# Greedy Approximation Algorithms.

Curs 2018

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

# Greedy and Approximations algorithms

Many times the Greedy strategy yields a feasible solution with value which is near to the optimum solution.

In many practical cases, when finding the global optimum is hard, it is sufficient to find a good feasible solution, an approximation.

Given an optimization problem (maximization or minimization) an optimal algorithm computes the best output OPT(e) on any instance e of size n according to a unction c.

An approximation algorithm for the problem computes a close valid output.

We want to design approximation algorithms, that are fast and output solutions as close as possible to OPT(e).

# Greedy and Approximations algorithms

Given an optimization problem, an  $\alpha$ -approximation algorithm Apx computes a solution whose cost is within an  $\alpha \ge 1$  factor of the cost OPT (e):

$$\frac{1}{\alpha} \leq \frac{c(\mathcal{A}px(e))}{c(\mathsf{OPT}(e))} \leq \alpha.$$

 $\boldsymbol{\alpha}$  is called the approximation ratio.

Notice,  $\alpha$  measures the factor by which the cost output of Apx exceeds that of OPT (e) , on any input.

The first  $\leq$  works for maximization and the second  $\leq$  works for minimization.

Given a graph G = (V, E) with |V| = n, |E| = m find the minimum set of vertices  $S \subseteq V$  such that it covers every edge of G.



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Given a graph G = (V, E) with |V| = n, |E| = m find the minimum set of vertices  $S \subseteq V$  such that it covers every edge of G.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

GreedyVC 
$$G = (V, E)$$
  
 $E' = E, S = \emptyset,$   
while  $E' \neq \emptyset$  do  
Pick  $e \in E'$ , say  $e = (u, v)$   
 $S = S \cup \{u, v\},$   
 $E' = E' - \{(u, v) \cup \{\text{edges incident to } u, v\}$   
end while  
return S.

Given a graph G = (V, E) with |V| = n, |E| = m find the minimum set of vertices  $S \subseteq V$  such that it covers every edge of G.



GreedyVC 
$$G = (V, E)$$
  
 $E' = E, S = \emptyset,$   
while  $E' \neq \emptyset$  do  
Pick  $e \in E'$ , say  $e = (u, v)$   
 $S = S \cup \{u, v\},$   
 $E' = E' - \{(u, v) \cup \{\text{edges incident to } u, v\}$   
end while  
return S.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a graph G = (V, E) with |V| = n, |E| = m find the minimum set of vertices  $S \subseteq V$  such that it covers every edge of G.



GreedyVC 
$$G = (V, E)$$
  
 $E' = E, S = \emptyset,$   
while  $E' \neq \emptyset$  do  
Pick  $e \in E'$ , say  $e = (u, v)$   
 $S = S \cup \{u, v\},$   
 $E' = E' - \{(u, v) \cup \{\text{edges incident to } u, v\}\}$   
end while  
return S.



Given a graph G = (V, E) with |V| = n, |E| = m find the minimum set of vertices  $S \subseteq V$  such that it covers every edge of G



GreedyVC 
$$G = (V, E)$$
  
 $E' = E, S = \emptyset,$   
while  $E' \neq \emptyset$  do  
Pick  $e \in E'$ , say  $e = (u, v)$   
 $S = S \cup \{u, v\},$   
 $E' = E' - \{(u, v) \cup \{\text{edges incident to } u, v\}\}$   
end while  
return S.



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem The algorithm Apx runs in O(m + n) steps. Moreover,  $|Apx(e)| \le 2|OPT(e)|$ .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

### Theorem The algorithm Apx runs in O(m + n) steps. Moreover, $|Apx(e)| \le 2|OPT(e)|$ .

Proof.

We use induction to prove  $|Apx(e)| \le 2|OPT(e)|$ . Notice for every  $\{u, v\}$  we add to Apx(e), either u or v are in OPT(e). Base: If  $V = \emptyset$  then |Apx(e)| = |OPT(e)| = 0. Hipothesis:  $|Apx(e - \{u, v\})| \le 2|OPT(e - \{u, v\})|$ . Then,

$$\begin{aligned} \mathcal{A}px(e) &|= |\mathcal{A}px(e - \{u, v\})| + 2 \leq 2 |\mathsf{OPT}(e - \{u, v\})| + 2 \\ &\leq 2(|\mathsf{OPT}(e - \{u, v\})| + 1) + 2 \leq 2|\mathsf{OPT}(e)|. \end{aligned}$$

The decision problem for Vertex Cover is NP-complete. Moreover, unless P=NP, vertex cover can't be approximated within a factor  $\alpha \leq 1.36$ 

# Clustering problems

Clustering: process of finding interesting structure in a set of data. Given a collection of objects, organize them into coherent groups with respect to some (distance function  $d(\cdot, \cdot)$ ).

This not necessarily has to be the physical (Euclidean) distance, it could be similarity distance, time to travel, but it must be a metric, i.e.

Recall if *d* is a metric: d(x, x) = 0, d(x, y) > 0 for  $x \neq y$ , d(x, y) = d(y, x), d(x, y) > 0 and  $d(x, y) + d(y, z) \le d(x, z)$ .

*k*-clustering problems: Given a set of data points  $X = \{x_1, x_2, \ldots, x_n\}$  together with a distance function on X and given a k > 0, want to partition X into k disjoint subsets, a *k*-clustering, such as to optimize some function (depending on d).

Given as input a set of  $X = \{x_1, ..., x_n\}$ , with distances  $D = \{d(x_i, x_j)\}$  and a given integer k: Find the partition X into k **clusters**  $\{C_1, ..., C_k\}$  such as to minimize the diameter of the clusters, min<sub>j</sub> max<sub>x,y \in C\_i</sub> d(x, y).

# Covering by balls

Consider a set  $X = \{x_1, ..., x_n\}$ , of points in a space in which a distance D is defined.

A ball B(c, r), with center c and radius r contains the points in X within distance r of c.

Let  $C = \{c_1, \ldots, c_k\}$  be a set of centers.

Define C to be a r-cover for X if  $\forall x \in X$ ,  $\exists c_j \in C$  s.t.  $d(x, c_j) \leq r$ .

# The k-center clustering problem

Given as input (X, D, k), select the centers  $C = \{c_1, \ldots, c_k\} \subseteq X$ , and r = r(C) such that the resulting  $\{C_1, \ldots, C_k\}$  is an *r*-cover for *X*, with *r* as small as possible.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### The k-center clustering problem

Given as input (X, D, k), select the centers  $C = \{c_1, \ldots, c_k\} \subseteq X$ , and r = r(C) such that the resulting  $\{C_1, \ldots, C_k\}$  is an *r*-cover for *X*, with *r* as small as possible.

*k*-center on  $\mathbb{Z}^2$ : Given  $X \subset \mathbb{Z}^2$  points and  $k \in \mathbb{Z}$ , compute the set  $C = \{c_1, \ldots, c_k\}$  of centers  $C \subset X$  such that if  $\tilde{X} = X \setminus C$ , it minimizes  $\max_{x \in \tilde{X}} d(x, C)$ .



# The k-Center clustering problem: Complexity

For k > 2, the decision version of the *k*-center clustering problem is NP-complete.

There is a deterministic algorithm working in  $O(n^k)$ . (Can you design one?)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## The k-Center clustering problem: A greedy algorithm

The algorithm iterates k times, at each iteration it chooses a new center, add a new cluster, and it refines the radius  $r_i$  of the cluster balls. T. Gonzalez (1985)

- 1. Choose arbitrarily x and make  $c_1 = x$ . Let  $C_1 = \{c_1\}$
- 2. For all  $x_i \in X$  let  $d_1[x] = d(x_i, c_1)$ .
- 3. Choose  $c_2 = x_j$  s.t.  $\max \min_{x \in X} d_1[x]$ .
- 4. Let  $r_1 = d(c_1, c_2)$  and  $C_2 = \{c_1, c_2\}$ .
- 5. For i = 2 to k
  - 5.1 At interaction i + 1: Let  $c_{i+1}$  be the element in  $X \setminus C_i$  that maximizes the distances to  $C_i$ .
  - 5.2 Let  $C_{i+1} = \{c_1, c_2, \dots, c_{i+1}\}$  and  $r_i = \max \min_{j \le i} d(c_{i+1}, c_j)$ ,

6. Output the  $C = \{c_1, \ldots, c_k\}$  centers and  $r_k$ .

The max min means the max of the P2P distances.

# Greedy algorithm: Example

Given X, k = 3 and the  $n^2$  distance vector D:



◆□> ◆□> ◆三> ◆三> ・三 のへの

# Greedy algorithm: Complexity

We have the set X of points and all their  $O(n^2)$  distances so that obtaining d(x, y) requires constant time.

- At each step *i* we have to compute the distance from all  $x \in X$  to all current centers  $c \in C_{i-1}$ , and choose the new  $c_i$  and  $r_i$ , but
- For each  $x \in X$  define  $d_i[x] = d(x, C_i)$ Observe that  $d_i[x] = \min\{d_{i-1}[x], \underline{d(x, c_i)}\}$
- Therefore at each step, to compute r<sub>i</sub> we need to compute the max of d<sub>i</sub>[x] for x ∉ C<sub>i-1</sub>.
- At iteration *i*, choosing  $c_i$  and computing  $r_i$  takes O(n) steps, therefore the complexity of the greedy algorithm is O(kn) steps.

# Approximation to the k-center clustering problem

### Theorem

The the resulting diameter in the previous greedy algorithm is an approximation algorithm to the k-center clustering problem, with an approximation ratio of  $\alpha = 2$ .

(i.e. It returns a set C s.t.  $r(C) \leq 2r(C^*)$  where  $C^*$  is an optimal set of k-center).

#### Proof

Let  $C^* = \{c_i^*\}_{i=1}^k$  and  $r^*$  be the optimal values, and let  $C = \{c_i\}_{i=1}^k$  and r the values returned by the algorithm. Want to prove  $r \le 2r^*$ .

Case 1: Every  $C_j^* = B(c_j^*, r^*)$  covers at least one  $c_i$ .  $\Rightarrow$  as  $\forall x \in X$ , if  $C_j^*$  covers x, then  $\exists c_i \in C_j^* \Rightarrow d(x, c_i) \leq 2r^*$ .



# Proof cont.



Case 2: At least one  $C_j^*$  does not cover any center in C. Then,  $\exists C_l^*$  covering at least  $c_i$  and  $c_j \Rightarrow d(c_i, c_j) \le 2r^*$ . We need to prove that  $d(c_i, c_j) > r$ . Wlog assume the algorithm chooses  $c_j$  at iteration j and that  $c_i$  has been selected as centre in a previous *i*th. iteration, then  $d(c_i, c_j) > r_j$ . Moreover, notice than  $r_1 > r_2 > \ldots > r_k = r$ , therefore  $d(c_i, c_j) > r_j \ge r$  and  $r \le d(c_i, c_j) \le 2r^*$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Given as input a set of  $X = \{x_1, ..., x_n\}$ , with distances  $D = \{d(x_i, x_j)\}$  and a given integer k: Find the partition X into k clusters  $\{C_1, ..., C_k\}$  such as to minimize the diameter of the clusters, min<sub>i</sub> max<sub>x,y \in C\_i</sub> d(x, y).

Given as input a set of  $X = \{x_1, \ldots, x_n\}$ , with distances  $D = \{d(x_i, x_j)\}$  and a given integer k: Find the partition X into k **clusters**  $\{C_1, \ldots, C_k\}$  such as to minimize the diameter of the clusters, min<sub>j</sub> max<sub>x,y \in C\_j</sub> d(x, y). What is the difference with the k-center clustering problem?

Given as input a set of  $X = \{x_1, \ldots, x_n\}$ , with distances  $D = \{d(x_i, x_j)\}$  and a given integer k: Find the partition X into k **clusters**  $\{C_1, \ldots, C_k\}$  such as to minimize the diameter of the clusters, min<sub>j</sub> max<sub>x,y∈C<sub>j</sub></sub> d(x, y). What is the difference with the k-center clustering problem? An approximation algorithm?