
Linear Sorting

Curs: Spring 2019

Upper and lower bounds on time complexity of a problem.

A problem has a time upper bound TU(n) if there is an algorithm
A such that for any input e of size n:
A(e) gives the correct answer in ≤ TU(n) steps.

A problem has a time lower bound TL(n) if there is NO algorithm
which solves the problem if time < TL(n), for any input e,|e| = n.

It may be that an algorithm solves the problem faster that TL(n)
for a specific input.

Lower bounds are hard to prove, as we have to consider every
possible algorithm.

Upper and lower bounds on time complexity of a problem.

I Upper bound: ∃A,∀e time A(e) ≤ TU(|e|),

I Lower bound: ∀A, ∃e time A(e) ≥ TL(|e|),

To prove an upper bound: produce an A which works for any e,
|e| = n.

To prove a lower bound , show that for any possible algorithm, the
time on an input is greater than the lower bound.

Lower bound for comparison based sorting algorithm.
Use a decision tree: A binary tree where,

I each internal node represents a comparison ai : aj , the left
subtree represents the case ai ≤ aj and the right subtree
represents the case ai > aj

I each leaf represents one of the n! possible permutations
(aπ(1), aπ(2), . . . , aπ(n)). Each of the n permutations must
appear as one of the leaves of the tree

469

1:2

2:3

1:3

1:3

2:3

9 4 6

< >=

>=

>=

<

< <

<>=

>=

1 2 3

123

132 312

213

231 312

Theorem
Any comparison sort that sorts n elements must perform Ω(n lg n)
comparisons.

Proof.
Equivalent to prove: Any decision tree that sorts n elements must
have height Ω(n lg n).
Let h the height of a decision tree with n! leaves,
n! ≤ 2h ⇒ h ≥ lg(n!) > lg(ne)n = Ω(n lg n).

Linear sorting: Counting sort

CLRS Ch.8
Assume the input A[1 . . . n], is an array of integers in [0, b].
Need: B[1 . . . n] as the output and C [0 . . . b] as scratch.

Counting (A, b)
for i = 0 to b do

do C [i] := 0
end for
for i = 1 to n do

do C [A[i]] := C [A[i]] + 1
end for
for i = 0 to b do

do C [i] := C [i] + C [i − 1]
end for
for i = n downto 1 do

do B[C [A[i]]] := A[i]
C [A[i]] := C [A[i]]− 1

end for

Counting (A, b)
for i = 0 to b do

do C [i] := 0 { O(b)}
end for
for i = 1 to n do

do C [A[i]] := C [A[i]] + 1 { O(n)}
end for
for i = 0 to b do

do C [i] := C [i] + C [i − 1] { O(b)}
end for
for i = n down to 1 do
B[C [A[i]]] := A[i] { O(n)}
C [A[i]] := C [A[i]]− 1

end for

Complexity: T (n) = O(n + b) if b = O(n), then T (n) = O(n).
When using counting on short arrays, b = 10.

What does it mean radix?
Radix means the base in which we express an integer
Radix 10=Decimal; Radix 2= Binary; Radix 16=Hexadecimal;
Radix 20 (The Maya numerical system)

Radix Change: Example

I To convert an enter from binary → decimal:
1011 = 1× 23 + 0× 22 + 1× 21 + 1× 20 = 12⇒ 11

I To convert an enter from decimal → binary: Repeatedly
dividing the enter by 2 will give a result plus a remainder:
19⇒ 19/2︸︷︷︸

1

9/2︸︷︷︸
1

4/2︸︷︷︸
0

2/2︸︷︷︸
01

= 10011

I To transform an integer radix 16 to decimal:
(4CF5)16 = (4×163 + 12×162 + 15×161 + 5×160) = 19701

radix 10 radix 2 radix 16
7134785012 110101001010001000010110111110100 1a9442df4
4561343780 100001111111000001001010100100100 10fe09524
0051889437 . 000000011000101111100010100011101 0317c51d

Example

Is it true that if n integer a in radix 512 has d digits, and we
change it to be expressed in radix 2, the number of bits that n
would have is Θ(d2)?

NO. When converting radix-256 to binary, we increase d to
lg 512× d = 9d = Θ(d).

Linear sorting: RADIX sort

An important property of counting sort is that it is stable, numbers
with the same value, appear in the output in the same order as
they do in the input.
For instance Heap sort or Quicksort is not stable.

Given an array A with n keys, each one with d digits, the Radix
(Least Significant Digit),

RADIX LSD (A, d)
for i = 1 to d do

Use stable sorting to sort the i-th digit of A.
end for

Example

329 720 720 329
475 475 329 355
657 355 436 436
839 ⇒ 436 ⇒ 839 ⇒ 457
436 657 355 657
720 329 657 720
355 839 475 839

Theorem (Correctness of RADIX)

The previous algorithm sort correctly n keys.

Induction on d .
If d = 1 the stable sorting works. Assume it is true for d − 1,
to sort the d-th digit,
if ad < bd then a will be placed before b,
if bd < ad then b will be placed before a,
if bd = ad then as we are using a stable sorting a and b will remain
in the same order, which by hypothesis was already the correct
one.

Complexity of RADIX

Given n integers ≥ 0, each integer with at most d digits, and each
digit in the range 0 to 9, if we use counting sorting:
T (n, d) = Θ(d(n + 9)).

I Consider that each integer has a value up to f (n).

I Then the number of digits is d = log f (n), so
T (n, d) = Θ((log f (n))(n + 9)),

I if f (n) = ω(1) then T (n) = ω(n). So in this case RADIX is
not lineal.

Can we do it faster?: Yes, change the radix to express the integers.

RADIX

Given n integers, each integer with a value up to f (n) then the
decimal expression had at most d = blog f (n)c+ 1 ∼ log f (n)
digits.
Consider each integers in radix b, then the number of ”digits” is
d = logb f (n), and apply RADIX to the columns of new digits in
base b.

Complexity: Given n positive integers, each integer with a maximal
value of f (n) and with at most d digits needed to represent each
using radix b. Then the complexity T (n) of using RADIX to sort
the n integers is: T (n) = O((n + b)d) = O(n + b) logb f (n).

RADIX Change: Example

RADIX 10 RADIX 2 RADIX 16
7134785012 110101001010001000010110111110100 1a9442df4
4561343780 100001111111000001001010100100100 10fe09524
0051889437 . 000000011000101111100010100011101 0317c51d

n d b

RADIX 10 3 10 9

RADIX 2 3 33 1

RADIX 16 3 8 15

Implementation for bit integers

Given n integers given as binary strings with length d ,
we want to choose an integer 1 < r < d such minimizes
(d/r)(n + 2r).
Then use RADIX on each of the new d̂ = dd/re digits.
For ex., if we have words of b = 32 bits, which we split in d = 4
r = 8-bit digits:

1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0
Each new digit is an integer with b = 2r − 1.
So we can use counting sort with k = 2r − 1.

Each pass of counting sort takes Θ(n + k) = Θ(n + 2r),
as there are d passes ⇒ T (n) = Θ(d(n + 2r)) = Θ((b/r)(n + 2r)).

Comparing radix and counting:

For n integers, each integer with at most d digits, where each digit
is in the range [0, 9]:

I Counting sort is Θ(9dn),

I Radix with the choice of r = log9 n-digits can sort n d-digit
numbers in d

log9 n
Θ(9n).

Consider 2000 integers of 32 bits each:

I Quicksort needs to do lg 2000 = 11 passes over the data,

I Radix sort with digits of 11-bits, takes 3 passes (at each one
counting sort makes 2 passes).

Empirically, when dealing with natural numbers, radix is better
than other sorting methods for values of n > 2000.

A bit of history.

Radix and all counting sort are due to
Herman Hollerith.
In 1890 he invented the card sorter that
allowed to shorten the US census to 5
weeks, using punching cards.

