is asked about product j,
> f(s,i)
> f(,t) =

» f(t,s) is the number of questions asked.

products to ask customer i for opinion,

customers to be asked to review product j,

Max flow formulation: Example

a—»
b—
C—»

d—

1,2
1,2,4
3,6
3,4.5,6

a:[1,2]
b:[1,3]
c:[1,2]
d:[2,3]

1: [1,2]
2:1,2]
3:[1,2]
4:11,2]
5:10,1]
6:[1,2]

Main result

Theorem G’ has a feasible circulation iff there is a feasible way to
design the survey.
Proof if there is a feasible way to design the survey:

» if i is asked about j then f(i,j) =1,

» f(s,i) = number questions asked to i,

v

f(j, t) = number of customers who were asked about J,
» f(t,s) = total number of questions.
» easy to verify that f is feasible in G’

If there is an integral, feasible circulation in G:
» if £(i,j) =1 then i will be asked about j,

» the constrains (c;, ¢/, pj, pJ’) will be satisfied. O

Conclusions

Max-Flow/ Min-Cut problem is an intuitively easy problem with
lots of applications.

We just presented a few ones.

An alternative point of view can be obtained from duality in Linear

Programming

The material in this talk has been basically obtained from two
textbooks:
» Chapter 26 of Cormen, Leiserson, Rivest, Stein: Introduction
to Algorithms, and
» Chapter 7 of Kleinberg, Tardos: Algorithm Design.

