
Greedy Approximation Algorithms.

Curs 2018

Greedy and Approximations algorithms

Many times the Greedy strategy yields a feasible solution with
value which is near to the optimum solution.
In many practical cases, when finding the global optimum is hard,
it is sufficient to find a good feasible solution, an approximation.

Given an optimization problem (maximization or minimization) an
optimal algorithm computes the best output OPT (e) on any
instance e of size n according to a unction c .
An approximation algorithm for the problem computes a close valid
output.

We want to design approximation algorithms, that are fast and
output solutions as close as possible to OPT (e).

Greedy and Approximations algorithms

Given an optimization problem, an α-approximation algorithm Apx
computes a solution whose cost is within an α ≥ 1 factor of the
cost OPT (e):

1

α
≤ c(Apx(e))

c(OPT (e))
≤ α.

α is called the approximation ratio.

Notice, α measures the factor by which the cost output of Apx
exceeds that of OPT (e) , on any input.

The first ≤ works for maximization and the second ≤ works for
minimization.

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G .

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G .

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G .

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G .

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Theorem
The algorithm Apx runs in O(m + n) steps. Moreover,
|Apx(e)| ≤ 2|OPT (e) |.

Proof.
We use induction to prove |Apx(e)| ≤ 2|OPT (e) |. Notice for
every {u, v} we add to Apx(e), either u or v are in OPT (e).
Base: If V = ∅ then |Apx(e)| = |OPT (e) | = 0.
Hipothesis: |Apx(e − {u, v})| ≤ 2|OPT (e − {u, v}) |. Then,

|Apx(e)| = |Apx(e − {u, v})|+ 2 ≤ 2|OPT (e − {u, v}) |+ 2

≤ 2(|OPT (e − {u, v}) |+ 1) + 2 ≤ 2|OPT (e) |.

The decision problem for Vertex Cover is NP-complete. Moreover,
unless P=NP, vertex cover can’t be approximated within a factor
α ≤ 1.36

An easy example: Vertex cover

Theorem
The algorithm Apx runs in O(m + n) steps. Moreover,
|Apx(e)| ≤ 2|OPT (e) |.

Proof.
We use induction to prove |Apx(e)| ≤ 2|OPT (e) |. Notice for
every {u, v} we add to Apx(e), either u or v are in OPT (e).
Base: If V = ∅ then |Apx(e)| = |OPT (e) | = 0.
Hipothesis: |Apx(e − {u, v})| ≤ 2|OPT (e − {u, v}) |. Then,

|Apx(e)| = |Apx(e − {u, v})|+ 2 ≤ 2|OPT (e − {u, v}) |+ 2

≤ 2(|OPT (e − {u, v}) |+ 1) + 2 ≤ 2|OPT (e) |.

The decision problem for Vertex Cover is NP-complete. Moreover,
unless P=NP, vertex cover can’t be approximated within a factor
α ≤ 1.36

Clustering problems

Clustering: process of finding interesting structure in a set of data.
Given a collection of objects, organize them into coherent groups
with respect to some (distance function d(·, ·)).
This not necessarily has to be the physical (Euclidean) distance, it
could be similarity distance, time to travel, but it must be a
metric, i.e.
Recall if d is a metric: d(x , x) = 0, d(x , y) > 0 for x 6= y ,
d(x , y) = d(y , x), d(x , y) > 0 and d(x , y) + d(y , z) ≤ d(x , z).

k-clustering problems: Given a set of data points
X = {x1, x2, . . . , xn} together with a distance function on X and
given a k > 0, want to partition X into k disjoint subsets, a
k-clustering, such as to optimize some function (depending on d).

The k-clustering problem

Given as input a set of X = {x1, . . . , xn}, with distances
D = {d(xi , xj)} and a given integer k:
Find the partition X into k clusters {C1, . . . ,Ck} such as to
minimize the diameter of the clusters, minj maxx ,y∈Cj

d(x , y).

Covering by balls

Consider a set X = {x1, . . . , xn}, of points in a space in which a
distance D is defined.

A ball B(c, r), with center c and radius r contains the points in X
within distance r of c .

Let C = {c1, . . . , ck} be a set of centers.

Define C to be a r -cover for X if ∀x ∈ X , ∃cj ∈ C s.t. d(x , cj) ≤ r .

The k-center clustering problem

Given as input (X ,D, k), select the centers C = {c1, . . . , ck} ⊆ X ,
and r = r(C) such that the resulting {C1, . . . ,Ck} is an r -cover for
X , with r as small as possible.

k-center on Z2: Given X ⊂ Z2 points and k ∈ Z, compute the set
C = {c1, . . . , ck} of centers C ⊂ X such that if X̃ = X\C , it
minimizes maxx∈X̃ d(x ,C).

The k-center clustering problem

Given as input (X ,D, k), select the centers C = {c1, . . . , ck} ⊆ X ,
and r = r(C) such that the resulting {C1, . . . ,Ck} is an r -cover for
X , with r as small as possible.

k-center on Z2: Given X ⊂ Z2 points and k ∈ Z, compute the set
C = {c1, . . . , ck} of centers C ⊂ X such that if X̃ = X\C , it
minimizes maxx∈X̃ d(x ,C).

The k-Center clustering problem: Complexity

For k > 2, the decision version of the k-center clustering problem
is NP-complete.

There is a deterministic algorithm working in O(nk). (Can you
design one?)

The k-Center clustering problem: A greedy algorithm

The algorithm iterates k times, at each iteration it chooses a new
center, add a new cluster, and it refines the radius ri of the cluster
balls. T. Gonzalez (1985)

1. Choose arbitrarily x and make c1 = x . Let C1 = {c1}
2. For all xi ∈ X let d1[x] = d(xi , c1).

3. Choose c2 = xj s.t. max minx∈X d1[x].

4. Let r1 = d(c1, c2) and C2 = {c1, c2}.
5. For i = 2 to k

5.1 At interaction i + 1: Let ci+1 be the element in X\Ci that
maximizes the distances to Ci .

5.2 Let Ci+1 = {c1, c2, . . . , ci+1} and ri = max minj≤i d(ci+1, cj),

6. Output the C = {c1, . . . , ck} centers and rk .

The max min means the max of the P2P distances.

Greedy algorithm: Example

Given X , k = 3 and the n2 distance vector D:

1

r1

x

2

x 1

x
2

r
r

Greedy algorithm: Complexity

We have the set X of points and all their O(n2) distances so that obtaining
d(x , y) requires constant time.

I At each step i we have to compute the distance from all x ∈ X to all
current centers c ∈ Ci−1, and choose the new ci and ri , but

I For each x ∈ X define di [x] = d(x ,Ci)

Observe that di [x] = min{di−1[x], d(x , ci)︸ ︷︷ ︸}
I Therefore at each step, to compute ri we need to compute the max of

di [x] for x /∈ Ci−1.

I At iteration i , choosing ci and computing ri takes O(n) steps, therefore
the complexity of the greedy algorithm is O(kn) steps.

Approximation to the k-center clustering problem

Theorem
The the resulting diameter in the previous greedy algorithm is an
approximation algorithm to the k-center clustering problem, with
an approximation ratio of α = 2.

(i.e. It returns a set C s.t. r(C) ≤ 2r(C ∗) where C ∗ is an optimal
set of k-center).

Proof
Let C ∗ = {c∗i }ki=1 and r∗ be the optimal values, and let
C = {ci}ki=1 and r the values returned by the algorithm.
Want to prove r ≤ 2r∗.

Case 1: Every C ∗j = B(c∗j , r
∗) covers at

least one ci . ⇒ as ∀x ∈ X , if C ∗j covers
x , then ∃ci ∈ C ∗j ⇒ d(x , ci) ≤ 2r∗.

r*

r

Proof cont.

Case 2: At least one C ∗j does not cover any center in C . Then,
∃C ∗l covering at least ci and cj ⇒ d(ci , cj) ≤ 2r∗.
We need to prove that d(ci , cj) > r . Wlog assume the algorithm
chooses cj at iteration j and that ci has been selected as centre in
a previous ith. iteration, then d(ci , cj) > rj .
Moreover, notice than r1 > r2 > . . . > rk = r ,
therefore d(ci , cj) > rj ≥ r and r ≤ d(ci , cj) ≤ 2r∗ 2

The k-clustering problem

Given as input a set of X = {x1, . . . , xn}, with distances
D = {d(xi , xj)} and a given integer k:
Find the partition X into k clusters {C1, . . . ,Ck} such as to
minimize the diameter of the clusters, minj maxx ,y∈Cj

d(x , y).

What is the difference with the k-center clustering problem?
An approximation algorithm?

The k-clustering problem

Given as input a set of X = {x1, . . . , xn}, with distances
D = {d(xi , xj)} and a given integer k:
Find the partition X into k clusters {C1, . . . ,Ck} such as to
minimize the diameter of the clusters, minj maxx ,y∈Cj

d(x , y).
What is the difference with the k-center clustering problem?

An approximation algorithm?

The k-clustering problem

Given as input a set of X = {x1, . . . , xn}, with distances
D = {d(xi , xj)} and a given integer k:
Find the partition X into k clusters {C1, . . . ,Ck} such as to
minimize the diameter of the clusters, minj maxx ,y∈Cj

d(x , y).
What is the difference with the k-center clustering problem?
An approximation algorithm?

