
Max-flow and min-cut



Max-Flow and Min-Cut

Two important algorithmic problems, which yield a beautiful
duality

Myriad of non-trivial applications, it plays an important role in the
optimization of many problems:
Network connectivity, airline schedule (extended to all means of
transportation), image segmentation, bipartite matching,
distributed computing, data mining, · · · · · ·



Flow Networks

Network diagraph G = (V ,E ) s.t. it has

I source vertex s ∈ V

I sink vertex t ∈ V

I edge capacities c : E → R+ ∪ {0}

1

a

s t

b

2

21

1

2

Flow f : V × V → R+ ∪ {0} s.t.
Kirchoff’s laws:

I ∀(u, v) ∈ E , 0 ≤ f (u, v) ≤ c(u, v),

I (Flow conservation) ∀v ∈ V − {s, t},∑
u∈V f (u, v) =

∑
z∈V f (v , z)

I The value of a flow

|f | =
∑
v∈V

f (s, v) = f (s,V ) = f (V , t).
Value |f|=3
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The Maximum flow problem

INPUT: Given a flow network (G = (V ,E ), s, t, c)
QUESTION: Find a flow of maximum value on G .
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The value of the max-flow is 7 = 4 + 1 + 2 = 5 + 2.

Notice: Although the flow exiting s is not maximum, the flow
going into t is maximum (= max. capacity).
Therefore the total flow is maximum.



The s − t cut

Given (G = (V ,E ), s, t, c) a s − t cut is a partition of V = S ∪ T
(S ∩ T = ∅), with s ∈ S and t ∈ T .

The flow across the cut:
f (S) =

∑
u∈S

∑
v∈T f (u, v)−

∑
v∈S

∑
u∈T f (v , u).

The capacity of the cut: c(S) =
∑

u∈S
∑

v∈T c(u, v)

capacity of cut (S ,T ) = sum of weights leaving S .

Notice because of the capacity constrain: f (S) ≤ c(S)

f(S,T)=(2+1+5)+(0+2−1−2)=7

2/2

5/5

5/5

1/1

1/5

0/9

0/3

2/4

4/4
1/2

s

c e

t

d

b

a

T={a,b,e,t}

S = {s,c,d}

2/2
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The s − t cut

Given (G = (V ,E ), s, t, c) a s − t cut is a partition of S ,T of V
(i.e. V = S ∪ T and S ∩ T = ∅), with s ∈ S and t ∈ T .

The flow across the cut:
f (S) =

∑
u∈S

∑
v∈T f (u, v)−

∑
v∈T

∑
u∈S f (v , u).

The capacity of the cut: c(S) =
∑

u∈S
∑

v∈T c(u, v)

Notice because of the capacity constrain: f (S) ≤ c(S)
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T={d,b,e,t}

c(S,T)=2+5+5=12

f(S,T)=2+1+5−1=7



Notation

Given v ∈ G and cut (S ,T ) and a v ∈ S , let S ′ = S − {v}. Then

I Denote f (S ′,T ) flow between S ′ and T (without going by v).
i.e. f (S ′,T ) =

∑
u∈S′

∑
w∈T f (u,w)−

∑
w∈T

∑
u∈S′ f (w , u) with

(u,w) ∈ E and (u,w) ∈ E ,

I denote f (v ,T ) flow v → T i.e. f (v ,T ) =
∑

u∈T f (v , u),

I denote f (T , v) flow T → v i.e. f (T , v) =
∑

u∈T f (u, v),

I denote f (S ′, v) flow S ′ → v i.e. f (S ′, v) =
∑

u∈S ′ f (u, v),

I denote f (v ,S ′) flow v → S ′ i.e. f (v ,S ′) =
∑

u∈S ′ f (v , u),
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Any s − t cut has the same flow

Theorem
Given (G , s, t, c) the flow through any s − t cut (S ,T ) is
f (S) = |f |.
Proof (Induction on |S |)
I If S = {s} then f (S) = |f |.
I Assume it is true for S ′ = S − {v}, i.e. f (S ′) = |f |.

Notice f (S ′) = f (S ′,T ) + f (S ′, v)− f (v , S ′). Moreover from
the flow conservation, f (S ′, v) + f (T , v) = f (v , S ′) + f (v ,T )
⇒ f (v ,T )− f (T , v) = f (S ′, v)− f (v ,S ′)︸ ︷︷ ︸

∗
I Then f (S) = f (S ′,T ) + f (v ,T )− f (T , v), using (∗)

f (S) = f (S ′) = |f | 2
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Residual network
Given a network (G = (V ,E ), s, t, c) together with a flow f on it,
the residual network, (Gf = (V ,Ef ), cf ) is the network with the
same vertex set and edge set:

I if c(u, v)− f (u, v) > 0 then (u, v) ∈ Ef and
cf (u, v) = c(u, v)− f (u, v) > 0 (forward edges), and

I if f (u, v) > 0 then (v , u) ∈ Ef and cf (v , u) = f (u, v)
(backward edges). i.e. there are f (u, v) units of flow we can
undo, by pushing flow backward. Notice, if c(u, v) = f (u, v)
then there is only a backward edge.

I the cf are denoted residual capacity.
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Residual network: Augmenting paths

Given G = (V ,E ) and a flow f on G , an augmenting path P is
any simple path in Gf (using forward and backward edges, but
P : s  t).

Given f : s  t in G and P in Gf define the bottleneck (P, f ) to be
the minimum residual capacity of any edge in P, with respect to f .
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Residual network: Augmenting paths

Given G = (V ,E ) and a flow f on G , an augmenting path P is
any simple path in Gf .

Given f s → t in G and P in Gf define the bottleneck (P, f ) to be
the minimum residual capacity of any edge in P.

Augment(P, f )
b=bottleneck (P, f )
for each (u, v) ∈ P do

if (u, v) is forward edge in G then
Increase f (u, v) in G by b

else
Decrease f (u, v) in G by b

end if
end for
return f



Residual network: Augmenting paths

Lemma
Consider f ′ =Augment(P, f ), then f ′ is a flow in G.

Proof: We have to prove that (1) ∀e ∈ E , 0 ≤ f (e) ≤ c(e) and
that ∀v flow to v = flow out of v .

I Capacity law Forward edges (u, v) ∈ P we increase f (u, v) by
b, as b ≤ c(u, v)− f (u, v) then
f ′(u, v) = f (u, v) + b ≤ c(u, v).
Backward edges (u, v) ∈ P we decrease f (v , u) by b, as
b ≤ f (v , u), f ′(v , u) = f (u, v)− b ≥ 0.

I Conservation law, ∀v ∈ P given edges e1, e2 in P and incident
to v , it is easy to check the 4 cases based whether e1, e2 are
forward or backward edges. 2



Max-Flow Min-Cut theorem

Theorem
For any (G , s, t, c) the value of the max flow f ∗ is equal to the
capacity of the min (S ,T )-cut (over all s − t cuts in G)

f ∗ = max{|f |} = min
∀(S ,T )

{c(S ,T )}.

Proof:

I For any s − t cut (S ,T ) in G ⇒ f ∗(S) ≤ c(S ,T ).

I If f ∗ in G is a max flow then Gf ∗ has no augmenting path
s ; t so it is disconnected.
Let Ss = {v ∈ V |∃s ; v in Gf ∗}, then (Ss ,V − {Ss}) is a
s − t cut in Gf ∗ ⇒ ∀v ∈ Ss , u ∈ V − {Ss}, ( ~v , u) is not a
residual edges, so in G f ∗(v , u) = c(v , u), i.e.
c(Ss ,V − {Ss}) = f ∗(Ss ,V − {Ss}) in G . In particular
(Ss ,V − {Ss}) is a min-cut in G and = max-flow f ∗. 2



Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G , s, t, c)
for all (u, v) ∈ E let f (u, v) = 0
Gf = G
while there is an s − t path in Gf do

find a simple path P in Gf (use DFS)
f ′ = Augment(f ,P)
Update f to f ′

Update Gf to Gf ′

end while
return f
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Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G , s, t, c)
for all (u, v) ∈ E let f (u, v) = 0
Gf = G
while there is an s − t path in Gf do

find a simple path P in Gf (use DFS)
f ′ = Augment(f ,P)
Update f to f ′

Update Gf to Gf ′

end while
return f
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Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G , s, t, c)
for all (u, v) ∈ E let f (u, v) = 0
Gf = G
while there is an s − t path in Gf do

find a simple path P in Gf (use DFS)
f ′ = Augment(f ,P)
Update f to f ′

Update Gf to Gf ′

end while
return f 5
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Ford-Fulkerson algorithm

L.R. Ford, D.R. Fulkerson:
Maximal flow through a
network. Canadian J. of Math.
1956.

Ford-Fulkerson(G , s, t, c)
for all (u, v) ∈ E let f (u, v) = 0
Gf = G
while there is an s − t path in Gf do

find a simple path P in Gf (use DFS)
f ′ = Augment(f ,P)
Update f to f ′

Update Gf to Gf ′

end while
return f
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Analysis of Ford Fulkerson

We are considering networks that initial flow and capacities are
integers,

Lemma (Integrality invariant)

At every iteration of the Ford-Fulkerson algorithm, the flow values
f (e) and the residual capacities in Gf are integers.

Proof: (induction)

I The statement is true before the while loop.

I Inductive Hypothesis: The statement is true after j iterations.

I iteration j + 1: As all residual capacities in Gf are integers,
then bottleneck (P, f ) ∈ Z, for the augmenting path found in
iteration j + 1. Thus the flow f ′ will have integer values ⇒ so
will the capacities in the new residual graph. 2



Corollary: Integrality theorem

Theorem (Integrality theorem)

There exists a max-flow f ∗ for which every flow value f ∗ is an
integer.

Proof:
Since the algorithm terminates, the theorem follows from the
integrality invariant lemma. 2



Analysis of Ford Fulkerson

Lemma
If f is a flow in G and f ′ is the flow after an augmentation, then
|f | < |f ′|.
Proof: Let P be the augmenting path in Gf . The first edge e ∈ P
leaves s, and as G has no incoming edges to s, e is a forward edge.
Moreover P is simple ⇒ never returns to s. Therefore, the value of
the flow increases in edge e. 2



Correctness of Ford-Fulkerson

Consequence of the Max-flow min-cut theorem.

Theorem
The flow returned by Ford-Fulkerson f ∗ is the max-flow.

Proof:

I For any flow f and s − t cut (S ,T ) we have |f | ≤ c(S ,T ).

I The flow f ∗ is such that |f ∗| = c(S∗,T ∗), for some s − t cut
(S∗,T ∗) ⇒ f ∗ is the max-flow. 2

Therefore, for any (G , s, t, c) the value of the max s − t flow is
equal to the capacity of the minimum s − t cut.



Analysis of Ford Fulkerson: Running time

Lemma
Let C be the min cut capacity (=max. flow value), Ford-Fulkerson
terminates after finding at most C augmenting paths.

Proof: The value of the flow increases by ≥ 1 after each
augmentation. 2

I The number of iterations is ≤ C . At each iteration:

I We have to modify Gf , with E (Gf ) ≤ 2m, to time O(m).

I Using DFS, the time to find an augmenting path P is
O(n + m)

I Total running time is O(C (n + m)) = O(Cm)

I Is that polynomic?



Running time of Ford-Fulkerson

The number of iterations of
Ford-Fulkerson could be Ω(C )
As it is described Ford-Fulkerson can
alternate C times between the blue
and red paths if the figure.

in a G with 4 vertices!!
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Recall a pseudopolynomial algorithm is an algorithm that is
polynomial in the unary encoding of the input.

Is there a polynomial time algorithm for the max-flow problem?



Edmonds-Karp, Dinic algorithm

J.Edmonds, R. Karp: Theoretical improvements in algorithmic
efficiency for network flow problems. Journal ACM 1972.

Y. Dinic: Algorithm for solution of a problem of maximum flow in
a network with power estimation. Doklady Ak.N. 1970

Choosing a good
augmenting path can lead
to a faster algorithm.
Use BFS to find shorter
augmenting paths in Gf .

Using BFS on Gf we can find the shortest augmenting path P in
O(m), independently of max capacity C .



Edmonds-Karp algorithm

Uses BFS to find the augmenting path at each Gf with fewer
number of edges.

Edmonds-Karp(G , s, t, c)
For all e = (u, v) ∈ E let f (u, v) = 0
G0 = G
while there is an s  t path in Gf

do
P = BFS(Gf , s, t)
f ′ = Augment(f ,P)
Update Gf = Gf ′ and f = f ′

end while
return f
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Level graph
Given G = (V ,E ), s, define LG = (V ,EG ) to be its the level graph
by:

I `(v) = number of edges in shortest path s  v in G ,

I LG = (V ,EG ) is the subgraph of G that contains only edges
(v ,w) ∈ E s.t. `(w) = `(v) + 1.

Notice:

I Using BFS we can compute LG in O(n + m)

I Important property: P is a shortest s ; t in G iff P is an
s ; t path in LG .
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The working of the EK algorithm

4/5

s

c e

t

da

  4
2

2

b
5

  1

3

9

4

1

4

1

2

G f

s

c e

t

da

  4
2

2

b
5

  1

3

9

s

c e

t

da

  4

2

b

  4/4

4/5

4/5

3

9

4/4

4/5

1/5

 1/1
1/2

2
2

G,f´
G,f

t s

c e

da

b

1L

s

c e

t

da

  4

2

b

  1

3

9

4

1

4

1

2

G

1
1

1

44

4

4s

c e

da

  4

2

b

1L

1/1

1/5

1/2

t3

1/2

1/4

f’

1/1

2
3

2



The working of the EK algorithm
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EK algorithm: Properties

Lemma
Throughout the algorithm, the length of the shortest path never
decreases.

Proof:
I Let f and f ′ be the flow before and after a shortest path

augmentation
I let L and L′ be the levels graphs of Gf and Gf ′ .
I Only back edges added to Gf ′ . 2

Lemma
After at most m shortest path augmentations, the length of P is
monotonically increasing.

Proof:
I The bottleneck edge is deleted from L after each

augmentation.
I No new edge is added to L until length of shortest path

strictly increases 2



Complexity of Edmonds-Karp algorithm

Using the the previous lemmas, we prove

Theorem
The EK algorithms runs in O(m2n) steps. Therefore it is a
polynomial time algorithm.

Proof:

I Need time O(m + n) to find the augmenting path using BFS.

I Need O(m) augmentations for paths of length k .

I Every augmentation path is simple ⇒ 1 ≤ k ≤ n ⇒ O(nm)
augmentations 2



Finding a min-cut

Given (G , s, t, c) to find a min-cut:

1. Compute the max-flow f ∗ in G .

2. Obtain Gf ∗ .

3. Find the set S = {v ∈ V |s ; v} in Gf ∗ .

4. Output the cut
(S ,V − {S}) = {(v , u)|v ∈ Sandu ∈ V − {S}} in G .

The running time is the same than the algorithm to find the
max-flow.
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The max-flow problems: History

I Ford-Fulkerson (1956) O(mC ), where C is max capacity.

I Dinic (1970) (blocking flow) O(n2m)

I Edmond-Karp (1972) (shortest augmenting path) O(nm2)

I Karzanov (1974), O(n2m) Goldberg-Tarjant (1986) (push
re-label preflow + dynamic trees) O(nm lg(n2/m)) (for this
time uit uses parallel implementation)

I King-Rao-Tarjan (1998) O(nm logm/n lg n n).

I J. Orlin (2013) O(nm) (clever follow up to KRT-98)



Maximum matching problem

Given an undirected graph G = (V ,E ) a subset of edges M ⊆ E is
a matching if each node appears at most in one edge (a node may
not appear at all).

A perfect matching in G is a matching M such that |M| = |V |/2

The maximum matching problem given a graph G a matching with
maximum cardinality.



Maximum matching in graphs bipartite
A graph G = (V ,E ) is said to be bipartite if V can be partite in L
and R, L ∪ R = V , L ∩ R = ∅, such that every e ∈ E connects L
with R.

The max matching bipartite graph problem: given a bipartite
G = (L ∪ R,E ) with 2n vertices find a maximum matching.

Max matchings = 4



Maximum matching: flow formulation

Given a bipartite graph G = (L ∪ R,E ) construct Ĝ = (V̂ , Ê ):

I Add vertices s and t: V̂ = L ∪ R ∪ {s, t}.
I Add directed edges s → L with capacity 1. Add directed

edges R → t with capacity 1.

I Direct the edges E from L to R, and give them capacity ∞.

I Ê = {s → L} ∪ E ∪ {R → t}.
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Maximum matching: flow formulation

Given a bipartite graph G = (L ∪ R,E ) construct Ĝ = (V̂ , Ê ):

I Add vertices s and t: V̂ = L ∪ R ∪ {s, t}.
I Add directed edges s → L with capacity 1. Add directed

edges R → t with capacity 1.

I Direct the edges E from L to R, and give them capacity ∞.

I Ê = {s → L} ∪ E ∪ {R → t}.
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Maximum matching: Analysis

Theorem
Max flow in Ĝ=Max bipartite matching in G.

Proof ≤
Given a matching M in G with k-edges,
consider the flow F that sends 1 unit along each one of the k
paths.
f is a flow and has value k .
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Maximum matching: Analysis

Max flow ≤Max bipartite matching

I If there is a flow f in Ĝ , |f | = k , as capacities are Z∗ ⇒ an
integral flow existsis.

I Consider the cut C = ({s} ∪ L,R ∪ {t}) in Ĝ .

I Let F be the set of edges in C with flow=1, then |F | = k .

I Each node in L is in at most one e ∈ F and every node in R is
in at most one head of an e ∈ F

I Therefore, exists a bipartite matching F in G with |F | ≤ |f | 2
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Disjoint path problem

Given a digraph (G = (V ,E ), s, t), a set of paths is edge-disjoint if
their edges are disjoint (although them may go through some of
the same vertices)

The disjoint path problem given G , s, t find the max number of
edge disjoint paths s ; t
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Disjoint path problem

Given a digraph (G = (V ,E ), s, t), a set of paths is edge-disjoint if
their edges are disjoint (although them may go through some of
the same vertices)

The disjoint path problem given G , s, t find the max number of
edge disjoint paths s ; t
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Disjoint path problem: Max flow formulation

Assign unit capacity to every edge

Theorem
The max number of edge disjoint paths s ; t is equal to the max
flow value

Max flow=3
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Disjoint path problem: Proof of the Theorem

Number of disjoints paths ≤ max flow
If we have k edge-disjoints paths s ; t in G then making f (e) = 1
for each e in a path, we get a flow = k

Number of disjoints paths ≥ max flow
If max flow |f ∗| = k ⇒ ∃ 0-1 flow f ∗ with value k
⇒ ∃k edges (s, v) s.t. f (s, v) = 1, by flow conservation we can
extend to k paths s ; t, where each edge is a path carries flow
= 1. 2

If we have an undirected graph, with two distinguised nodes u, v ,
how would you apply the max flow formulation to solve the problem
of finding the max number of disjoint paths between u and t?



Circulation with demands

Given a graph G = (V ,E ) with capacities c in the edges, such
that each v ∈ V is associate with a demand d(v), where

I If d(v) > 0 ⇒ v is a sink, v can
receive d(v) units of flow more
than it sends.

I If d(v) < 0 ⇒ v is a source, v can
send d(v) units of flow more than
it receives.

I If d(v) = 0 then v is neither a
source or a sink.

I Define S to be the set of sources
and T the set of sinks.

T

2

4

2 2

3 3

2
−3

−3

S



Circulation with demands problem

Given G = (V ,E ) with c ≥ 0 and {d(v)}v∈V , define a circulation
as a function f : E → R+ s.t.

1. capacity: For each
e ∈ E , 0 ≤ f (e) ≤ c(e),

2. conservation: For each v ∈ V ,∑
(u,v)∈E

f (u, v)−
∑

(v ,z)∈E

f (v , z) = d(v). 2/

2

4

2

2

−3

−3

2/ 3

2/

31/

2/ 2

Circulation with demands feasibility problem: Given G = (V ,E )
with c ≥ 0 and {d(v)}v∈V , does it exists a feasible circulation?
Feasible circulation: a function f on G with c ≥ 0 and {d(v)}v∈V ,
such that it satisfies (1) and (2)?



Circulation with demands problem

Notice that if f is a feasible circulation, then

∑
v∈V

d(v) =
∑
v∈V


∑

(u,v)∈E

f (u, v)

︸ ︷︷ ︸
edges to v

−
∑

(v ,z)∈E

f (v , z)

︸ ︷︷ ︸
edges out of v

 .

Notice
∑

v∈V d(v) = 0, so we have,

So If there is a feasible circulation with demands {d(v)}v∈V , then∑
v∈V d(v) = 0.

Therefore as S = {v ∈ V |d(v) > 0} and
T = {v ∈ V |d(v) < 0}, we can define
D = −

∑
v∈S d(v) =

∑
v∈T d(v).

2/

2

4

2

2

−3

−3

2/ 3

2/

31/
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Circulation with demands: Max-flow formulation

Extend G = (V ,E ) to G ′ = (V ′,E ′) by

I Add new source s and sink t.

I For each v ∈ S (d(v) < 0) add (s, v) with capacity −d(v).

I For each v ∈ T (d(v) > 0) add (v , s) with capacity d(v).

G
2

4

2

2

−3

−3

3

2

3

2

4

2

2

−3

−3

33

s

t

2

3

3

2

4T

S
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Analysis

1.- Every flow f : s ; t in G ′ must be |f | ≤ D
The capacity c({s},V ) = D ⇒ by max-flow min-cut Thm. any
max-flow f in G ′, |f | ≤ D.

2.- If there is a feasible circulation f with {d(v)}v∈V in G , then we
have a max-flow f : s ; t in G with |f | = D
∀(s, v) ∈ E ′, f ′(s, v) = −d(v) and ∀(u, t) ∈ E ′, f ′(u, t) = d(v).

2G’G
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2
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Analysis

3.- If there is a flow f ′ : s ; t in G ′ with |f | = D:

1. ∀(s, v) ∈ E ′ and ∀(u, t) ∈ E ′ must be saturated ⇒ if we
delete these edges in G ′ we obtain a circulation f in G .

2. f satisfies d(v) =
∑

(u,v)∈E

f (u, v)

︸ ︷︷ ︸
edges to v

−
∑

(v ,z)∈E

f (v , z)

︸ ︷︷ ︸
edges out of v

.

2G’G
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Main results

Theorem (Circulation integrality theorem)

If all capacities and demands are integers, and there exists a
circulation, then there exists an integer valued circulation.

Sketch Proof Max-flow formulation + integrality theorem for
max-flow 2

From the previous discussion, we can conclude:

Theorem (Necessary and sufficient condition)

There is a feasible circulation with {d(v)}v∈V in G iff the
max-flow in G ′ has value D.



Circulations with demands and lower bounds: Max-flow
formulation

Generalization of the previous problem: besides satisfy demands at
nodes, we want to force the flow to use certain edges.
Introduce a new constrain `(e) on each e ∈ E , indicating the
min-value the flow must be on e.

Given G = (V ,E ) with c(e), c(e) ≥ `(e) ≥ 0, for each e ∈ E and
{d(v)}v∈V , define a circulation as a function f : E → R+ s.t.

1. capacity: For each e ∈ E ,
`(e) ≤ f (e) ≤ c(e),

2. conservation: For each v ∈ V ,∑
(u,v)∈E

f (u, v)−
∑

(v ,z)∈E

f (v , z) = d(v).

[

2

4

2 2

3

2
−3

−3

3]2,

Circulation problems with lower bounds: Given (G , c , `, {d(v)}),
does there exists a feasible circulation?



Circulations with demands and lower bounds:
Max-flow formulation

Let (G = (V ,E ), c , `, d(·)) be a graph, construct
G ′ = (V ,E ), c ′, d ′), where for each e = (u, v) ∈ E , with `(e) > 0:

I c ′(e) = c(e)− `(e) (sent `(e) units along e).

I Update the demands on both ends of e (d ′(u) = d(u) + `(e)
and d ′(v) = d(v)− `(e))

G’2

4

2 2

3

2
−3

−3

3]2,[

2

4

2 2

3

2

1

−5

−1

G



Main result

Theorem
There exists a circulation in G iff there exists a circulation in G ′.
Moreover, if all demands, capacities and lower bounds in G are
integers, then there is a circulation in G that is integer-valued.

Sketch Proof Need to prove f (e) is a circulation in G iff
f ′(e) = f (e)− `(e) is a circulation in G ′.
The integer-valued circulation part is a consequence of the
integer-value circulation Theorem for f ′ in G ′. 2



Survey design problem
Problem:Design a survey among customers of products
I Each customer will receive questions about some products.
I Each customer i can only be asked about a number of

products between ci and c ′i ([ci , c
′
i ]) which he has purchased.

I For each product j we want to collect date for a minimum of
pj distinct customers and a maximum of p′j ([pj , p

′
j ])



Survey design problem

Measuring customer satisfaction.
Consider n customers and m products.

Formally we want to model the problem as:

I A bipartite graph G = (C ∪ P,E ), where C = {i} is the set of
customers and P = {i} is the set of products.

I There is an (i , j) ∈ E is i has purchased product j .

I For each i ∈ {1, . . . , n}, we we have bounds [ci , c
′
i ] on the

number of products i can be asked about.

I For each j ∈ {1, . . . , n}, we we have bounds ([pj , p
′
j ]) on the

number of customers that can be asked about it.



Survey design problem: Bipartite graph G

6: [1,2]

PC

a

b

c

d

1

2

3

4

5

6

Customers C={a,b,c,d}

Products P={1,2,3,4,5,6}

Customer    

a

b

Buys

c

d

1,2

1,2,4

3,6
3,4,5,6

G

a:[1,2]

b:[1,3]
c:[1,2]

d:[2,4]

1: [1,2]

2: [1,2]
3: [1,2]

4: [1,2]

5: [0,1]



Survey design problem: Max flow formulation

We construct G ′ from G , by adding:
Edges: s → {C}, {P} → t, and
(t, s).
Capacities: c(t, s) =∞
c(i , j) = 1,
c(s, i) = [ci , c

′
i ],

c(j , t) = [pj , p
′
j ].

0,1

0,

p,p´ji

s t

c,c´
0,1

Notice if f is the flow:

I f (i , j) = 1⇒ customer i is asked about product j ,

I f (s, i) # products to ask customer i for opinion,

I f (j , t) = # customers to be asked to review product j ,

I f (t, s) is the number of questions asked.



Max flow formulation: Example
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Main result

Theorem G ′ has a feasible circulation iff there is a feasible way to
design the survey.

Proof if there is a feasible way to design the survey:

I if i is asked about j then f (i , j) = 1,

I f (s, i) = number questions asked to i ,

I f (j , t) = number of customers who were asked about j ,

I f (t, s) = total number of questions.

I easy to verify that f is feasible in G ′

If there is an integral, feasible circulation in G ′:

I if f (i , j) = 1 then i will be asked about j ,

I the constrains (ci , c
′
i , pj , p

′
j) will be satisfied. 2



Conclusions

Max-Flow/ Min-Cut problem is an intuitively easy problem with
lots of applications.
We just presented a few ones.
An alternative point of view can be obtained from duality in Linear
Programming

The material in this talk has been basically obtained from two
textbooks:

I Chapter 26 of Cormen, Leiserson, Rivest, Stein: Introduction
to Algorithms, and

I Chapter 7 of Kleinberg, Tardos: Algorithm Design.


