


Data Structures: Remainder

Given a universe U, a dynamic set of records, where each record:

Key

} Satellit Data

Record

> Array

» Linked List (and variations)

» Stack (LIFO): Supports push and pop

» Queue (FIFO): Supports enqueue and dequeue

» Deque: Supports push, pop, enqueue and dequeue

» Heaps: Supports insertions, deletions, find Max and MIN
» Hashing



Dynamic Sets.

Given a universe U and a set of keys S C U, for any k € S we can
consider the following operations

» Search (S, k): decide if k € S

> Insert (S.k): S :=SU{k}

> Delete (S, k): S :=S\{k}

» Minimum (S): Returns element of S with smallest k

» Maximum (S): Returns element of S with largest k

» Successor (S, k): Returns element of S with next larger key
to k

» Predecessor (S, k): Returns element of S with next smaller
key to k.



Recall Dynamic Data Structures

DICTIONARY
Data structure for maintaining S C U together with operations:

» Search (S, k): decide if k € S
> Insert (S, k): §:=SU{k}
» Delete (S, k): §:=S\{k}
PRIORITY QUEUE
Data structure for maintaining S C U together with operations:
> Insert (S, k): §:=SU{k}
» Maximum (S): Returns element of S with largest k

» Extract-Maximum (S): Returns and erase from S the element
of S with largest k



Priority Queue

Linked Lists:

» INSERT: O(n)
» EXTRACT-MAX: O(1)

Heaps:
» INSERT: O(lgn)
» EXTRACT-MAX: O(lg n)

Using a Heap is a good compromise between fast insertion and
slow extraction.



String Matching
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Finding similar
documents in the WWW
e Proliferation of almost
identical documents

e Approximately 30% of
the pages on the web
are (near) duplicates.

e Another way to find
plagiarism



Hashing functions
Data Structure that supports dictionary operations on an universe
of numerical keys.

Notice the number of possible keys
represented as 64-bit integers is

203 = 18446744073709551616.

Tradeoff time/space

Define a hashing table T[0,...,m —1]

a hashing function h: U — T[0,...,m—1]

Hans P. Luhn
(1896-1964)

Collision

HENN ENOREC




Simple uniform hashing function.

A good hashing function must have the property that Vk € U,
h(k) must have the same probability of ending in any T[i].

Given a hashing table T with m slots, we want to store n = |S]|
keys, as maximum.

Important measure: load factor &« = n/m, the average number of
keys per slot.

The performance of hashing depends on how well h distributes the
keys on the m slots: h is simple uniform if it hash any key with
equal probability into any slot, independently of where other keys
go.



How to choose h?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of
The Art of computing programming

h depends on the type of key:
o lf ke R,0<k <1 wecan use h(k) = |mk].

e If ke R,s < k < tscale by 1/(t —s), and use the previous
methode: h(k/(t —s)) = |mk/(t —s)].



The division method

Choose m prime and as far as possible from a power,

h(k) = k mod m|.

Fast (©(1)) to compute in most languages (k%m)!
Be aware: if m = 2" the hash does not
depend on all the bits of K

If r =6 with kK =1011000111011010
—
=h(k)
(45530 mod 64 = 858 mod 64)




e In some applications, the keys may be very large, for instance
with alphanumeric keys, which must be converted to ascii:
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which has 84-bits!



Recall mod arithmetic : for a, b, m € Z,

(a+ b) mod m = (a mod m+ b mod m) mod m
(a- b) mod m= ((a mod m) - (b mod m)) mod m
a(b+ ¢) mod m = ab mod m+ ac mod m

If a € Zm (a mod m) mod m = a mod m

Horner's rule: Given a specific value xg and a polynomial
A(x) =Y igaix' = ag+ a1 X + - + a,x" to evaluate A(xp) in
©(n) steps:

A(xo) = a0 + xo(a1 + xo(az + - - - + xo(an—1 + anx0)))



How to deal with large n

For large n, to compute h = n mod m, we can use mod arithmetic
+ Horner's method:

(CCCCC((((97 - 128 + 118) - 128 + 101) - 128 + 114) - 128 + 121)

.128 4 111) - 128 + 110) - 128 + 103) - 128 + 107)

128 +101) - 128 + 121 mod m

= ((((((((((97 - 1284+ 118 mod m)-128) mod m + 101)-...))))))




Collision resolution: Separate chaining

For each table address, construct a linked list of the items whose
keys hash to that address.

> Every key goes to the same slot

i o~
» Time to explore the list = A@—@—@

length of the list h(20)=h(27)=h(8)=i




Cost of average analysis of chaining

The cost of the dictionary operations using hashing:

> Insertion of a new key: ©(1).
» Search of a key: O( length of the list)
» Deletion of a key: O( length of the list).

Under the hypothesis that h is simply uniform hashing, each key x
is equally likely to be hashed to any slot of T, independently of
where other keys are hashed

Therefore, the expected number of keys falling into T[i] is
a=n/m.



Cost of search

For an unsuccessful search (x is not in T) therefore we have to
explore the all list at h(x) — T[i] with an the expected time to
search the list at T[i] is O(1 + «).

(v of searching the list and ©(1) of computing h(x) and going to
slot T[i])

For an successful search search, we can obtain the same bound,
(most of the cases we would have to search a fraction of the list
until finding the x element.)

Therefore we have the following result: Under the assumption of
simple uniform hashing, in a hash table with chaining, an
unsuccessful and successful search takes time ©(1 + =) on the
average.

Notice that if n = 6(m) then a = O(1) and search time is ©(1).



Universal hashing: Motivation

For every deterministic hash function, there is a set of bad
instances.

An adversary can arrange the keys so your function hashes most of
them to the same slot.

Create a set H of hash functions on U and choose a hashing
function at random and independently of the keys.

Must be careful once we choose one particular hashing function for
a given key, we always use the same function to deal with the key.



Universal hashing

Let U be the universe of keys and let H be a collection of hashing
functions with hashing table T[0,...,m — 1], X is universal if
Vx,y € U,x # y, then
H
[t e H1h() = b)) < .

In an equivalent way, H is universal if Vx,y € U, x # y, and for
any h chosen uniformly from H, we have

Prh(x) = h(y)] <

1
o



Universality gives good average-case behaviour

Theorem
If we pick a u.a.r. h from a universal H and build a table using and
hash n keys to T with size m, for any given key x let Z be a
random variable counting the number of collisions with others keys
yinT.

E [#collisions| < n/m.



Construction of a universal family: H

To construct a family H for N = max{U} and T[0,..., m —1]:
> H e @

» Choose a prime p, N < p < 2N. Then
Ucz,=140,1,...,p—1}

» Choose independently and u.a.r. a € Z;’ and b € Z,. Given a
key x define h, ,(x) = ((ax + b) mod p) mod m.

ga,b(X)
» H={h,pla, b€ Zp a0}

Example: p =17, m = 6 we have Hizpe = {hsp:a € Z;, beZy}
if x=28, a=3,b=4 then
h34(8) = ((3-8+4) mod 17) mod 6 = 5



Properties of H

1. hap : Zp — T,

2. |H| =p(p—1). (We can select ain p—1 ways and b in p
ways)

3. Specifying an h € H requires O(lg p) = O(lg N) bits.

4. To choose h € H select a, b independently and u.a.r. from Z;r
and Zp.

5. Evaluating h(x) is fast.



Theorem
The family H is universal.

For the proof:

Chapter 11 of Cormen. Leiserson, Rivest, Stein: An introduction
to Algorithms



Bloom filter

Given a set of elements S, we want a Data structure for supporting
insertions and querying about membership in S.
In particular we wish a DS s.t.

> minimizes the use of memory,

» can check membership as fast as possible.

Burton Bloom: The Bloom filter data structure. Comm. ACM,
July 1970.
A hash data structure where each register in the table is one bit



Query on a list of e-mails

We have a set S of 10° e-mail addresses, where the typical e-mail
address is 20 bites. Therefore it does not seem reasonable to store
S in main memory. We can spare 1 Gigabyte of memory, which is

approximately 10% bytes or 8 x 10% bites. How can put S in main
memory to query it?



Definition Bloom filter

Create a one bit hash table T[0,...,m— 1], and a hash function h.
Initially all m bits are set to 0.

Giving a set S = {xi,..., x,} define a hashing function h: S — T.
For every x; € S, h(x;) — T[j] and T[j] :==1.
Given a set S a function h() and a table T[m]:

inS(y)
Insert (x) h(x) — i
h(x) — i if T[i]==1 then
if T[] ==0 then return Yes
Tli]=1 else
end if return No
end if

Notice: once we have hashed S into T we can erase S.



False positives
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Bloom filter needs O(m) space and answers membership queries in
O(1).
Inconvenience: Do not support removal and may have false

positive.

In a query y € S7, a Bloom filter always will report correctly if
indeed y € S (h(y) — T[i] with T[i] = 1),

but if y € S it may be the case that h(y) — T[i] with T[i] =1,
which is called a False positive.

How large is the error of having a false positive?



Probability of having a false positives

Let |S| = n, we constructed a BF (h, T[m]) with all elements in S.
If we query about y € S?, with y ¢ S, and h(y) — T[i], what is
the probability that T[i] = 1?

After all the elements of S are hashed into the Bloom filter, the
probability that a specific T[] =0is (1 — 1)"=e="/m

(recall that: e = limy_,o0(1 + 1)%, €71 = limy_0o(1 — 1)¥)

Therefore, for a y € S, the probability of false positive 7:

© = Pr[h(y) — TI[i] |where T[i] = 1] = 1—(1—%)" ~l—en/m,

To minimise 7, want to maximize e~"/™

= % has to be small, i.e, m >> n.

For ex.: if m =100n, 7 = 0.0095; If m = n, 7 = 0.632 and if
m = n/10, 7 = 0.9999



Alternative: Amplify

Take k different functions {h1, ha, ..., hg} in the same 2-universal
set of functions.

Ex. Bloom filter with 3 hash functions: hy, hy, hs.

=

1 N
[olo[o[1[o[o[1]o[1]o] t]oJo] 1ol 1]o[1]o[1]o[o[ ]t o[ t]o[o]1]o]o]o]

When making a query about if y € S, compute h1(y),... ht(y), if
one of them is 0 we certainty y ¢ S, else (if all the k hashing go to
bits with value 1) y € S with some probability.

After hashing the n elements k times to T, for an specific T[i]:

p=Pr[T[] =0 = (1 )" =et/m

The probability f of a false positive:

f= (1—efk”/m>k =(1-p)*



Asymptotic estimations for k and m

To minimize the probability of having a false positive: g—’; =0
Let £(k) = Inp then (k) = kIn(1 — e~k7/m)
— ne—kn/m
= f’(k) =In(l—e kn/m) + m
Making f'(k) = 0, we get

1
Ml 2m

Kopt n?2 13 n

The probability of having a false positive for Koy is

9mn 9 m ]_9m m

po=(l—eBnm)Bn ~ (§)ﬁ =0.619223 1.

w



Optimizing k

Given n and m we want to find the optimal value of k to minimize
the probability of a false positive f(k) = (1 — e=k7/m)k

Define g(k) = Inf(k) = kIn(1 — e~ k"/™). Minimizing f is
equivalent to minimizing g.

To minimize the probability of having a false positive: =%~ =0

de(k _ k —kn/m
= 980k _ |n(1 — e=kn/m) 4 eiarmy =0,
= when n, m are given, to minimize f is k, = (In2).

In this case the false positive probability f, = 0.6185™/".

Bloom filters allow a constant probability of false positive, m = cn
for small constant c, i.e. m grows linear wrt n.

For ex.: if ¢ =2 and k = 6 the false positive probability is around
2%.



Practical issues

On the other hand although the results shown before are
asymptotic, there also work for practical values of n. Figure in the
side table give the probability of false positive (y) wrt to n (x),
and as function of m, with k = In 2%.

0.0001
1e-06

1e-08

1e-10

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09



Another application of Bloom filters: Caching structures

Recall: http (Hypertext transfer protocol) basic network protocol to
dristributed information on the WWW net. (Tim Berners-Lee (1990))

HTML (HyperText Markup Language) is the standard language for creating
web pages and web applications.

URL (Uniform Resource Locator) web address indicating for example web
pages. http://www.cs.upc.edu/~diaz

DNS Server

Hosting Server 'E Rirgistrar

Lo (.\ .

Web server is a comp_uter system th_at N @
processes requests using http to deliver web .“\ Intemet )
pages to clients. \—I\r )

Web cache is a technology for temporary storage of web documents (html
pages, images,..) which aim to reduce bandwidth, server load and lag (latency).



Another application of Bloom filters: Caching structures

Suppose we have a set U with n URL, each one with 100
characters, i.e in total we have 800n bits.

Consider caches Ci, Gy, G5, each with
documents indexed by their URL.
A query for URL x is sent to one of the

C1 c2 C3
caches, that cache must determine which ..év.

of the caches has x (if x is there)
If every C; stores 10000 documents, that means about 48000000

bits can be exchanged.
Bloom filters may help to reduce the transfer of bits, accepting a

small marge of error.



Another application of Bloom filters: Caching structures

» Each proxy all of the URLs in its
cache into Bloom Filter.

El

loom Filter) ==

I
]

]

n Filter|

_—
o~

l

» Proxies periodically exchange Bloom
filters, so queries of other caches can
be made locally without sending ICP
message.

-



Cache filtering

Using a Bloom filter to prevent one-hit-wonders from being stored
in a web cache decreased the rate of disk writes by nearly one half,
reducing the load on the disks and potentially increasing disk
performance.

Nearly three-quarters of the URLs accessed from a typical web
cache are one-hit-wonders accessed by users only once and never
again.

To prevent caching one-hit-wonders, a Bloom filter is used to keep
track of all URLs that are accessed by users.

A web object is cached only when it has been accessed at least
once before.



Further applications of Bloom filters

Bloom filters are useful when a set of keys is used and space is
important.

» The Google Chrome web browser used to use a Bloom filter to
identify malicious URLs. Any URL was first checked against a
local Bloom filter, and only if the Bloom filter returned a
positive result was a full check of the URL performed (and the
user warned, if that too returned a positive result)

» Packet routing: Bloom filters provide a means to speed up or
simplify packet routing protocols.
» IP Tracebook

» Useful tool for measurement infrastructures used to create
data summaries in routers or other network devices.

A. Broder, M. Mitzenmacher: Network applications of Bloom
filters: A survey. Internet Mathematics, 1,4: 485-509, 2005



Cuckoo Hashing

Pagh, Rodler: Cuckoo Hashing. ESA-2001
Cuckoo hashing is a hashing technique where:

» Lookups are ©(1) worst-case.
» Deletions are ©(1) worst-case.

» Insertions are O(1) in expectation.



Cuckoo Hashing

» We have two hash tables 771, T» with size m each and two
hash functions h; for T1 and hy for T>.

» Can use for instance h;(k) = k mod m and
ha(k) = [k/m] mod m

» Every element k € U can be only in two positions: at hy(k) in
Ty or at hy(k) in To.

» Lookups take ©(1) because we only need to check 2 positions.

» Deletions take ©(1) because we only need to check 2
positions.

» To insert k € U, try hi(k), if the slot is empty put k there, if
the slot contains k’, kick out the k’, k stay there, and k’
repeats the behavior of k on T5.

» Repeat this process, bouncing between tables, until all
elements stabilize.



Cuckoo Hashing: Long cycles of insertion

One complication is that the cuckoo may loop for ever. The
probability of such an event is small. In such a case choose an
upper bound in the number of slot exchanges, and if it exceeds, do
a rehash: choose new functions and start .

Example: We have {x,y,w,z, u}

hi(x) =2;hi(y) =2; hi(w) = 4; h1(z) = 4, hi1(u) =4
ha(x) = 1; hao(y) = 1; ha(w) = 2; hp(2) = 0, hp(u) =2

0 0

1 ) 1

2 y / 2 y

3 3

41 2z 4| u

5 S 5




Cuckoo Hashing: Long cycles of insertion

What happens if

hi(x) =2; hi(y) = 2; hi(w) = 4; hi(z) = 4, h1(u) = 4
ha(x) =1; ha(y) = 1; ha(w) = 2; ha(z2) = 0, hp(u) = 27
i

wn B~ W N =O

If insertion gets into a cycle, we perform a rehash: choose new
h1, ho and insert all elements back into the table.



Cuckoo Hashing: An example

We wish to hash the set of keys:(20,50, 53,75, 100, 67, 105, 3, 36, 39, 6)
using h1(k) = k mod 11 and hy(k) = L%J mod 11.

m__ho 0 0
20191 1 | 100 120
50 6 4 2 2
53 9 4 3 3
R 4 4 |53
100 | 1 9 3 5
67 1 6 6 30 6
105 6 9 7 7
3 3 0 8 8
36 |3 3 9 75 9
39 |6 3 10 10
6 6 0




Cuckoo Hashing: An example

S =ENL'e
N |
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3
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Cuckoo Hashing: An example
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Cuckoo Hashing: An example

b hy
20 |90 1
0 0 |- 3
sl 4 I L100 | 120
7519 6 2 2
100 1 9 3 36 =} 3 |- 39
1 e
67 | 1 6 ¢ e
105 6 9 g <5
3 (3 0 7
36 |3 3 8
39 | 6 3 5 Sk
6 |6 0 105

With 6 we have to rehash!!!



Complexity

Cuckoo hashing has a complexity:

» Search an element x: constant worst case complexity (x only
can be in the 2 positions hi(x) or in hy(x))

» Delete an element: constant worst case complexity (look at
the 2 positions and erase the element)

> Inserte an element: expected constant complexity.

It is a simple alternative to perfect matching, to implement a
dictionary with reasonable space and constant searching time.

Other models, for example d-hashing tables.



String matching

The string matching problem: given a text TX[1...n] an a pattern
P[1...¢], where elements of TX and P are draw from the same
alphabet X, we wish to find all the occurrences of P in TX,
together with the position they start to occur.

TX:abcabaabcababaacbaabab
P:abaa
TX:abcabaabcababaacbaabab

Given a string x and y:
|x| its length
x||y (or xy) its concatenation with length |x| + |y|



Naive algorithm

Search (TX,P)
fori=1ton—/do
if PT[1,...,00=TX[i,...,i+¢—1] then
print P occurs at /
end if
end for

This algorithm has complexity ©((n — £ 4 1)¢), worst case O(n?)



Rolling Hashing

Use Hashing D.Karp, M. Rabin: Efficient randomized patter
matching algorithms. IBM JRD,1987.

Given TX (|TX| = n) and pattern P (|P| = ), want to indicate
define a hash function h a table T[0,...,m—1J.

Notice each symbol in TX is a key. Wlog consider alphabet
¥ ={0,1,2,3,4,5,6,7,8,9}.



General idea of Karp-Rabin's hashing algorithm

Idea: Break TX into overlapping substring of length = ¢,

So,S51,...5;,... and compute the decimal value of each substring
S; and of P.
X P
0 1 4 () 8 9 10 0 1 2 3 4
8617‘93573‘4‘2 ‘1‘7‘9‘3‘5‘
So's, S, S, 5 //

P 17935
" N - So~ 86179
P S,— 61793

UENEEEEE EEEEEE




Brute force implementation of the algorithm

Let s; denote the decimal value of S; and p the decimal value of P.
Use Horner's rule to compute p in time ©(¢):

p= P[{—1]+10(P[¢ —2] +---+ (10P[0]))---)
In the same way, use Horner's rule to compute for 0 </ < n:

s =Si[10°7Y + S[i + 1]10°72 + - - + S;[i + £ — 2]10* + S;[i + ¢ — 1]10°
=S;[i +0—11+10(Si[i + £ — 2] + - +10(S:[/]1)) - - -).



Brute force implementation

v

At the beginning all registers to 0.
Hash P— T h(p) = p mod m, if h(P) =i then T[i] =1

v

» Run through TX, hashing each set of £ consecutive characters
into T

» If one of them goes to a TJi ] (T[i] = 1), double check that
the ¢ Sk match P (i.e. sx — p=0)

Complexity: O(nf), where ¢ could be ©(n).



Rolling Hash

Instead of looking to O(n) substrings independently, we may take
advantage the substrings have a lot of overlap:
si = 79357 — sj41 = 93573 — sjy» = 35734

Siv1=Sip1li +1J10° + S [i + 2]1105 + -+ S [ + £ — 1]100
(S\{Si[i]})=10

+ Sijali + €10°

Knowing s; to get sj11 with we only have to deal with the element
leaving (S;[i]) and the element incorporating (S;t¢):

sit1 = (57— (Si[i] % 109) % 10 4 S; 41 [i + 1]



Rolling Hash

Recall mod magic: for a, b, m € Z,

(a+ b) mod m = (a mod m+ b mod m) mod m

(a- b) mod m= ((a mod m)- (b mod m)) mod m

If a,b € Zm and b > a, (a— b) mod m= (m— (a— b)) mod m
(a mod m) mod m=a mod m

Using the hash function h(a) = a mod m, for any a € N

h(sit1) = ((si — (Si[i] * 10%)) % 10 + S; 1 1[i + £]) mod m

h(siy1) = ((@—(5,[/]) mod m % 10%) mod m))*10+S;1[i+/])) mod m

known Sili] pre-comp.

Therefore given h(s;) we can compute h(sj+1) in ©(1) steps.



Example

[slefr[7]o]3]5]7]

S S—

20

JEN BN EEN

TX=861793, m =73,
Preprocess: h(86179) = 39 and 10* mod 73 = 72.

h(61793) = ((86179 — 8 - 10*) - 10 + 3) mod 73

= (((h(86179) — (8 - 10*) mod 73)10) mod 73 + 3) mod 73
= ((47 - 10) mod 73+ 3) mod 73 =35

—~~ o~~~



Karp-Rabin Algorithm

Given a text |TX| = n pattern P =/, hash table | T| = m, hash
function h = mod m:

Karp-Rabin (TX, P, T)
p=0;5=0;q9g=10"1 mod m
forj=0to/—1do
h(p) = (10p + P[j]) mod m
h(sp) = (10sp 4+ TX[j] mod m
end for
fori=0ton—/{do
if h(p) == h(s;) then
if P0...0—1]==TX[i...i+(— 1] then
return Match at /
end if
else
h(sit1) = (10(s; — T[i+1]q) + T[i + £+ 1]) mod m
end if
end for



Complexity

» To use any other radix d # 10 it behaves the same as
radix-10. We has to substitute 10 by d.

» Using rolling hash we could speed the computation of the
hash function of each ¢-string to ©(1), once we compute the
first one in O(Y)

» The total complexity depends of the number of comparisons.
Each comparison takes (/).

» If TX and P are such that the algorithm must make ©(n)
comparisons, the total complexity is ©(n/)

» In most practical applications (genomics, text searching, etc.),
string searching using Karp-Rabin takes O(n + /) = O(n).



Complexity

» Regarding collisions from hashing different substrings, we must
choose m a large prime integer, which fits into a computer
word and make sure it keeps basic operations constants.

For instance, if m = O(n) then the expected number of
collisions is ©(1) collision in each slot, if m = O(n?) we
expect O(1/n) number of collisions per cell, which is nice, but
at expenses of having a very large T.

> There is a fast algorithm for string matching
Knuth-Morris-Pratt ©(n). But the simplicity of Karp-Rabin
and the easiness to generalize to non-textual applications,
makes K-R a good choice, widely used in practice.



Common substring problem

It Moraprocs, nddal e ool th veron of a graph and, at cach step
of the discrete-time process, an individual i selected at random to reproduce. This vertex
chooses one of its neighbours unifornly at random and replaces that. neighbour with its
offspring, a copy of itself. The probability that any given individual is chosen to reproduce is
propotioal o s finess: individuls with the mustionhave ftnes > 0 and o utants
have fitness 1. T e mutant placed in the graph,
with every other vrtex a non-mutant. On any finite, strongly connected graph, the process
will terminate with probability 1, either in the state whare every vertex is a mutan, (known
as fization) or in the state where 10 vertex is & mutant, (known as estinction).

The unde(l:«mx structure of the graph G s a large undiected clique on X veriices and
a long directed el o e b ey
e clique receives an edge from the path's last vertex. We refer to the
first N vertices of path as P and the remainder as Q. Each vertex of P has out-degree 1 but
receives 4 r] edges from Q.

Suppose that, N is suffciently large with respect to r and consider the Moran process
on G . Given the relative sizes of the clique and the path, there is » reasonable probebility
(about 1) that the initial mutant is in the clique. The edges to and from the path have a
negligible effect so it is reasomably lkely (probability at least 1 — 1) that we will then reach
A el i lf el et e 1 imls dhcepls i i e o
of two um.g

+ the peoea 6 snch exinctin, the wotats ae eady in the clique must die out
Becaun the miracton beween th el and pm s small, the mumber of mutants in the
clique is very close to  random welk on {0,...., N} with upward drift 7, and the expected
time before such a walk reaches 7o from N/2 is exponential in .

S={weV(6) | ry <rid VI

and note that, for v € V \ 8, 7, = 7, For v € V, let ¢, be a random variable drasm from
Exp(r,.) and, for v € S, Iet £ ~ Exp(rl, — ru). From the defnition of the exponential
distribution, it is easy to see that, for each v € S, min(ty, t,) ~ Exp(r} ;).

If some £, is minimal among {t, | v € V}U {2, | v € 5}, then choose an out-neighbour w
of v n.a.r. and set V[t +ty] = Vtllory and Vit+t] = V[llyu. Tt is clear that V[t +t,] €

Otherwise, some ¢, is minimal. In this case, set ¥ +,) = V] choose n xtnghbone
of v uar. and sct V[t+ 8] = V[l Sinco v € 5 C V[, wo ha

Vit +

1< Vi € P+ 4]

In both cases, the contimuons-time Moran process has been faithfully simulated up to time
t+7, where 7 =, in the fizt case and 7 = ¢ in the second case, and the memorylessness of
the exponential distribution allows the coupling to continue from ¥ +7] and Y[t +7].

Our main technical tool is stochastic domination. Intuitively, one expects that the Moran
process has a higher probability of reaching fixation when the sel of mutants is § than when
it is some subset of S, and that it is likely to do so in fewer steps. It also seems obvious
that modifying the process by continuing to allow all transitions that create new mutants
but forbidding some transitions that remove mutants should make fixation faster and more
probable, Such intuitions have been used in proofs in the literature; i turns out that they
aro ssentially correct, but for rather subilo reasons.

The Moran process can be described as a Markov chain (¥i)i>1 where i is the set S C
V/(G) of mutants at the ¢'th step. The normel method to make the above intuitions formal
would be to demonstrae a stochastic domination by coupling the Moran process (Yy)>y with
another copy (¥{):21 of the process where ¥; C ¥{. The coupling would be designed so that
¥i € ¥ would ensure that ¥; C ¥ for all ¢ > 1. However, a simple example shows that such
a coupling does not always exist for the Moran process. Let G be the undirected path with
o edges: V(G) = {1,2,3} and B(G) = {(1, z] (2,1),(2,3) (a 2)}. Let (V)iz1 and (¥)iz1
be Moran processes on G with ¥; = {2} and ¥{ = {2,3). ty gy we have
¥ = {1,2}. The only possible vale for ¥ dm contains Y; is u 2,3} but this occurs with
probabilty only 55" . Therefore, any coupling between the two proccsses fails because

r(r-1)
A+ +1)’
‘which isstrictly posicive for any r > 1. The problem is that, when vertex 3 becornes & mutant,
it becomes more likely t0 be the next vortex to reprodice and, correspondingly, overy other

vertex becomes lsss . This cun bs e he et lowing dova”l (e ier
vertices in the g

"o g aromnd v problem, we consider a continnons-time version of the process, V[t
(6> 0). Given the set of mutants V] at time (, i i vl 40 o of i s
reproducing.  For cach vertex, this period of time s chosen according to the exponential
iaTbution Wit peramote cqua t o veriox' e, ndepandenty of the ihr vortes.
(Thus, the parammeter is 7 if the vertex is o mutant and 1, otherwise.) If the first vertex to
xeproduce is v at time ¢+ then, o in the standard, discrete-time version of the process, one
of its out-neighbours w is choson uniformly at random, the individual at w is roplaced by a
copy of the one at v end the time et which w will next reproduce is exponentially distributed
with pasameter given by its new fitness. The discrete-time process s recovered by taking the
soqence of configurations cach time a vertex reproduces.

In continuous tire, each member of the population reproduces ab & rate given by its
itness, independently of the rest of the population whereas, in discrete time, the population

10 co-ordinate to decide who will reproduce next. Tu i still rue in continuous time that
vertex w becoming a mutant makes it less likely that each vertex v # w will be the next
o reproduce. Howeve, the ertice are not slowed down as they are in disciete time: they
continue t roproduco at rates determined by their fitnesses, This distinction allows us o
establish the following coupling lemms, which formslises the intuitions discussed sbove.

P £¥}) 2

When k is a positive integer, [¥] denotes {L,...,k}. We consider the evolution of the
Moran process on a strongly connected directed graph (digraph). Cousider such a digraph

1



Common substring problem

Given two texts Tx; and Txp, with | Txy| = | Txo| = n discover if they
share a common substring of length ¢. Define hand T[0---m — 1] and
use rolling hash (notice blancs should be considered as an extra symbol):

1. Hash the first substring of length £ in Tx; to T. (0())
2. Use rolling hash to compute the subsequent n — 1 substring in Txy,

hashing each one to T. (O(n))
3. Hash the first substring of length £in Tx, to T. (0())

4. Use rolling hash to compute the subsequent n — 1 substring in Txp,
hashing each one to T. For each substring, check if there are
collisions with substrings from Tx;. (0(n))

5. If a substring of T; collide with a substring of T, do a string
comparison on those substrings. (0(0))

If the number of collisions should be small the complexity is O(n).
But for large number of collisions it could be O(n?).



